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Wemainly discuss the properties and applications of semi-𝐺-preinvexity, which was introduced in Peng and Chang 2013. Examples
are given to show the existence of semi-𝐺-preinvex functions.Three important properties and characterizations of semi-𝐺-preinvex
functions are established. Furthermore, under semi-𝐺-preinvexity, some optimality results are obtained in nonlinear programming
problems with inequality constraint. Our results improve and generalize some known results.

1. Introduction

It is well known that the research on convexity and gen-
eralized convexity is one of the most important aspects in
mathematical programming and optimization theory; see,
for example, [1–5]. In fact, there are a number of nonlinear
programming problems whose objective and constraints
functions are nonconvex. Therefore, in the recent years,
attempts are made by several authors to define various
nonconvex classes of functions and to study their optimality
criteria in solving such types of problems; see, for example,
[6–14]. One of such a generalization of convex function is
invexity notion introduced in [13] and called in [15]. Over the
years, many generalizations of this concept have been given
in the literature. In 1972, Avriel [16] introduced the definition
of 𝑟-convex functions, which is a generalization of convex
functions, and discussed some characterizations of 𝑟-convex
functions. Later, Ben-Israel and Mond [17] considered a class
of nondifferentiable functions that were called preinvex in
[18] as a generalization of convexity and studied how and
where preinvexity can replace convexity in multiobjective
programming problems. Then, the concept of preinvexity
was generalized to 𝐵-preinvexity [19] and semipreinvexity
[20]. Using the definition of a weighted 𝑟-mean (where
𝑟 is a real number) for a sequence of positive numbers,

Antczak [21] introduced new classes of functions and called
them (𝑝, 𝑟)-preinvex with respect to 𝜂. Moreover, Antczak
[22] considered a class of 𝑟-preinvex functions, which is
a generalization of 𝑟-convex functions, and obtained some
optimality results under appropriate 𝑟-preinvexity conditions
for constrained optimization problems. In 2011, Zhao et al.
[23] introduced the definition of 𝑟-semipreinvex functions
and obtained some basic characterizations and optimality
results in nonlinear programming.

On the other hand, Avriel et al. [24] introduced the defi-
nition of𝐺-convex functions, which is another generalization
of convex functions, and obtained some characterizations
and the relations between 𝐺-convexity and convexity, where
𝐺 is a continuous real-valued increasing function. As a
generalization of 𝐺-convexity and invexity, Antczak [25]
introduced the concept of 𝐺-invexity and obtained some
optimality conditions for constrained optimization problems
under assumptions of 𝐺-invexity. Recently, Antczak [26]
introduced the definition of 𝐺-preinvex functions, which is
a generalization of 𝑟-preinvex functions with 𝑟 > 0 [22]
with respect to the same 𝜂. Then, by using the 𝐺-preinvexity,
some optimality results for constrained optimization prob-
lems were derived. Very recently, Peng and Chang [27]
introduced a class of nonconvex functions, semi-𝐺-preinvex
functions, which is a generalization of 𝐺-preinvex functions
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[26], semipreinvex functions [20, 28], and 𝑟-semipreinvex
functions with 𝑟 > 0 [23] with respect to the same 𝜂, and
then they obtained some interesting properties of semi-𝐺-
preinvex functions.

But, to the best of our knowledge, there are few optimality
results in nonlinear programming (especially, in mathemat-
ical programming with constant) that have been concerned
under semi-𝐺-preinvex functions in the literature. So, in this
paper, we mainly discuss the characterizations and applica-
tions in nonlinear programming of semi-𝐺-preinvexity.

The rest of the paper is organized as follows. In Section 2,
we recall some concepts and give some examples to show
the existence of semi-𝐺-preinvex functions. In Section 3, we
establish three important properties and characterizations
of semi-𝐺-preinvex functions, which include that the ratio
of semi-𝐺-preinvex functions is semi-preinvex function.
In Section 4, under semi-𝐺-preinvexity, we obtain some
optimality results in nonlinear programming problems with
inequality constraint. Some examples are given for illustra-
tion of our results. Our results extend and generalize the
corresponding ones in the literature [20, 26–28].

2. Preliminaries

Throughout this paper, let𝑋 be a nonempty subset of 𝑅𝑛. Let
𝑓 : 𝑋 → 𝑅 be a real-valued function and 𝜂 : 𝑋 × 𝑋 → 𝑅

𝑛 a
vector-valued function. And let 𝐼

𝑓
(𝑋) be the range of 𝑓, that

is, the image of 𝑋 under 𝑓, and let 𝑓−1 be the inverse of 𝑓.
Now we recall some useful definitions.

Definition 1 (see [24]). Let 𝐺 be a continuous real-valued
strictly monotonic function defined on 𝐷 ⊂ 𝑅, and 𝑓 : 𝑋 →
𝑅, where 𝑋 is a nonempty convex set in 𝑅𝑛. 𝑓 is said to be
𝐺-convex on𝑋 if and only if, for any 𝑥, 𝑦 ∈ 𝑋, 𝜆 ∈ [0, 1],

𝑓 (𝑦 + 𝜆 (𝑥 − 𝑦)) ≤ 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦))) ,

(1)

where 𝐺−1 is the inverse of 𝐺, 𝑓(𝑋) ⊂ 𝐷.

Remark 2. All convex functions are 𝐺-convex functions with
𝐺(𝑥) = 𝑥, but the converse is not necessarily true.

Weir et al. [5, 18] presented the concepts of invex sets and
preinvex functions which are generalization of convex sets
and convex functions, respectively, as follows.

Definition 3. A set𝑋 is said to be invex if there exists a vector-
valued function 𝜂 : 𝑋 × 𝑋 → 𝑅

𝑛 such that

𝑥, 𝑦 ∈ 𝑋, 𝜆 ∈ [0, 1] ⇒ 𝑦 + 𝜆𝜂 (𝑥, 𝑦) ∈ 𝑋. (2)

Definition 4. Let 𝐾 ⊆ 𝑅𝑛 be an invex set with respect to 𝜂 :
𝐾 × 𝐾 → 𝑅

𝑛 and let 𝑓 : 𝐾 → 𝑅 be a mapping. We say that
𝑓 is preinvex if and only if

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦)) ≤ 𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾,

𝜆 ∈ [0, 1] .

(3)

Antczak presented the concepts of𝐺-invex functions [25]
and 𝐺-preinvex functions [26] which are generalization of
𝐺-convex functions and preinvex functions, respectively, as
follows.

Definition 5. Let 𝑋 be a nonempty invex (with respect to
𝜂) subset of 𝑅𝑛 and let 𝑓 : 𝑋 → 𝑅 be a differentiable
function defined on 𝑋. Further, we assume that there exists
a differentiable real-valued increasing function 𝐺 : 𝐼

𝑓
(𝑋) →

𝑅. Then 𝑓 is said to be 𝐺-invex at 𝑦 on 𝑋 with respect to 𝜂 if
there exists a vector-valued function 𝜂 : 𝑋 × 𝑋 → 𝑅

𝑛 such
that, for all 𝑥 ∈ 𝑋,

𝐺 (𝑓 (𝑥)) − 𝐺 (𝑓 (𝑦)) ≥ 𝐺


(𝑓 (𝑦)) ∇𝑓 (𝑦) 𝜂 (𝑥, 𝑦) . (4)

Definition 6. Let 𝑋 be a nonempty invex (with respect to 𝜂)
subset of 𝑅𝑛; 𝑓 : 𝑋 → 𝑅 is said to be (strictly) 𝐺-preinvex
at 𝑦 with respect to 𝜂 if and only if there exist a continuous
real-valued increasing function 𝐺 : 𝐼

𝑓
(𝑋) → 𝑅 and a

vector-valued function 𝜂 : 𝑋 × 𝑋 → 𝑅
𝑛 such that, for all

𝑥 ∈ 𝑋 (𝑥 ̸= 𝑦) and any 𝜆 ∈ [0, 1] (𝜆 ∈ (0, 1)),

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦))

≤ 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦))) (<) .

(5)

If the inequality above is satisfied for any 𝑦 ∈ 𝑋, then 𝑓 is
(strictly) 𝐺-preinvex on𝑋 with respect to 𝜂.

Remark 7. Every 𝑟-preinvex function with respect to 𝜂 with
𝑟 > 0 introduced in [22] is 𝐺-preinvex with respect to the
same function 𝜂, where 𝐺 : 𝐼

𝑓
(𝑋) → 𝑅 is defined by 𝐺(𝑡) =

𝑒
𝑟𝑡. Every preinvex function with respect to 𝜂 is 𝐺-preinvex
function with respect to the same 𝜂, where 𝐺(𝑥) = 𝑥.

Definition 8 (see [20]). 𝑋 ⊆ 𝑅𝑛 is said to be semiconnected
set if there exists 𝜂 : 𝑋 × 𝑋 × [0, 1] → 𝑅

𝑛 such that, for any
𝑥, 𝑦 ∈ 𝑋, 𝜆 ∈ [0, 1], 𝑦 + 𝜆𝜂(𝑥, 𝑦, 𝜆) ∈ 𝑋.

Definition 9 (see [20, 28]). Let 𝑋 ⊆ 𝑅𝑛 be semiconnected set
with respect to 𝜂 : 𝑋 × 𝑋 × [0, 1] → 𝑅

𝑛; 𝑓 : 𝑋 → 𝑅 is
said to be semipreinvex with respect to 𝜂 if and only if, for
any 𝑥, 𝑦 ∈ 𝑋, 𝜆 ∈ [0, 1], lim

𝜆→0
𝜆𝜂(𝑥, 𝑦, 𝜆) = 0 and 𝑓(𝑦 +

𝜆𝜂(𝑥, 𝑦, 𝜂)) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦).

In [27], Peng and Chang presented the definition of semi-
𝐺-preinvex functions as follows.

Definition 10. Let 𝑋 ⊆ 𝑅𝑛 be semiconnected set with respect
to 𝜂 : 𝑋 × 𝑋 × [0, 1] → 𝑅

𝑛; 𝑓 : 𝑋 → 𝑅 is said to be
(strictly) semi-𝐺-preinvex at 𝑦 with respect to 𝜂 if and only
if there exist a continuous real-valued increasing function𝐺 :
𝐼
𝑓
(𝑋) → 𝑅 and a vector-valued function 𝜂 : 𝑋×𝑋×[0, 1] →

𝑅
𝑛 such that, for all 𝑥 ∈ 𝑋 (𝑥 ̸= 𝑦), 𝜆 ∈ [0, 1] (𝜆 ∈ (0, 1)),

lim
𝜆→0

𝜆𝜂(𝑥, 𝑦, 𝜆) = 0 and

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦, 𝜆))

≤ 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦))) (<) .

(6)

If the inequality above is satisfied for any 𝑦 ∈ 𝑋, then 𝑓 is
(strictly) semi-𝐺-preinvex on𝑋 with respect to 𝜂.
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Remark 11. In order to define an analogous class of (strictly)
semi-𝐺-preincave functions with respect to 𝜂, the direction
of the inequality in the definition of these functions should
be changed to the opposite one.

Remark 12. Every 𝑟-semipreinvex function [23] (𝑟 > 0) with
respect to 𝜂 is semi-𝐺-preinvex function with respect to the
same function 𝜂, where 𝐺(𝑡) = 𝑒𝑟𝑡.

Remark 13. Every 𝐺-preinvex function [26] with respect to
𝜂 is semi-𝐺-preinvex function with respect to the same
function𝐺, where 𝜂(𝑥, 𝑦, 𝜆) = 𝜂(𝑥, 𝑦). However, the converse
is not true.

Remark 14. Every𝐺-convex function [24] is semi-𝐺-preinvex
function with respect to the same function 𝐺, where
𝜂(𝑥, 𝑦, 𝜆) = 𝑥 − 𝑦. However, the converse is not true.

Remark 15. Every semipreinvex function [20] with respect
to 𝜂 is semi-𝐺-preinvex function with respect to the same 𝜂,
where 𝐺(𝑡) = 𝑡. However, the converse is not true.

Example 16. This example illustrates that a semi-𝐺-preinvex
function is not necessarily a semipreinvex function with
respect to the same 𝜂.

Let𝑋 = 𝑅; it is easy to check that𝑋 is a semiconnected set
with respect to 𝜂(𝑥, 𝑦, 𝜆) and lim

𝜆→0
𝜆𝜂(𝑥, 𝑦, 𝜆) = 0, where

𝜂 (𝑥, 𝑦, 𝜆) =

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

𝑥 − 𝑦

√𝜆
, 𝑥 < 0, 𝑦 < 0, 𝑥 > 𝑦, 0 < 𝜆 ≤ 1;

𝜆 (𝑥 − 𝑦) , 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 ≥ 𝑦;

𝜆 (𝑥 − 𝑦) , 𝑥 < 0, 𝑦 < 0, 𝑥 ≤ 𝑦;

𝑥 − 𝑦, 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 < 𝑦;

−𝑥 − 𝑦, 𝑥 ≥ 0, 𝑦 < 0, 𝑥 < −𝑦;

−
1

2
𝑥 − 𝑦, 𝑥 < 0, 𝑦 ≥ 0, 𝑥 > −𝑦;

−𝑦, 𝑥 ≥ 0, 𝑦 < 0, 𝑥 ≥ −𝑦;

0, 𝑥 < 0, 𝑦 ≥ 0, 𝑥 ≤ −𝑦.

(7)

Let 𝑓 : 𝑋 → 𝑅 be defined by 𝑓(𝑥) = ln(|𝑥| + 5/2). From
example 2.4 of [27], we know that 𝑓 is a semi-𝐺-preinvex
function with respect to 𝜂, where 𝐺(𝑡) = 𝑒𝑡, but it is not a
semipreinvex function with respect to the same 𝜂.

Now, we give another example that illustrates that semi-
𝐺-preinvex functions exist.

Example 17. Let 𝑋 = (0, 𝜋/2); it is easy to check that
𝑋 is a semiconnected set with respect to 𝜂(𝑥, 𝑦, 𝜆) and
lim
𝜆→0

𝜆𝜂(𝑥, 𝑦, 𝜆) = 0, where

𝜂 (𝑥, 𝑦, 𝜆) =
{

{

{

𝜆𝑥 − 𝑦, if 𝑥 ≥ 𝑦;

𝑥 − 𝑦, if 𝑥 < 𝑦.
(8)

Let 𝑓 : 𝑋 → 𝑅 be defined by 𝑓(𝑥) = sin𝑥.

From the definition of semi-𝐺-preinvexity, it is not
difficult to conclude that 𝑓 is a semi-𝐺-preinvex function
with respect to 𝜂, where 𝐺(𝑡) = arcsin 𝑡.

In the sequel, we will use the following lemmas.

Lemma 18. Let 𝐺 : 𝐼
𝑓
(𝑋) → 𝑅 be a continuous real-valued

function; then 𝐺−1 is increasing if and only if 𝐺 is increasing.

Lemma 19. Let 𝐺 : 𝐼
𝑓
(𝑋) → 𝑅 be a continuous real-valued

function. If 𝐺 is increasing and concave, then 𝐺−1 is convex. If
𝐺 is increasing and convex, then 𝐺−1 is concave.

3. Properties and Characterizations of
Semi-𝐺-Preinvex Function

In this section, we establish three interesting properties for
semi-𝐺-preinvex function, which extend and generalize the
corresponding ones in the literature [27, 28].

Firstly, we show that the ratio of semi-𝐺-preinvex func-
tions is semi-𝐺-preinvex, which extends earlier results by
Craven and Mond [11] and Yang et al. [28]. Since the proof
is obvious, it has been omitted in this paper.

Theorem 20. Let 𝑋 ⊆ 𝑅𝑛 be semiconnected set with respect
to 𝜂 and let 𝑓 and 𝑔 be real-valued functions defined on 𝑋.
If 𝑓(𝑥) ≥ 0, 𝑔(𝑥) > 0, 𝑓(𝑥) is a semi-𝐺

1
-preinvex function,

−𝑔(𝑥) is a semi-𝐺
2
-preinvex function with respect to 𝜂 on 𝑋,

where 𝐺
1
is concave and 𝐺

2
is convex. Then,

(i) 𝑓(𝑥)/𝑔(𝑥) is a semipreinvex function with respect to
𝜂(𝑥, 𝑦, 𝜆) = (𝑔(𝑦)/(𝜆𝑔(𝑦) + (1 − 𝜆)𝑔(𝑥)))𝜂(𝑥, 𝑦, 𝜆);

(ii) if lim
𝜆→0

̄𝜂(𝑥, 𝑦, 𝜆) = 𝜂
∗

(𝑥, 𝑦), we also have 𝑓(𝑥)/
𝑔(𝑥) be an invex function with respect to 𝜂∗(𝑥, 𝑦) =
(𝑔(𝑦)/𝑔(𝑥))𝜂(𝑥, 𝑦).

Theorem 21. Let 𝑋 ⊆ 𝑅𝑛 be semi-connected set with respect
to 𝜂(𝑥, 𝑦, 𝜆); 𝑓 : 𝑋 → 𝑅 is a semi-𝐺-preinvex function with
respect to the same 𝜂 if and only if the set 𝐹(𝑓) = {(𝑥, 𝑢) :
𝑥 ∈ 𝑋, 𝑢 ∈ 𝑅, 𝑓(𝑥) < 𝑢} is semiconnected with respect to
𝜂


: 𝐹(𝑓) × 𝐹(𝑓) × [0, 1] → 𝑅
𝑛+1, where

𝜂


((𝑦, V) , (𝑥, 𝑢) , 𝜆)

=

{{{{{{

{{{{{{

{

𝜂 (𝑦, 𝑥, 0) , 𝜆 = 0;

(𝜂 (𝑦, 𝑥, 𝜆) ,
𝐺
−1

(𝜆𝐺 (𝑢) + (1 − 𝜆)𝐺 (V)) − 𝑢
𝜆

) ,

0 < 𝜆 ≤ 1,

(9)

for all (𝑥, 𝑢), (𝑦, V) ∈ 𝐹(𝑓).

Proof. In a similar way to the proof of Theorem 3.5
of [27], with suitable modifications, we can obtain the
conclusion.
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Theorem22. Let𝑋 ⊆ 𝑅𝑛+1 and𝑓(𝑥) = inf{𝑢 : 𝑢 ∈ 𝑅, (𝑥, 𝑢) ∈
𝑋}, for all𝑥 ∈ 𝑅𝑛;𝐺 is continuous real-valued increasing. If𝑋 is
a semiconnected set with respect to 𝜂∗ : 𝑋×𝑋×[0, 1] → 𝑅

𝑛+1,

𝜂
∗

((𝑦, V) , (𝑥, 𝑢) , 𝜆)

=

{{{{{{

{{{{{{

{

𝜂 (𝑦, 𝑥, 0) , 𝜆 = 0;

(𝜂 (𝑦, 𝑥, 𝜆) ,
𝐺
−1

(𝜆𝐺 (𝑢) + (1 − 𝜆)𝐺 (V)) − 𝑢
𝜆

) ,

0 < 𝜆 ≤ 1,

(10)

for all (𝑥, 𝑢), (𝑦, V) ∈ 𝑋, where 𝜂 : 𝑅𝑛×𝑅𝑛×[0, 1] → 𝑅
𝑛.Then

𝑓 : 𝑅
𝑛

→ 𝑅 is a semi-𝐺-preinvex function with respect to 𝜂.

Proof. (i) Let 0 < 𝜆 ≤ 1, and let 𝑥, 𝑦 ∈ 𝑅𝑛. Since 𝑋 is a
semiconnected set with respect to 𝜂∗((𝑦, V), (𝑥, 𝑢), 𝜆), then,
for any (𝑥, 𝑢), (𝑦, V) ∈ 𝑋,

(𝑥, 𝑢) + 𝜆𝜂
∗

((𝑦, V) , (𝑥, 𝑢) , 𝜆) ∈ 𝑋, ∀𝜆 ∈ (0, 1] . (11)

From
𝜂
∗

((𝑦, V) , (𝑥, 𝑢) , 𝜆)

= (𝜂 (𝑦, 𝑥, 𝜆) ,
𝐺
−1

(𝜆𝐺 (𝑢) + (1 − 𝜆)𝐺 (V)) − 𝑢
𝜆

) ,

(12)

it follows that
(𝑥, 𝑢) + 𝜆𝜂

∗

((𝑦, V) , (𝑥, 𝑢) , 𝜆)

= (𝑥 + 𝜆𝜂 (𝑦, 𝑥, 𝜆) , 𝐺
−1

(𝜆𝐺 (𝑢) + (1 − 𝜆)𝐺 (V))) ∈ 𝑋,

∀𝜆 ∈ (0, 1] .

(13)

Thus, by the definition of 𝑓, we have

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦, 𝜆)) ≤ 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦))) ,

∀𝜆 ∈ (0, 1] .

(14)

Hence,𝑓 is semi-𝐺-preinvex functionwith respect to 𝜂 on𝑅𝑛.
(ii) When 𝜆 = 0, the conclusion is correct obviously.

4. Semi-𝐺-Preinvexity and Optimality in
Nonlinear Programming

In this section, we consider nonlinear programming prob-
lems with inequality constraint and obtain some optimality
results under semi-𝐺-preinvexity. Meanwhile, two examples
are given for illustration of the main results. Because semi-
𝐺-preinvexity is a generalization of 𝐺-(pre-)invexity and
(semi-)preinvexity, some of our results generalize the corre-
sponding results of [20, 26].

We consider the mathematical programming problem
with inequality constraint as follows:

min 𝑓 (𝑥)

s.t. 𝑔
𝑖
(𝑥) ≤ 0, 𝑖 ∈ 𝐽 = {1, . . . , 𝑚} , 𝑥 ∈ 𝑋,

(𝑃)

where 𝑋 is a nonempty subset of 𝑅𝑛, 𝑓, 𝑔
𝑖
: 𝑋 → 𝑅, 𝑖 =

1, 2, . . . , 𝑚. Denote the set of all feasible solutions for (𝑃) by

𝐷 := {𝑥 ∈ 𝑋 : 𝑔
𝑖
(𝑥) ≤ 0, 𝑖 ∈ 𝐽} . (15)

Theorem 23. Let the set of all feasible solutions 𝐷 in problem
(𝑃) be semiconnected set with respect to 𝜂. If𝑓 is a nonconstant
semi-𝐺-preincave function with respect to 𝜂 on 𝐷, then no
interior point of𝐷 is an optimal solution of (𝑃), or equivalently,
any optimal solution �̄� in problem (𝑃), if it exists, must be a
boundary point of𝐷.

Proof. If problem (𝑃) has no solution, the theorem is trivially
true. Let �̄� be an optimal solution in problem (𝑃). By
assumption, 𝑓 is nonconstant on 𝐷. Then, there exists a
feasible point 𝑥 ∈ 𝐷 such that

𝑓 (𝑥) > 𝑓 (�̄�) . (16)

Let 𝑧 be an interior point of 𝐷. By assumption, 𝐷 is
semiconnected set with respect to 𝜂. Then there exists 𝑦 ∈ 𝐷
such that, for some 𝜆 ∈ [0, 1],

𝑧 = 𝑥 + 𝜆𝜂 (𝑦, 𝑥, 𝜆) . (17)

Since 𝑓 is a semi-𝐺-preincave function with respect to 𝜂 at
any optimal solution �̄� on𝐷, then

𝑓 (𝑧) = 𝑓 (𝑥 + 𝜆𝜂 (𝑦, 𝑥, 𝜆))

≥ 𝐺
−1

(𝜆𝐺 (𝑓 (𝑦)) + (1 − 𝜆)𝐺 (𝑓 (𝑥)))

> 𝐺
−1

(𝜆𝐺 (𝑓 (�̄�)) + (1 − 𝜆)𝐺 (𝑓 (�̄�)))

= 𝑓 (�̄�) .

(18)

From the inequality above, we know that 𝑓 does not attain its
minimum at an interior point 𝑧. This completes the proof of
the theorem.

Let 𝑈
𝛿
(�̄�) denote a neighborhood of �̄� of radius 𝛿.

Theorem 24. Let the set of all feasible solutions 𝐷 in problem
(𝑃) be semiconnected set with respect to 𝜂 and let �̄� be a local
minimum in problem (𝑃). Suppose that for every 𝛿 > 0 and for
every 𝑥 ∈ 𝐷 there exists �̃� ∈ (0, 1) such that �̄� + �̃�𝜂(𝑥, �̄�, �̃�) ∈
𝑈
𝛿
(�̄�). If 𝑓 is strictly semi-𝐺-preinvex with respect to 𝜂 at �̄� on

𝐷, then �̄� is a strictly global minimum in (𝑃).

Proof. By assumption, 𝑓 is strictly semi-𝐺-preinvex with
respect to 𝜂 at �̄� on𝐷. Then

𝑓 (�̄� + 𝜆𝜂 (𝑥, �̄�, 𝜆)) < 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (�̄�)))

(19)

holds for all 𝑥 ∈ 𝐷 (𝑥 ̸= �̄�) and any 𝜆 ∈ (0, 1). Since �̄� is a
local minimum in problem (𝑃), then there exists 𝑈

𝛿
(�̄�) such

that the inequality

𝑓 (�̄�) ≤ 𝑓 (𝑥) (20)

holds for all 𝑥 ∈ 𝑈
𝛿
(�̄�) ∩ 𝐷.
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Now, let 𝑥 ∈ 𝐷, such that 𝑥 ̸= �̄�. Since𝐷 is semiconnected
set with respect to 𝜂, then

�̄� + 𝜆𝜂 (𝑥, �̄�, 𝜆) ∈ 𝐷 (21)

for all 𝑥 ∈ 𝐷 and any 𝜆 ∈ (0, 1). By assumption, for every
𝛿 > 0 and for every 𝑥 ∈ 𝐷, there exists �̃� ∈ (0, 1) such that
�̄�+�̃�𝜂(𝑥, �̄�, �̃�) ∈ 𝑈

𝛿
(�̄�). From (20), there exists �̃� ∈ (0, 1) such

that

𝑓 (�̄� + �̃�𝜂 (𝑥, �̄�, �̃�)) ≥ 𝑓 (�̄�) . (22)

By virtue of (19) and (22), we obtain

𝑓 (�̄�) ≤ 𝑓 (�̄� + �̃�𝜂 (𝑥, �̄�, �̃�))

< 𝐺
−1

(�̃�𝐺 (𝑓 (𝑥)) + (1 − �̃�) 𝐺 (𝑓 (�̄�)))

≤ 𝐺
−1

(�̃�𝐺 (max {𝑓 (𝑥) , 𝑓 (�̄�)})

+ (1 − �̃�) 𝐺 (max {𝑓 (𝑥) , 𝑓 (�̄�)}))

= 𝐺
−1

(𝐺 (max {𝑓 (𝑥) , 𝑓 (�̄�)}))

= max {𝑓 (𝑥) , 𝑓 (�̄�)} .

(23)

If max{𝑓(𝑥), 𝑓(�̄�)} = 𝑓(�̄�), from (23), we can get 𝑓(�̄�) <
𝑓(�̄�), which is impossible. Thus, max{𝑓(𝑥), 𝑓(�̄�)} = 𝑓(𝑥); it
follows from (23) that the following inequality

𝑓 (𝑥) > 𝑓 (�̄�) (24)

holds. By the arbitrariness of 𝑥, we get the conclusion of the
theorem; that is, �̄� is a strictly global minimum in (𝑃).

Theorem 25. Let the objective function 𝑓 be the semi-𝐺-
preinvex with respect to 𝜂 on𝐷, and let the constraint functions
𝑔
𝑖
(𝑖 ∈ 𝐽) be semi-𝐺

𝑖
-preinvexwith respect to the same function

𝜂 on𝐷.Then, the set of all optimal solutions𝐴 is semiconnected
set with respect to the same 𝜂.

Proof. Let 𝑥
1
and 𝑥

2
be optimal solutions in (𝑃) such that

𝑥
1
̸= 𝑥
2
. Then 𝑓(𝑥

1
) = 𝑓(𝑥

2
) = min

𝑥∈𝐷
𝑓(𝑥). By assumption,

𝑓 is semi-𝐺-preinvexwith respect to 𝜂 on𝐷. Since𝑥
1
, 𝑥
2
∈ 𝐷,

from Definition 10, we have

𝑓 (𝑥
2
+ 𝜆𝜂 (𝑥

1
, 𝑥
2
, 𝜆))

≤ 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥
1
)) + (1 − 𝜆)𝐺 (𝑓 (𝑥

2
))) .

(25)

From 𝑓(𝑥
1
) = 𝑓(𝑥

2
), one has

𝑓 (𝑥
2
+ 𝜆𝜂 (𝑥

1
, 𝑥
2
, 𝜆))

≤ 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥
1
)) + (1 − 𝜆)𝐺 (𝑓 (𝑥

2
)))

= 𝑓 (𝑥
1
)

= 𝑓 (𝑥
2
) .

(26)

To prove that 𝑥
2
+ 𝜆𝜂(𝑥

1
, 𝑥
2
, 𝜆) ∈ 𝐴 for any 𝜆 ∈ [0, 1], it is

sufficient to show that𝑥
2
+𝜆𝜂(𝑥

1
, 𝑥
2
, 𝜆) ∈ 𝐷 for any𝜆 ∈ [0, 1].

By assumption, 𝑔
𝑖
, 𝑖 ∈ 𝐽, are semi-𝐺

𝑖
-preinvex with respect to

the same function 𝜂 on𝐷. Therefore, for 𝑖 ∈ 𝐽,

𝑔
𝑖
(𝑥
2
+ 𝜆𝜂 (𝑥

1
, 𝑥
2
, 𝜆))

≤ 𝐺
−1

𝑖
(𝜆𝐺
𝑖
(𝑔
𝑖
(𝑥
1
)) + (1 − 𝜆)𝐺

𝑖
(𝑔
𝑖
(𝑥
2
))) .

(27)

From the definition of semi-𝐺-preinvexity,𝐺 is an increasing
function on its domain. Using 𝑥

1
, 𝑥
2
∈ 𝐷 together with

Lemma 18, for any 𝜆 ∈ [0, 1],

𝐺
−1

𝑖
(𝜆𝐺
𝑖
(𝑔
𝑖
(𝑥
1
)) + (1 − 𝜆)𝐺

𝑖
(𝑔
𝑖
(𝑥
2
)))

≤ 𝐺
−1

𝑖
(𝜆𝐺
𝑖
(0) + (1 − 𝜆)𝐺

𝑖
(0))

= 𝐺
−1

𝑖
(𝐺
𝑖
(0))

= 0.

(28)

Thus, for any 𝜆 ∈ [0, 1],

𝑔
𝑖
(𝑥
2
+ 𝜆𝜂 (𝑥

1
, 𝑥
2
, 𝜆)) ≤ 0. (29)

So the set 𝐴 of all optimal solutions for (𝑃) is semiconnected
set with respect to 𝜂.

Now, we illustrate the theorem above by a nonconvex
optimization problem.

Example 26. We consider the following optimization prob-
lem:

𝑓 (𝑥) =
{

{

{

ln (3 − |𝑥|) , |𝑥| ≤ 2

0, |𝑥| > 2

→ min,

𝑔 (𝑥) = arctan(3
2
− |𝑥|) ≤ 0.

(30)

Note that the set of all feasible solutions 𝐷 = {𝑥 ∈ 𝑅 : −∞ <

𝑥 ≤ −3/2 or 3/2 ≤ 𝑥 < +∞} and the set of all optimal
solutions 𝐴 = {𝑥 ∈ 𝑅 : −∞ < 𝑥 ≤ −2 or 2 ≤ 𝑥 < +∞}.

It can be proved by Definition 10 that all functions
constituting the considered optimization problem are semi-
𝐺-preinvex on 𝑅 with respect to the same function 𝜂, where

𝜂 (𝑥, 𝑦, 𝜆) =

{{{{{{{{{{{

{{{{{{{{{{{

{

𝜆 (𝑥 − 𝑦) , 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 ≤ 𝑦,

𝑥 − 𝑦

√𝜆
, 𝑥 ≤ 0, 𝑦 ≤ 0, 𝑥 ≤ 𝑦, 0 < 𝜆 ≤ 1,

𝜆 (𝑥 − 𝑦) , 𝑥 ≤ 0, 𝑦 ≤ 0, 𝑥 > 𝑦,

𝑥 − 𝑦, 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 > 𝑦,

−𝑥 − 𝑦, 𝑥𝑦 < 0.

(31)

Indeed, the objective function𝑓 is semi-𝐺
1
-preinvex on𝑅

with respect to𝐺
1
(𝑡) = exp(𝑡)−1 and the constraint function

𝑔 is semi-𝐺
2
-preinvex on 𝑅 with respect to 𝐺

2
(𝑡) = tan 𝑡.

Since all hypotheses of Theorem 25 are fulfilled, then the set
of all optimal solutions 𝐴 in the considered optimization
problem is semiconnected with respect to the function 𝜂.
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Indeed, it is not difficult to show by Definition 8 that the
set of all optimal solutions 𝐴 in the considered optimization
problem is semiconnected with respect to the same 𝜂.
However, the set of all optimal solutions 𝐴 is not convex.

Theorem 27. Let 𝑦 ∈ 𝐷 be optimal in (𝑃). Moreover, suppose
that 𝑓 is strictly semi-𝐺-preinvex with respect to 𝜂 at 𝑦 on 𝐷
and the constraint functions 𝑔

𝑖
, 𝑖 ∈ 𝐽, are semi-𝐺

𝑖
-preinvex

with respect to the same function 𝜂 on 𝐷. Then, 𝑦 is a unique
optimal solution in problem (𝑃).

Proof. By contradiction, we assume that there exists �̄� ∈

𝐷 (�̄� ̸= 𝑦), being another optimal solution in problem (𝑃). By
assumption, the constraint functions 𝑔

𝑖
, 𝑖 ∈ 𝐽, are semi-𝐺

𝑖
-

preinvex with respect to the same function 𝜂 on𝐷. It follows
from Definition 10 and �̄�, 𝑦 ∈ 𝐷, for all 𝑖 ∈ 𝐽 and any
𝜆 ∈ [0, 1]; we have

𝑔
𝑖
(𝑦 + 𝜆𝜂 (�̄�, 𝑦, 𝜆))

≤ 𝐺
−1

𝑖
(𝜆𝐺
𝑖
(𝑔
𝑖
(�̄�)) + (1 − 𝜆)𝐺

𝑖
(𝑔
𝑖
(𝑦)))

≤ 𝐺
−1

𝑖
(𝜆𝐺
𝑖
(0) + (1 − 𝜆)𝐺

𝑖
(0))

= 0.

(32)

Then, for all 𝑖 ∈ 𝐽 and any 𝜆 ∈ [0, 1], one has

𝑦 + 𝜆𝜂 (�̄�, 𝑦, 𝜆) ∈ 𝐷. (33)

Since 𝑓 is strictly semi-𝐺-preinvex with respect to 𝜂 at 𝑦 on
𝐷, from Definition 10, the following inequality

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦, 𝜆)) < 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦)))

(34)

holds for any 𝜆 ∈ (0, 1) and all 𝑥 ∈ 𝐷 (𝑥 ̸= 𝑦). So, we can get

𝑓 (𝑦 + 𝜆𝜂 (�̄�, 𝑦, 𝜆))

< 𝐺
−1

(𝜆𝐺 (𝑓 (�̄�)) + (1 − 𝜆)𝐺 (𝑓 (𝑦)))

= 𝐺
−1

(𝐺 (𝑓 (𝑦))) = 𝑓 (𝑦) ,

(35)

for 𝑥 = �̄�.
Since 𝑦 + 𝜆𝜂(�̄�, 𝑦, 𝜆) ∈ 𝐷, we obtain that the inequality

above (35) is a contradiction to the optimality of 𝑦 in problem
(𝑃). The proof is complete.

Now, we give an example to illustrate Theorem 27 as
follows.

Example 28. Consider the following optimization problem:

𝑓 (𝑥) = exp (arctan |3𝑥|) → min,

𝑔 (𝑥) = arctan (|𝑥| − 2) ≤ 0.
(36)

Note that the set of all feasible solutions 𝐷 = (𝑥 ∈ 𝑅 : −2 ≤
𝑥 ≤ 2) and the feasible solution �̄� = 0 are optimal in the
considered optimization problem.

From Definition 10, we can verify that the objective
function 𝑓 is strictly semi-𝐺-preinvex on 𝑅 with respect to

𝜂 and 𝐺
1
(𝑡) = tan(ln 𝑡) and the constraint function 𝑔 is semi-

𝐺
2
-preinvex on 𝑅 with respect to 𝜂 and 𝐺

2
= tan 𝑡, where the

function 𝜂 is defined by

𝜂 (𝑥, 𝑦, 𝜆) =

{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝜆𝑥 −
𝑦

√𝜆
, 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 < 𝑦, 0 < 𝜆 ≤ 1;

𝑥

2
−
𝑦

√𝜆
, 𝑥 < 0, 𝑦 < 0, 𝑥 > 𝑦, 0 < 𝜆 ≤ 1;

−𝑦, 𝑥 < 0, 𝑦 < 0, 𝑥 ≤ 𝑦;

𝑥

2
− 𝑦, 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 ≥ 𝑦;

𝑥

3
−
𝑦

√𝜆
, 𝑥 ≥ 0, 𝑦 < 0, 𝑥 < −𝑦, 0 < 𝜆 ≤ 1;

𝑥

3
−
𝑦

√𝜆
, 𝑥 < 0, 𝑦 ≥ 0, 𝑥 > −𝑦, 0 < 𝜆 ≤ 1;

−𝑦, 𝑥 ≥ 0, 𝑦 < 0, 𝑥 ≥ −𝑦;

−𝑦, 𝑥 < 0, 𝑦 ≥ 0, 𝑥 ≤ −𝑦.

(37)

All assumptions of Theorem 27 are satisfied; by virtue of
Theorem 27, the optimal solution �̄� = 0 is unique in the
considered optimization problem. While, in Example 26, we
notice that the objective function 𝑓 is only semi-𝐺

1
-preinvex

on 𝐷, but it is not strictly semi-𝐺
1
-preinvex. Therefore, the

considered nonconvex optimization problem has no unique
optimal solution; what is more, the set of all optimal solutions
is not bounded in Example 26.

Remark 29. FromTheorems 23–25, Theorem 27, and Exam-
ples 26 and 28, we can know that this class of semi-𝐺-
preinvexity plays an important role in optimization theory
and applications.
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