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New exact traveling wave solutions of a higher-order KdV equation type are studied by the (𝐺/𝐺)-expansion method, where
𝐺 = 𝐺(𝜉) satisfies a second-order linear differential equation.The travelingwave solutions are expressed by the hyperbolic functions,
the trigonometric functions, and the rational functions. The property of this method is that it is quite simple and understandable.

1. Introduction

Nonlinear evolution equations (NLEEs) are widely used as
models to describe the complex physical phenomena and a
troublesome and tedious but very important problem is to
find exact solutions of NLEEs. In recent years, more and
more researchers investigated exact traveling wave solutions
of NLEEs and lots of effective methods have been proposed,
such as the inverse scattering method [1], the Backlund
transform method [2, 3], the Darboux transform method
[4], the Hirota bilinear transformation method [5], the Exp-
function method [6, 7], the tanh-function method [8, 9],
the Weierstrass elliptic function method [10], and the Jacobi
elliptic function expansion method [11].

Recently, the (𝐺/𝐺)-expansion method, firstly presented
by Wang et al. [12], has been widely used to search for
various kinds of exact solutions of NLEEs. For instance,
Malik et al. [13] applied the (𝐺


/𝐺)-expansion method in

getting traveling wave solutions of some nonlinear partial
differential equations. Bekir [14] was concerned with this
method to study nonlinear evolution equations for con-
structing wave solutions. Zayed [15] investigated the higher-
dimensional nonlinear evolution equations by using the same
method to get solutions. In [16], Naher et al. implemented
the method for constructing abundant traveling wave solu-
tions of the Caudrey-Dodd-Gibbon equation. Lately, the
further developed methods named the generalized (𝐺


/𝐺)-

expansion method [17], the modified (𝐺

/𝐺)-expansion

method [18], the extended (𝐺

/𝐺)-expansion method [19],

the improved (𝐺

/𝐺)-expansion method [20], the general-

ized and improved (𝐺

/𝐺)-expansion method [21], and the

(𝐺

/𝐺, 1/𝐺)-expansion method [22] have been proposed for

constructing exact solutions to NLEEs.
The main purpose of this paper is to use (𝐺


/𝐺)-

expansion method to find the exact solutions of higher-order
equations of KdV type (III):

𝑢
𝑡
+ 𝑢
𝑥
+ 𝛼𝑢𝑢

𝑥
+ 𝛽𝑢
𝑥𝑥𝑥

+ 𝛼
2
𝜌
1
𝑢
2
𝑢
𝑥

+ 𝛼𝛽 (𝜌
2
𝑢𝑢
𝑥𝑥𝑥

+ 𝜌
3
𝑢
𝑥
𝑢
𝑥𝑥
) = 0,

(1)

where 𝜌
𝑖
(𝑖 = 1, 2, 3) are free parameters and 𝛼 and 𝛽

are positive real constants, which characterize the long
wavelength and short amplitude of the waves, respectively.
This equation, arising as models in theory of water wave
which were first proposed by Fokas [23], is a water wave
equation ofKdV typewhich ismore physically and practically
meaningful, and some interesting results related to (1) have
been obtained by many authors. For example, in [24], Li et
al. obtained some exact explicit parametric representations of
solitary wave, kink and antikinkwave solutions, and breaking
wave solutions of (1) under special parametric conditions.
Some peculiar exact traveling wave solutions including soli-
tary wave, cusp wave, and loop solution with singular or
nonsingular character of (1) were discussed under some
particular parameters in [25]. By using the bifurcation theory
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of planar dynamical system and elliptic function integral
method, the explicit and implicit solutions of periodic wave
and solitary cusp wave of (1) were obtained in [26].

In this paper, we seek the exact solutions of (1) with
the parameters 𝜌

𝑖
(𝑖 = 1, 2, 3) being arbitrary constants and

obtain new solutions. The rest of this paper is organized
as follows. In Section 2, the (𝐺


/𝐺)-expansion method is

introduced briefly. Section 3 is devoted to applying this
method to the shallow water wave model of generalized KdV
equation.The last section is a short summary and discussion.

2. Description of the (𝐺/𝐺)-Expansion
Method

We consider a nonlinear partial differential equation (PDE)
in two independent variables 𝑥 and 𝑡, which is given by

𝐹 (𝑢, 𝑢
𝑥
, 𝑢
𝑡
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑡
, . . .) = 0, (2)

where 𝑢 = 𝑢(𝑥, 𝑡) is an unknown function and 𝐹 is a
polynomial with respect to 𝑢 and its partial derivatives which
involve the highest order derivatives and the nonlinear terms.
We give the main steps of the (𝐺/𝐺)-expansion method in
the following.

Step 1. We use a traveling wave variable

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) , 𝜉 = 𝑥 − 𝑐𝑡, (3)

where 𝑐 is the wave speed and 𝜉 is the combination of two
independent variables 𝑥 and 𝑡. Then we can rewrite (2) as the
following nonlinear ordinary differential equation (ODE):

𝐹 (𝑈,𝑈

, 𝑈

, . . .) = 0, (4)

where the primes denote differentiation with respect to 𝜉.
If possible, integrating (4) term by term for one or more

times yields constant(s) of integration. For simplicity, the
integration constants may be zero.

Step 2. Suppose that the solution of ODE (4) can be written
as follows:

𝑈 (𝜉) =

𝑛

∑

𝑖=0

𝑎
𝑖
(
𝐺


𝐺

)

𝑖

, (5)

where 𝑎
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑛) are constants to be determined

later, 𝑛 is a positive integer, and 𝐺 = 𝐺(𝜉) satisfies the
following second-order linear ordinary differential equation:

𝐺

+ 𝜆𝐺

+ 𝜇𝐺 = 0, (6)

where 𝜆 and 𝜇 are real constants. The general solutions of
(6) can be listed as follows.

WhenΔ = 𝜆
2
−4𝜇 > 0, we obtain the hyperbolic function

solution of (6):

𝐺 (𝜉) = 𝑒
−(𝜆/2)𝜉

(𝐴
1
cosh(

√Δ

2

𝜉) + 𝐴
2
sinh(

√Δ

2

𝜉)) .

(7)

When Δ = 𝜆
2
− 4𝜇 < 0, we obtain the trigonometric

function solution of (6):

𝐺 (𝜉) = 𝑒
−(𝜆/2)𝜉

(𝐴
1
cos(

√−Δ

2

𝜉) + 𝐴
2
sin(

√−Δ

2

𝜉)) .

(8)

When Δ = 𝜆
2
− 4𝜇 = 0, we obtain the solution of (6):

𝐺 (𝜉) = 𝑒
−(𝜆/2)𝜉

(𝐴
1
+ 𝐴
2
𝜉) , (9)

where 𝐴
1
and 𝐴

2
are arbitrary constants.

Step 3. Determine the positive integer 𝑛 by balancing the
highest order derivatives and nonlinear terms in (4).

Step 4. Substituting (5) along with (6) into (4) and then
setting all the coefficients of (𝐺/𝐺)𝑘 (𝑘 = 1, 2, . . .) of the
resulting system’s numerator to zero yield a set of overde-
termined nonlinear algebraic equations for 𝑐 and 𝑎

𝑖
(𝑖 =

0, 1, . . .).

Step 5. Assuming that the constants 𝑐 and 𝑎
𝑖
can be obtained

by solving the algebraic equations in Step 4, then substituting
these constants and the known general solutions of (6) into
(5) we can obtain the exact solutions of (1) immediately.

3. Exact Solutions of (1)
In this section, we apply the (𝐺/𝐺)-expansion method to
construct the traveling wave solutions of the higher-order
KdV type equation (1).

By using the traveling wave variable (4), (1) is converted
into the following ODE for 𝑈(𝜉):

(1 − 𝑐)𝑈

+ 𝛼𝑈𝑈


+ 𝛽𝑈

+ 𝛼
2
𝜌
1
𝑈
2
𝑈


+ 𝛼𝛽 (𝜌
2
𝑈𝑈

+ 𝜌
3
𝑈

𝑈

) = 0.

(10)

By integrating (10)with respect to the variable 𝜉 and assuming
a zero constant of integration, we have

(1 − 𝑐)𝑈 +
𝛼

2

𝑈
2
+ 𝛽𝑈

+

𝛼
2
𝜌
1

3

𝑈
3

+ 𝛼𝛽(𝜌
2
𝑈𝑈

+
1

2

(𝜌
3
− 𝜌
2
) 𝑈
2

) = 0.

(11)

The homogeneous balance between 𝑈
3 and (𝑈


)
2 in (11)

implies 𝑛 = 2. Suppose that the solution of ODE (11) is of
the following form:

𝑈 (𝜉) = 𝑎
2
(
𝐺


𝐺

)

2

+ 𝑎
1
(
𝐺


𝐺

) + 𝑎
0
. (12)

Substituting (12) along with (6) into (11) and then setting
all the coefficients of (𝐺/𝐺)𝑘 (𝑘 = 0, 1, . . .) of the resulting
system’s numerator to zero, we obtain a set of overdetermined
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nonlinear algebraic equations about 𝑎
0
, 𝑎
1
, 𝑎
2
, and 𝑐 as fol-

lows:

𝛼
2
𝜌
1
𝑎
3

2

3

+ 2𝛼𝛽𝜌
3
𝑎
2

2
+ 4𝛼𝛽𝜌

2
𝑎
2

2
= 0,

2𝛼𝛽𝜌
3
𝑎
1
𝑎
2
+ 4𝛼𝛽𝜌

3
𝑎
2

2
𝜆 + 𝛼
2
𝜌
1
𝑎
1
𝑎
2

2

+ 6𝛼𝛽𝜌
2
𝑎
1
𝑎
2
+ 6𝛼𝛽𝜌

2
𝑎
2

2
𝜆 = 0,

6𝛽𝑎
2
+

3𝛼𝛽𝜌
2
𝑎
2

1

2

+ 𝛼
2
𝜌
1
𝑎
2

1
𝑎
2
+ 6𝛼𝛽𝜌

2
𝑎
0
𝑎
2

+

𝛼𝛽𝜌
3
𝑎
2

1

2

+ 4𝛼𝛽𝜌
3
𝑎
1
𝑎
2
𝜆 + 9𝛼𝛽𝜌

2
𝑎
1
𝑎
2
𝜆

+ 2𝛼𝛽𝜌
3
𝑎
2

2
𝜆
2
+ 4𝛼𝛽𝜌

2
𝑎
2

2
𝜇 + 2𝛼𝛽𝜌

2
𝑎
2

2
𝜆
2

+ 4𝛼𝛽𝜌
3
𝑎
2

2
𝜇 + 𝛼
2
𝜌
1
𝑎
0
𝑎
2

2
+

𝛼𝑎
2

2

2

= 0,

2𝛼𝛽𝜌
2
𝑎
2

2
𝜇𝜆 + 2𝛼

2
𝜌
1
𝑎
0
𝑎
1
𝑎
2
+ 2𝑎
1
𝛽 + 2𝛼𝛽𝜌

2
𝑎
0
𝑎
1

+ 2𝛼𝛽𝜌
2
𝑎
2

1
𝜆 +

𝛼
2
𝜌
1
𝑎
3

1

3

+ 3𝛼𝛽𝜌
2
𝑎
1
𝑎
2
𝜆
2

+ 6𝛼𝛽𝜌
2
𝑎
1
𝑎
2
𝜇 + 10𝑎

2
𝛽𝜆 + 𝛼𝑎

1
𝑎
2

+ 10𝛼𝛽𝜌
2
𝑎
0
𝑎
2
𝜆 + 𝛼𝛽𝜌

3
𝑎
2

1
𝜆 + 4𝛼𝛽𝜌

3
𝑎
2

2
𝜆𝜇

+ 2𝛼𝛽𝜌
3
𝑎
1
𝑎
2
𝜆
2
+ 4𝛼𝛽𝜌

3
𝑎
1
𝑎
2
𝜇 = 0,

2𝛼𝛽𝜌
3
𝑎
2

2
𝜇
2
+ 𝛼𝛽𝜌

2
𝑎
2

1
𝜇 + 8𝛼𝛽𝜌

2
𝑎
0
𝑎
2
𝜇

+ 4𝛽𝑎
2
𝜆
2
+ 8𝑎
2
𝛽𝜇 + 3𝛼𝛽𝜌

2
𝑎
1
𝑎
2
𝜆𝜇 + 3𝑎

1
𝛽𝜆

+

𝑎
2

1
𝛼

2

− 𝑐𝑎
2
+ 4𝛼𝛽𝜌

3
𝑎
1
𝑎
2
𝜆𝜇 +

𝛼𝛽𝜌
3
𝑎
2

1
𝜆
2

2

+ 𝛼𝛽𝜌
3
𝑎
2

1
𝜇 + 3𝛼𝛽𝜌

2
𝑎
0
𝑎
1
𝜆 + 𝛼𝑎

0
𝑎
2

+

𝛼𝛽𝜌
2
𝑎
2

1
𝜆
2

2

+ 𝛼
2
𝜌
1
𝑎
0
𝑎
2

1
+ 4𝛼𝛽𝜌

2
𝑎
0
𝑎
2
𝜆
2

+ 𝑎
2
+ 𝛼
2
𝜌
1
𝑎
2

0
𝑎
2
= 0,

𝑎
1
+ 6𝛼𝛽𝜌

2
𝑎
0
𝑎
2
𝜆𝜇 + 2𝛼𝛽𝜌

2
𝑎
0
𝑎
1
𝜇 + 2𝛼𝛽𝜌

3
𝑎
1
𝑎
2
𝜇
2

− 𝑐𝑎
1
+ 2𝛽𝑎

1
𝜇 + 𝛼
2
𝜌
1
𝑎
2

0
𝑎
1

+ 𝑎
1
𝛽𝜆
2
+ 𝛼𝛽𝜌

3
𝑎
2

1
𝜆𝜇 + 6𝛽𝑎

2
𝜆𝜇

+ 𝛼𝑎
0
𝑎
1
+ 𝛼𝛽𝜌

2
𝑎
0
𝑎
1
𝜆
2
= 0,

𝑎
0
+ 𝑎
1
𝛽𝜆𝜇 + 2𝛼𝛽𝜌

2
𝑎
0
𝑎
2
𝜇
2
+ 2𝑎
2
𝛽𝜇
2

+ 𝛼𝛽𝜌
2
𝑎
0
𝑎
1
𝜆𝜇 − 𝑐𝑎

0

+

𝛼
2
𝜌
1
𝑎
3

0

3

+

𝛼𝛽𝜌
3
𝑎
2

1
𝜇
2

2

+

𝛼𝑎
2

0

2

−

𝛼𝛽𝜌
2
𝑎
2

1
𝜇
2

2

= 0.

(13)

Solving the system of algebraic equations with the aid of
Maple, we obtain the following two different sets of solutions.

Case 1. We have

𝑎
0
= −

3𝛽𝜆
2
(𝜌
3
+ 2𝜌
2
)

2𝛼𝜌
1

−

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

,

𝑎
1
= −

6𝛽𝜆 (𝜌
3
+ 2𝜌
2
)

𝛼𝜌
1

,

𝑎
2
= −

6𝛽 (𝜌
3
+ 2𝜌
2
)

𝛼𝜌
1

, 𝑐 = 1 −

𝜌
3
− 2𝜌
1
+ 2𝜌
2

(𝜌
3
+ 2𝜌
2
) (𝜌
3
+ 𝜌
2
)

,

𝜇 =
𝜆
2

4

+

𝜌
3
− 2𝜌
1
+ 2𝜌
2

4𝛽 (𝜌
3
+ 2𝜌
2
) (𝜌
3
+ 𝜌
2
)

,

(14)

where 𝜆 is an arbitrary constant.

Case 2. We have

𝑎
0
= −

𝑊

𝛼𝜌
1

, 𝑎
1
= −

6𝛽𝜆 (𝜌
3
+ 2𝜌
2
)

𝛼𝜌
1

,

𝑎
2
= −

6𝛽 (𝜌
3
+ 2𝜌
2
)

𝛼𝜌
1

,

𝑐 =
1

16

2𝜌
3
(𝜌
3
+ 4𝜌
1
− 𝜌
2
) (𝜌
3
+ 𝜌
2
)𝑊

+ 3𝛽𝜌
3
(𝜌
3
+ 4𝜌
1
− 𝜌
2
) (𝜌
3
+ 𝜌
2
) (𝜌
3
+ 2𝜌
2
) 𝜆
2

− 16𝜌
3

3
𝜌
1
+ 16𝜌

3

2
𝜌
1
− 6𝜌
2

2
𝜌
3
+ 3𝜌
3

3
− 16𝜌

2

2
𝜌
1

+ 6𝜌
2
𝜌
1
𝜌
3
+ 16𝜌

2

2
𝜌
1
𝜌
3
− 2𝜌
2

3
𝜌
1

− 16𝜌
2
𝜌
1
𝜌
2

3
+ 16𝜌

2
𝜌
2

1
+ 3𝜌
2
𝜌
2

3
− 8𝜌
3
𝜌
2

1
,

𝜇 = −
𝑊

4𝛽 (𝜌
3
+ 2𝜌
2
)

+
𝜆
2

8

+
1

8𝛽 (𝜌
3
+ 𝜌
2
)

−

𝜌
1

4𝛽 (𝜌
3
+ 𝜌
2
) (𝜌
3
+ 2𝜌
2
)

,

(15)

where 𝑊 is a root of the equation 9𝛽(𝜌
3
+ 2𝜌
2
)
2
𝜆
2
(𝛽(𝜌
2
+

𝜌
3
)(𝜌
2
−𝜌
3
)𝜆
2
+1)+6𝜌

1
(𝜌
3
+2𝜌
2
)(6𝛽𝜌
2
𝜆
2
+1)−12𝜌

2

1
+[6(𝜌

2
−

𝜌
3
)(𝜌
3
+ 2𝜌
2
)(2𝛽𝜆

2
(𝜌
2
+ 𝜌
3
) + 1) − 24𝜌

1
𝜌
2
]𝑍 − 4(𝜌

2
+ 𝜌
3
)(𝜌
2
−

𝜌
3
)𝑍
2
= 0 with respect to 𝑍 and 𝜆 is an arbitrary constant.

For Case 1, substituting (14) into (12), we obtain the
following traveling wave solution:

𝑈 (𝜉) = −

6𝛽 (𝜌
3
+ 2𝜌
2
)

𝛼𝜌
1

(
𝐺


𝐺

)

2

−

6𝛽 (𝜌
3
+ 2𝜌
2
)

𝛼𝜌
1

𝜆(
𝐺


𝐺

)

−

3𝛽𝜆
2
(𝜌
3
+ 2𝜌
2
)

2𝛼𝜌
1

−

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

.

(16)
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Substituting the general solutions of (6) into (16), we can get
three types of traveling wave solutions of (1) as follows.

When Δ = 𝜆
2
− 4𝜇 > 0, the hyperbolic function solution

of (1) is of the following form:

𝑢 (𝑥, 𝑡) = −

6𝛽 (𝜌
3
+ 2𝜌
2
)

𝛼𝜌
1

×

[
[
[

[

𝜆
2

4

−

𝜆√𝜆
2
− 4𝜇

2

𝐴
1
sinh((√𝜆2 − 4𝜇/2) 𝜉) + 𝐴

2
cosh ((√𝜆2 − 4𝜇/2) 𝜉)

𝐴
1
cosh ((√𝜆2 − 4𝜇/2) 𝜉) + 𝐴

2
sinh((√𝜆2 − 4𝜇/2) 𝜉)

+

𝜆
2
− 4𝜇

4

(

𝐴
1
sinh((√𝜆2 − 4𝜇/2) 𝜉) + 𝐴

2
cosh ((√𝜆2 − 4𝜇/2) 𝜉)

𝐴
1
cosh ((√𝜆2 − 4𝜇/2) 𝜉) + 𝐴

2
sinh((√𝜆2 − 4𝜇/2) 𝜉)

)

2

]
]
]

]

−

6𝛽 (𝜌
3
+ 2𝜌
2
)

𝛼𝜌
1

𝜆
[
[

[

−
𝜆

2

+

√𝜆
2
− 4𝜇

2

𝐴
1
sinh((√𝜆2 − 4𝜇/2) 𝜉) + 𝐴

2
cosh ((√𝜆2 − 4𝜇/2) 𝜉)

𝐴
1
cosh ((√𝜆2 − 4𝜇/2) 𝜉) + 𝐴

2
sinh((√𝜆2 − 4𝜇/2) 𝜉)

]
]

]

−

3𝛽𝜆
2
(𝜌
3
+ 2𝜌
2
)

2𝛼𝜌
1

−

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

= −

6𝛽 (𝜌
3
+ 2𝜌
2
)

𝛼𝜌
1

𝜆
2
− 4𝜇

4

×(

𝐴
1
sinh((√𝜆2 − 4𝜇/2) 𝜉) + 𝐴

2
cosh ((√𝜆2 − 4𝜇/2) 𝜉)

𝐴
1
cosh ((√𝜆2 − 4𝜇/2) 𝜉) + 𝐴

2
sinh((√𝜆2 − 4𝜇/2) 𝜉)

)

2

−

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

,

(17)

where 𝜉 = 𝑥 − 𝑐𝑡, 𝑐 = 1 − (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)/(𝜌
3
+ 2𝜌
2
)(𝜌
3
+ 𝜌
2
),

and𝐴
1
and𝐴

2
are arbitrary constants. Obviously, the various

known hyperbolic function solutions can be rewritten if 𝐴
1
,

𝐴
2
, and 𝜆 are taken as special values, as follows:

(1) if 𝐴
1
= 0 and 𝐴

2
̸= 0, we have

𝑢 (𝜉, 𝑡) = −

3𝛽 (𝜌
3
+ 2𝜌
2
)

2𝛼𝜌
1

(𝜆
2
− 4𝜇)

× coth2(
√𝜆
2
− 4𝜇

2

𝜉) −

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

,

(18)

(2) if 𝐴
2
= 0 and 𝐴

1
̸= 0, we have

𝑢 (𝜉, 𝑡) = −

3𝛽 (𝜌
3
+ 2𝜌
2
)

2𝛼𝜌
1

(𝜆
2
− 4𝜇)

× tanh2(
√𝜆
2
− 4𝜇

2

𝜉) −

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

,

(19)

(3) if 𝐴
1

̸= 0 and 𝐴2
1
> 𝐴
2

2
, we have

𝑢 (𝜉, 𝑡) = −

3𝛽 (𝜌
3
+ 2𝜌
2
)

2𝛼𝜌
1

(𝜆
2
− 4𝜇)

× sech2(
√𝜆
2
− 4𝜇

2

𝜉 + 𝜉
0
)−

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

,

(20)

where 𝜉 = 𝑥 − 𝑐𝑡, 𝑐 = 1 − (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)/(𝜌
3
+ 2𝜌
2
)(𝜌
3
+ 𝜌
2
),

and 𝜉
0
= tanh−1(𝐴

2
/𝐴
1
).

When Δ = 𝜆
2
− 4𝜇 < 0, we obtain the following

trigonometric function solutions of (1):

𝑢 (𝑥, 𝑡) = −

6𝛽 (𝜌
3
+ 2𝜌
2
)

𝛼𝜌
1

4𝜇 − 𝜆
2

4

×(

𝐴
1
sin((√4𝜇 − 𝜆2/2) 𝜉) + 𝐴

2
cos((√4𝜇 − 𝜆2/2) 𝜉)

𝐴
1
cos((√4𝜇 − 𝜆2/2) 𝜉) + 𝐴

2
sin((√4𝜇 − 𝜆2/2) 𝜉)

)

2

−

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

,

(21)
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where 𝜉 = 𝑥−𝑐𝑡, 𝑐 = 1−(𝜌
3
−2𝜌
1
+2𝜌
2
)/(𝜌
3
+2𝜌
2
)(𝜌
3
+𝜌
2
), and

𝐴
1
and 𝐴

2
are arbitrary constants. Obviously, the various

known trigonometric function solutions can be rewritten if
𝐴
1
, 𝐴
2
, and 𝜆 are taken as special values, as follows:

(1) if 𝐴
1
= 0 and 𝐴

2
̸= 0, we have

𝑢 (𝜉, 𝑡) = −

3𝛽 (𝜌
3
+ 2𝜌
2
)

2𝛼𝜌
1

(4𝜇 − 𝜆
2
)

× cot2(
√4𝜇 − 𝜆

2

2

𝜉) −

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

,

(22)

(2) if 𝐴
2
= 0 and 𝐴

1
̸= 0, we have

𝑢 (𝜉, 𝑡) = −

3𝛽 (𝜌
3
+ 2𝜌
2
)

2𝛼𝜌
1

(4𝜇 − 𝜆
2
)

× tan2(
√4𝜇 − 𝜆

2

2

𝜉) −

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

,

(23)

(3) if 𝐴
1

̸= 0 and 𝐴2
1
> 𝐴
2

2
, we have

𝑢 (𝜉, 𝑡) = −

3𝛽 (𝜌
3
+ 2𝜌
2
)

2𝛼𝜌
1

(4𝜇 − 𝜆
2
)

× sec2(
√4𝜇 − 𝜆

2

2

𝜉 + 𝜉
0
)−

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

,

(24)

where 𝜉 = 𝑥 − 𝑐𝑡, 𝑐 = 1 − (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)/(𝜌
3
+ 2𝜌
2
)(𝜌
3
+ 𝜌
2
),

and 𝜉
0
= tan−1(𝐴

2
/𝐴
1
).

When Δ = 𝜆
2
− 4𝜇 = 0, we obtain the following rational

function solutions of (1):

𝑢 (𝑥, 𝑡) = −

6𝛽 (𝜌
3
+ 2𝜌
2
)

𝛼𝜌
1

(
𝐴
2

𝐴
1
+ 𝐴
2
𝜉

)

2

−

3 (𝜌
3
− 2𝜌
1
+ 2𝜌
2
)

2𝛼𝜌
1
(𝜌
2
+ 𝜌
3
)

,

(25)

where 𝜉 = 𝑥−𝑐𝑡, 𝑐 = 1−(𝜌
3
−2𝜌
1
+2𝜌
2
)/(𝜌
3
+2𝜌
2
)(𝜌
3
+𝜌
2
), and

𝐴
1
and 𝐴

2
are arbitrary constants. Obviously, the various

known trigonometric function solutions can be rewritten if
𝐴
1
, 𝐴
2
, and 𝜆 are taken as special values, Case 2 can be

discussed similarly to Case 1, and we omit the details for
brevity.

Remark 1. The solutions of (1) we obtained in this work
involving arbitrary parameters 𝜌

𝑖
(𝑖 = 1, 2, 3) have not been

given in other literatures.

Remark 2. The solutions (18), (19), and (20) are solitary
wave solutions which can explain the relationship between
the waveform, speed of the traveling water waves, and the
amplitude; that is, most of the smooth water waves propagate

in the form of solitary waves; when the traveling speed of
the water wave increases, the amplitude of solitary waves will
become higher and the width of the waveform will become
narrower. On the contrary, once the speed slows down, the
amplitude of solitary waves will become lower and the width
of the waveform will become wider.

Remark 3. The physical meaning of other solutions for
this equation is still unclear. For instance, the relationship
between the solutions (21)–(25) and the movement of water
waves and the dynamic behaviors that these solutions can
demonstrate are both unknown to us. However, the rest of
these questions is still worthy of further observation and
investigation by the researchers in the territory of experimen-
tal physics, andwe also hope thatmore researchers should pay
attention to the investigation of this area.

4. Conclusions

The higher-order KdV type equation was investigated
by using (𝐺


/𝐺)-expansion method and we successfully

obtained some exact solutions expressed by hyperbolic func-
tions, trigonometric functions, and rational functions. As far
as we know, there is no previous work about the solutions
of (1) with arbitrary parameters. The obtained results are
verified by putting them back into the original equation with
the aid of Maple. The applicability of this algorithm to other
NLEEs in mathematical physics illustrates its effectiveness
and powerfulness.
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