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By using some lattice-valued Kowalsky’s dual diagonal conditions, some weaker regularities for Jäger’s generalized stratified 𝐿-
convergence spaces and those for Boustique et al’s stratified 𝐿-convergence spaces are defined and studied. Here, the lattice 𝐿 is
a complete Heyting algebra. Some characterizations and properties of weaker regularities are presented. For Jäger’s generalized
stratified 𝐿-convergence spaces, a notion of closures of stratified 𝐿-filters is introduced and then a new 𝑝-regularity is defined. At
last, the relationships between 𝑝-regularities and weaker regularities are established.

Dedicated to the first author’s father Zonghua Li on the occasion of his 60th birthday

1. Introduction

In 1954, Kowalsky [1] introduced a diagonal condition (the
K-diagonal condition) to characterize whenever a pretopo-
logical convergence space is topological. In 1967, Cook and
Fischer [2] defined a stronger diagonal condition (the F-
diagonal condition) which, as they showed therein, is neces-
sary and sufficient for a convergence space to be topological.
Furthermore, a dual version of F (the DF-diagonal con-
dition) is necessary and sufficient for a convergence space
to be regular. Regularity can also be characterized by the
requirement that, for each filter F , if F converges to 𝑥 then
so does F (the closure of F). In [3, 4], by considering
a pair of convergence spaces (𝑋, 𝑝) and (𝑋, 𝑞), Kent and
his coauthors introduced a kind of relative topologicalness
(resp., regularity) which was called 𝑝-topologicalness (resp.,
𝑝-regularity). They discussed 𝑝-topologicalness (resp., 𝑝-
regularity) both by neighborhood (resp., closure) of filter
[5] and generalized F (resp., DF)-diagonal condition.
When 𝑝 = 𝑞, 𝑝-topologicalness (resp., 𝑝-regularity) is
precisely topologicalness (resp., regularity). In 1996, Kent and
Richardson defined aweaker regularity by using the duality of

Kowalsky’s diagonal condition. They also proved that weaker
regularity, regularity, and 𝑝-regularity were distinct notions
but closely related to each other [6].

In [7], Jäger investigated a kind of lattice-valued con-
vergence spaces, which were called generalized stratified 𝐿-
convergence spaces. Later, the theory of these spaces was
extensively discussed under different lattice context [8–19]. A
supercategory of generalized stratified 𝐿-convergence spaces,
called levelwise stratified 𝐿-convergence spaces in this paper,
was researched in [20–24]. Indeed, a generalized stratified
𝐿-convergence space is precisely a left-continuous levelwise
stratified 𝐿-convergence space [22].

Lattice-valued K- and F-diagonal conditions for gen-
eralized stratified 𝐿-convergence spaces were studied in [11,
12, 17, 18] and those for levelwise stratified 𝐿-convergence
spaces were discussed in [18, 23]. Both by lattice-valued
DF-diagonal condition and 𝛼-level closures of stratified 𝐿-
filters, the lattice-valued regularity for generalized strati-
fied 𝐿-convergence spaces was presented in [13] and that
for levelwise stratified 𝐿-convergence spaces was given in
[20, 21]. Later, by 𝛼-level closures of stratified 𝐿-filters, 𝑝-
regularity for levelwise generalized stratified 𝐿-convergence
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spaceswas studied in [24]. Recently,𝑝-topologicalness and𝑝-
regularity for generalized stratified 𝐿-convergence spaces and
that for level stratified 𝐿-convergence spaces were discussed
systemically in [25].

In this paper, for generalized stratified 𝐿-convergence
spaces and levelwise stratified 𝐿-convergence spaces, we
will discuss some lattice-valued weaker regularities, 𝑝-
regularities, and their relationships. The content is arranged
as follows. Section 2 recalls some basic notions as prelim-
inary. Section 3 presents the definitions, characterizations,
and properties of lattice-valued weaker regularities. Section 4
presents a notion of closures of stratified 𝐿-filters and a
new lattice-valued 𝑝-regularity for stratified generalized 𝐿-
convergence spaces. Also, the relationships between lattice-
valued weaker regularities and lattice-valued 𝑝-regularities
are established.

2. Preliminaries

In this paper, if not otherwise specified, 𝐿 = (𝐿, ≤) is always a
complete lattice with a top element 1 and a bottom element 0,
which satisfies the distributive law 𝛼∧(⋁

𝑖∈𝐼
𝛽
𝑖
) = ⋁

𝑖∈𝐼
(𝛼∧𝛽

𝑖
).

A lattice with these conditions is called a complete Heyting
algebra or a frame. The operation →: 𝐿 × 𝐿 → 𝐿 given by
𝛼 → 𝛽 = ∨{𝛾 ∈ 𝐿 : 𝛼 ∧ 𝛾 ≤ 𝛽} is called the residuation
with respect to ∧. A complete Heyting algebra 𝐿 is said to
be a complete Boolean algebra if it obeys the law of double
negation: ∀𝛼 ∈ 𝐿, (𝛼 → 0) → 0 = 𝛼.

For a set 𝑋, the set 𝐿𝑋 of functions from 𝑋 to 𝐿 with the
pointwise order becomes a complete lattice. Each element of
𝐿
𝑋 is called an 𝐿-set (or a fuzzy subset) of𝑋. For any 𝜆 ∈ 𝐿𝑋,

K ⊆ 𝐿
𝑋, and 𝛼 ∈ 𝐿, we denote by 𝛼 ∧ 𝜆, 𝛼 → 𝜆, ∨K,

and ∧K the 𝐿-sets defined by (𝛼 ∧ 𝜆)(𝑥) = 𝛼 ∧ 𝜆(𝑥), (𝛼 →
𝜆)(𝑥) = 𝛼 → 𝜆(𝑥), (∨K)(𝑥) = ⋁

𝜇∈K𝜇(𝑥), and (∧K)(𝑥) =
⋀
𝜇∈K𝜇(𝑥). Also, we make no difference between a constant

function and its value since no confusionwill arise. For a crisp
subset 𝐴 ⊆ 𝑋, let 1

𝐴
be the characteristic function; that is

1
𝐴
(𝑥) = 1 if 𝑥 ∈ 𝐴 and 1

𝐴
(𝑥) = 0 if 𝑥 ∉ 𝐴. Clearly, the

characteristic function 1
𝐴
of a subset 𝐴 ⊆ 𝑋 can be regarded

as a function from𝑋 to 𝐿.
Let𝑋 be a set. A fuzzy partial order (or an𝐿-partial order)

on𝑋 [26] is a function 𝑅 : 𝑋×𝑋 → 𝐿 such that (1) 𝑅(𝑎, 𝑎) =
1 for every 𝑎 ∈ 𝑋 (reflexivity); (2) 𝑅(𝑎, 𝑏) = 𝑅(𝑏, 𝑎) = 1
implies that 𝑎 = 𝑏 for all 𝑎, 𝑏 ∈ 𝑋 (antisymmetry); (3)
𝑅(𝑎, 𝑏) ∧ 𝑅(𝑏, 𝑐) ≤ 𝑅(𝑎, 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ 𝑋 (transitivity).
The pair (𝑋, 𝑅) is called an 𝐿-partially ordered set.

Let [𝐿𝑋] : 𝐿𝑋 × 𝐿𝑋 → 𝐿 be a function defined by
[𝐿
𝑋
](𝜆, 𝜇) = ⋀

𝑥∈𝑋
(𝜆(𝑥) → 𝜇(𝑥)); then [𝐿𝑋] is an 𝐿-partial

order on 𝐿𝑋. The value [𝐿𝑋](𝜆, 𝜇) ∈ 𝐿 is interpreted as the
degree that 𝜆 is contained in 𝜇. In the sequel, we use the
symbol [𝜆, 𝜇] to denote [𝐿𝑋](𝜆, 𝜇) for simplicity.

Let 𝑓 : 𝑋 → 𝑌 be an ordinary function. We define
𝑓
→
: 𝐿

𝑋
→ 𝐿

𝑌 and 𝑓← : 𝐿𝑌 → 𝐿
𝑋 [27] by 𝑓→ (𝜆)(𝑦) =

⋁
𝑓(𝑥)=𝑦

𝜆(𝑥) for 𝜆 ∈ 𝐿𝑋 and 𝑦 ∈ 𝑌, and 𝑓←(𝜇) = 𝜇 ∘ 𝑓 for
𝜇 ∈ 𝐿

𝑌.

2.1. Stratified 𝐿-(Ultra)filters. A stratified 𝐿-filter [27] on a set
𝑋 is a functionF : 𝐿𝑋 → 𝐿 such that for each 𝜆, 𝜇 ∈ 𝐿𝑋 and

each 𝛼 ∈ 𝐿, (F1) F(0) = 0, F(1) = 1; (F2) F(𝜆) ∧F(𝜇) =
F(𝜆∧𝜇); (Fs)F(𝛼) ≥ 𝛼. A stratified 𝐿-filterF is called tight
if F(𝛼) = 𝛼 for each 𝛼 ∈ 𝐿 [5]. It is proved in [27] that
all stratified 𝐿-filters are tight if and only if 𝐿 is a complete
Boolean algebra. It is easily seen that for a stratified 𝐿-filter
F on𝑋, we have ∀𝜆 ∈ 𝐿𝑋,F(𝜆) = ⋁

𝜇∈𝐿
𝑋(F(𝜇) ∧ [𝜇, 𝜆]).

The setF𝑠

𝐿
(𝑋) of all stratified 𝐿-filters on𝑋 is ordered by

F ≤ G⇔ ∀𝜆 ∈ 𝐿𝑋,F(𝜆) ≤ G(𝜆). It is shown in [27] that the
partially ordered set (F𝑠

𝐿
(𝑋), ≤) hasmaximal elements which

are called stratified 𝐿-ultrafilters. The set of all stratified 𝐿-
ultrafilters on 𝑋 is denoted asU𝑠

𝐿
(𝑋). LetF ∈ F𝑠

𝐿
(𝑋). Then

F is an 𝐿-ultrafilter if and only if for all 𝜆 ∈ 𝐿𝑋 we have
F(𝜆) = F(𝜆 → 0) → 0. A stratified 𝐿-filter F is called
a stratified 𝐿-prime filter ifF(𝜆∨𝜇) = F(𝜆) ∨F(𝜇) for each
𝜆, 𝜇 ∈ 𝐿

𝑋. And when 𝐿 is a complete Boolean algebra then
F = ⋀F≤G∈U𝑠

𝐿
(𝑋)

G andF is prime wheneverF is maximal
[27].

For each F ∈ F𝑠

𝐿
(𝑋), it is easily seen that FF = {𝐴 ⊆

𝑋 | F(1
𝐴
) = 1} is a filter on 𝑋. For each 𝜆 ∈ 𝐿𝑋, take 𝜄𝜆 =

{𝑥 ∈ 𝑋 | 𝜆(𝑥) > 0}. Let F be a filter on 𝑋. Then, when 𝐿 is a
linearly order frame or 0 ∈ 𝐿 is prime (𝛼∧𝛽 = 0 implies 𝛼 = 0
or 𝛽 = 0), the functionFF : 𝐿

𝑋
→ 𝐿, defined by ∀𝜆 ∈ 𝐿𝑋,

FF (𝜆) = 1 if 𝜄𝜆 ∈ F and FF (𝜆) = 0 if not so, is a stratified
𝐿-filter on 𝑋 [22]. Also, when 𝐿 is a linearly order frame or
0 ∈ 𝐿 is prime, a stratified 𝐿-ultrafilter takes values in {0, 1}
only [10].

Lemma 1 (Jäger [28] for 𝐿 = [0, 1]). Let 𝐿 be a linearly order
frame or let 0 ∈ 𝐿 be prime. Then, for eachF ∈ U𝑠

𝐿
(𝑋), FF is

an ultrafilter on𝑋 andF = FFF
.

Proof. At first, we check that FF is an ultrafilter on 𝑋. For
each 𝐴 ⊆ 𝑋, we assume that 𝐴 ∉ FF; that is,F(1𝐴) = 0; then
F(1

𝑋−𝐴
) = F(1

𝑋−𝐴
→ 0) → 0 = F(1

𝐴
) → 0 = 1. That

means𝑋−𝐴 ∈ FF. By the arbitrariness of𝐴we get that FF is
an ultrafilter on 𝑋. At second, we checkF ≤ FFF

. Note that
F takes values in {0, 1} only; thus, it suffices to prove that if
F(𝜆) = 1; then FFF

(𝜆) = 1. Indeed, let F(𝜆) = 1; then
F(1

𝜄𝜆
) ≥ F(𝜆) = 1; that is, 𝜄𝜆 ∈ FF and so FFF

(𝜆) = 1.
Therefore, F ≤ FFF

and it follows that F = FFF
by the

maximality ofF.

The following examples belong to the folklore; we list
them here because the notations are needed.

Example 2. (1) For each point 𝑥 in a set 𝑋, the function [𝑥] :
𝐿
𝑋
→ 𝐿, [𝑥](𝜆) = 𝜆(𝑥) is a stratified𝐿-filter on𝑋. In general,

[𝑥] is not a stratified 𝐿-ultrafilter. But when 𝐿 is a complete
Boolean algebra, then it is so.

(2) Let {F
𝑗
| 𝑗 ∈ 𝐽} be a family of stratified 𝐿-filters on

𝑋; then ⋀
𝑗∈𝐽

F
𝑗
, in particular, F

0
= ∧F𝑠

𝐿
(𝑋), is a stratified

𝐿-filter on𝑋.
(3) Let 𝑓 : 𝑋 → 𝑌 be a function. IfF ∈ F𝑠

𝐿
(𝑋), then the

function 𝑓⇒(F) ∈ F𝑠

𝐿
(𝑌), where 𝑓⇒(F) : 𝐿𝑌 → 𝐿 defined

by 𝜆 󳨃→ F(𝜆 ∘ 𝑓). IfF ∈ U𝑠

𝐿
(𝑋), then 𝑓⇒(F) ∈ U𝑠

𝐿
(𝑌).

There is a natural fuzzy partial order onF𝑠

𝐿
(𝑋) inherited

from 𝐿(𝐿
𝑋
). Precisely, for all F,G ∈ F𝑠

𝐿
(𝑋), if we let
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[F𝑠

𝐿
(𝑋)](F,G) = [𝐿𝐿

𝑋

](F,G) = ⋀
𝜆∈𝐿
𝑋(F(𝜆) → G(𝜆)),

then [F𝑠

𝐿
(𝑋)] is an 𝐿-partially order. For simplicity, we use

the symbol [F,G] to denote the value [F𝑠

𝐿
(𝑋)](F,G) below.

2.2. Lattice-Valued Convergence Spaces

Definition 3. A generalized stratified 𝐿-convergence struc-
ture [7] on a set𝑋 is a function lim : F𝑠

𝐿
(𝑋) → 𝐿

𝑋 satisfying
(LC1) ∀𝑥 ∈ 𝑋, lim[𝑥](𝑥) = 1; and (LC2) ∀F,G ∈ F𝑠

𝐿
(𝑋),

F ≤ G ⇒ limF ≤ limG. The pair (𝑋, lim) is called
a generalized stratified 𝐿-convergence space. If lim further
satisfies the strong axiom (LC2󸀠) ∀F,G ∈ F𝑠

𝐿
(𝑋), [F,G] ∧

limF ≤ limG, then the pair (𝑋, lim) is called a strong
stratified 𝐿-convergence space [8, 15, 16].

A function 𝑓 : 𝑋 → 𝑋
󸀠 between two generalized

stratified 𝐿-convergence spaces (𝑋, lim), (𝑋󸀠, lim󸀠
) is called

continuous if for all F ∈ F𝑠

𝐿
(𝑋) and all 𝑥 ∈ 𝑋 we

have limF(𝑥) ≤ lim󸀠
𝑓
⇒
(F)(𝑓(𝑥)). The category SL-GCS

has as objects all generalized stratified 𝐿-convergence spaces
and as morphisms the continuous functions. This category

is topological over SET [7, 10]. For a given source (𝑋
𝑓𝑖

󳨀→

(𝑋
𝑖
, lim

𝑖
))
𝑖∈𝐼
, the initial structure, lim on 𝑋 is defined by

∀F ∈ F𝑠

𝐿
(𝑋), ∀𝑥 ∈ 𝑋, limF(𝑥) = ⋀

𝑖∈𝐼
lim

𝑖
𝑓
⇒

𝑖
(F)(𝑓

𝑖
(𝑥)).

Definition 4. A collection 𝑞 = (𝑞
𝛼
)
𝛼∈𝐿

, where 𝑞
𝛼
: F𝑠

𝐿
(𝑋) →

P(𝑋), is called a levelwise stratified 𝐿-convergence structure
on𝑋 [20] if it satisfies the following:

(LL1) [𝑥]
𝑞𝛼

󳨀󳨀→ 𝑥 for each 𝑥 ∈ 𝑋;

(LL2) G ≥ F
𝑞𝛼

󳨀󳨀→ 𝑥 impliesG
𝑞𝛼

󳨀󳨀→ 𝑥;

(LL3) F
𝑞𝛼

󳨀󳨀→ 𝑥 impliesF
𝑞𝛽

󳨀󳨀→ 𝑥 whenever 𝛽 ≤ 𝛼.

The notation,F
𝑞𝛼

󳨀󳨀→ 𝑥, means that 𝑥 ∈ 𝑞
𝛼
(F).The pair (𝑋, 𝑞)

is called a levelwise stratified 𝐿-convergence space.

A function 𝑓 : 𝑋 → 𝑋󸀠 between two levelwise stratified
𝐿-convergence spaces (𝑋, 𝑞), (𝑋󸀠, 𝑞󸀠) is called continuous if
for all F ∈ F𝑠

𝐿
(𝑋) all 𝑥 ∈ 𝑋, and all 𝛼 ∈ 𝐿 we have

F
𝑞𝛼

󳨀󳨀→ 𝑥 implies 𝑓⇒(F)
𝑞
󸀠

𝛼

󳨀󳨀→ 𝑓(𝑥). The category SL-LCS
has as objects all levelwise stratified 𝐿-convergence spaces
and as morphisms the continuous functions. This category

is topological over SET [20, 21]. For a given source (𝑋
𝑓𝑖

󳨀→

(𝑋
𝑖
, 𝑞𝑖))

𝑖∈𝐼
, the initial structure, 𝑞 on 𝑋 is defined by F

𝑞𝛼

󳨀󳨀→

𝑥 ⇔ ∀𝑖 ∈ 𝐼, 𝑓⇒
𝑖
(F)

𝑞
𝑖

𝛼

󳨀󳨀→ 𝑓
𝑖
(𝑥) (F ∈ F𝑠

𝐿
(𝑋), 𝑥 ∈ 𝑋, 𝛼 ∈ 𝐿).

3. Lattice-Valued Weaker Regularities

In this section, we will present the definitions, characteriza-
tions, and properties of lattice-valued weaker regularities.

Let 𝑋 be a set; a function 𝜙 : 𝑋 → F𝑠

𝐿
(𝑋) is usually

called an 𝐿-filter select function on 𝑋. We define 𝜙 : 𝐿𝑋 →
𝐿
𝑋 as 𝜙(𝜆) : 𝑋 → 𝐿, 𝑥 󳨃→ 𝜙(𝑥)(𝜆). LetΣ(𝑋) denote the set of

all 𝐿-filter select functions on 𝑋, and let Σ∗(𝑋) be the subset
consisting of all 𝜙 ∈ Σ such that 𝜙(𝑦) ∈ U𝑠

𝐿
(𝑋) for all 𝑦 ∈ 𝑋.

Let 𝜙 ∈ Σ(𝑋). For all F ∈ F𝑠

𝐿
(𝑋), it can be proved

that the function 𝑘
𝐿
𝜙F : 𝐿

𝑋
→ 𝐿, defined by ∀𝜆 ∈ 𝐿𝑋,

𝑘
𝐿
𝜙F(𝜆) = F(𝜙(𝜆)), is a stratified 𝐿-filter, which is called the
𝐿-diagonal filter of (𝜙,F) [11, 17].Then we have the following
obvious lemma. It may have appeared in some other places.

Lemma 5. Let 𝜙, 𝜎 ∈ Σ(𝑋) or Σ∗(𝑋). Then

(1) 𝜙(0) = 0, 𝜙(1) = 1;
(2) for each 𝜆, 𝜇 ∈ 𝐿𝑋, 𝜙(𝜆 ∧ 𝜇) = 𝜙(𝜆) ∧ 𝜙(𝜇);
(3) 𝜎 ≤ 𝜙 implies 𝜎̂ ≤ 𝜙;
(4) for allF,G ∈ F𝑠

𝐿
(𝑋), then [F,G] ≤ [𝑘

𝐿
𝜙F, 𝑘

𝐿
𝜙G].

In particular, ifF ≤ G then 𝑘
𝐿
𝜙F ≤ 𝑘

𝐿
𝜙G.

3.1. For Generalized Stratified 𝐿-Convergence Spaces. Let
(𝑋, lim) be a generalized stratified 𝐿-convergence space. We
consider the following axioms.

DLK. For each 𝜙 ∈ Σ(𝑋), we have

∀F ∈ F
𝑠

𝐿
(𝑋) , ⋀

𝑦∈𝑋

lim𝜙 (𝑦) (𝑦) ≤ [lim 𝑘
𝐿
𝜙F, limF] .

(1)

𝐷𝐿𝐾
󸀠. Taking 𝜙 as ∀𝑦 ∈ 𝑋, lim𝜙(𝑦)(𝑦) = 1 in DLK.

Replacing F𝑠

𝐿
(𝑋) by U𝑠

𝐿
(𝑋) in DLK (resp., 𝐷𝐿𝐾󸀠), we

obtain a weaker axiom in symbol𝐷𝐿𝐾∗(resp.,𝐷𝐿𝐾󸀠∗).

Remark 6. The axiom DLK is the dual axiom of LK which
appeared in [11], and the axiom 𝐷𝐿𝐾󸀠 is the dual axiom of
𝐿𝐾

󸀠 which appeared in [17].

Definition 7. Let (𝑋, lim) be a generalized stratified 𝐿-
convergence space. Then (𝑋, lim) is called 𝑘-regular (resp.,
𝑘
󸀠-regular, 𝑘∗-regular, and 𝑘󸀠∗-regular) if it satisfies the axiom

DLK (resp.,𝐷𝐿𝐾󸀠,𝐷𝐿𝐾∗, and𝐷𝐿𝐾󸀠∗).

Lemma 8 (Li and Jin [25]). Let 𝜙 ∈ Σ(𝑋) and F ∈ F𝑠

𝐿
(𝑋).

We defineF𝜙
: 𝐿

𝑋
→ 𝐿 asF𝜙

(𝜆) = ⋁
𝜇∈𝐿
𝑋(F(𝜇)∧[𝜙(𝜇), 𝜆]).

Then F𝜙 satisfies (F1), (F2), and (Fs); thus, we say that F𝜙 is
nearly a stratified 𝐿-filter. IfF𝜙

∈ F𝑠

𝐿
(𝑋) then 𝑘

𝐿
𝜙(F𝜙

) ≥ F.

Lemma 9. Let 𝜙 ∈ Σ(𝑋) and F ∈ F𝑠

𝐿
(𝑋). Then (𝑘

𝐿
𝜙F)

𝜙
∈

F𝑠

𝐿
(𝑋) and (𝑘

𝐿
𝜙F)

𝜙
≤ F.

Proof. For each 𝜆 ∈ 𝐿𝑋, we have

(𝑘
𝐿
𝜙F)

𝜙
(𝜆) = ⋁

𝜇∈𝐿
𝑋

(𝑘
𝐿
𝜙F (𝜇) ∧ [𝜙 (𝜇) , 𝜆])

= ⋁

𝜇∈𝐿
𝑋

(F (𝜙 (𝜇)) ∧ [𝜙 (𝜇) , 𝜆]) ≤ F (𝜆) ;

(2)

that is, (𝑘
𝐿
𝜙F)

𝜙
≤ F. It follows that (𝑘

𝐿
𝜙F)

𝜙
(0) = 0. From

the above lemma we have that (𝑘
𝐿
𝜙F)

𝜙 is a stratified 𝐿-filter
on𝑋.
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By the above two lemmas, we get the following character-
istic theorem.

Theorem 10. Let (𝑋, lim) be a generalized stratified 𝐿-con-
vergence space. Then (𝑋, lim) is 𝑘-regular (resp., 𝑘∗-regular)
if and only if, for each 𝜙 ∈ Σ(𝑋)(resp., 𝜙 ∈ Σ

∗
(𝑋)),

⋀
𝑦∈𝑋

lim𝜙(𝑦)(𝑦) ≤ [limF, limF𝜙
]wheneverF𝜙

∈ F𝑠

𝐿
(𝑋).

Proof. We prove only for 𝑘-regularity. Assume the given
condition is satisfied, let 𝜙 ∈ Σ(𝑋) and F ∈ F𝑠

𝐿
(𝑋). By

Lemma 9 we have (𝑘
𝐿
𝜙F)

𝜙
∈ F𝑠

𝐿
(𝑋) and

⋀

𝑦∈𝑋

lim𝜙 (𝑦) (𝑦) ≤ [lim 𝑘
𝐿
𝜙F, lim (𝑘

𝐿
𝜙F)

𝜙
]

≤ [lim 𝑘
𝐿
𝜙F, limF] ,

(3)

and so DLK holds; that is, (𝑋, lim) is 𝑘-regular.
Conversely, letF ∈ F𝑠

𝐿
(𝑋), 𝜙 ∈ Σ(𝑋)withF𝜙

∈ F𝑠

𝐿
(𝑋).

By Lemma 8, 𝑘
𝐿
𝜙(F𝜙

) ≥ F. It follows by DLK that

[limF, limF
𝜙
] ≥ [lim 𝑘

𝐿
𝜙 (F

𝜙
) , limF

𝜙
]

≥ ⋀

𝑦∈𝑋

lim𝜙 (𝑦) (𝑦) .
(4)

Thus, the requirement is satisfied.

Corollary 11. A generalized stratified 𝐿-convergence space
(𝑋, lim) is 𝑘󸀠-regular (resp., 𝑘󸀠∗-regular) if and only if for each
𝜙 ∈ Σ(𝑋)(resp., 𝜙 ∈ Σ∗(𝑋)) with lim𝜙(𝑦)(𝑦) = 1 for all
𝑦 ∈ 𝑋, we have limF ≤ limF𝜙 wheneverF𝜙

∈ F𝑠

𝐿
(𝑋).

The following theorem considers lattice-valued weaker
regularities w.r.t. the initial structures.

Theorem 12. Let (𝑋, lim) be the initial structure relative to the
source (𝑋

𝑓𝑖

󳨀→ (𝑋
𝑖
, lim

𝑖
))
𝑖∈𝐼

with each 𝑓
𝑖
: 𝑋 → 𝑋

𝑖
being

injective. Then if each (𝑋
𝑖
, lim

𝑖
) is 𝑘-regular (resp., 𝑘󸀠-regular),

then the same is true of (𝑋, lim).

Proof. We prove only for 𝑘-regularity. Let 𝜙 ∈ Σ(𝑋). Fix
𝑖 ∈ 𝐼; define 𝜙

𝑖
∈ Σ(𝑋

𝑖
) as 𝜙

𝑖
(𝑦) = [𝑦] if 𝑦 ∉ 𝑓

𝑖
(𝑋) and

𝜙
𝑖
(𝑦) = 𝑓

𝑖

⇒
(𝜙(𝑓

−1

𝑖
(𝑦))) if 𝑦 ∈ 𝑓

𝑖
(𝑋). Then for each 𝑖 ∈ 𝐼, by

lim[𝑦](𝑦) = 1 it follows that

⋀

𝑦∈𝑋𝑖

lim
𝑖
𝜙
𝑖
(𝑦) (𝑦) = ⋀

𝑦∈𝑓𝑖(𝑋)

lim
𝑖
𝜙
𝑖
(𝑦) (𝑦)

= ⋀

𝑥∈𝑋

lim
𝑖
𝑓
⇒

𝑖
(𝜙 (𝑥)) (𝑓𝑖 (𝑥)) .

(5)

(In particular, if ∀𝑥 ∈ 𝑋, lim𝜙(𝑥)(𝑥) = 1, then ∀𝑦 ∈ 𝑋
𝑖
,

lim
𝑖
𝜙
𝑖
(𝑦)(𝑦) = 1).

For each 𝜆 ∈ 𝐿𝑋𝑖 and each 𝑥 ∈ 𝑋, it follows that

𝜙 (𝜆 ∘ 𝑓
𝑖
) (𝑥) = 𝜙 (𝑥) (𝜆 ∘ 𝑓𝑖) = 𝑓

⇒

𝑖
(𝜙 (𝑥)) (𝜆)

= 𝜙
𝑖
(𝑓
𝑖 (𝑥)) (𝜆) = 𝜙𝑖 (𝜆) (𝑓𝑖 (𝑥)) .

(6)

Hence, 𝜙(𝜆 ∘ 𝑓
𝑖
) = 𝜙

𝑖
(𝜆) ∘ 𝑓

𝑖
, and then, for eachF ∈ F𝑠

𝐿
(𝑋),

𝑓
⇒

𝑖
(𝑘
𝐿
𝜙F) (𝜆) = 𝑘𝐿𝜙F (𝜆 ∘ 𝑓𝑖) = F (𝜙 (𝜆 ∘ 𝑓

𝑖
))

= F (𝜙
𝑖 (𝜆) ∘ 𝑓𝑖) = 𝑓

⇒

𝑖
(F) (𝜙𝑖 (𝜆))

= 𝑘
𝐿
𝜙
𝑖
(𝑓

⇒

𝑖
(F)) (𝜆) .

(7)

Therefore,𝑓⇒
𝑖
(𝑘
𝐿
𝜙F) = 𝑘

𝐿
𝜙
𝑖
(𝑓
⇒

𝑖
(F)).Then, for each 𝑥 ∈ 𝑋,

⋀

𝑦∈𝑋

lim𝜙 (𝑦) (𝑦) ∧ lim 𝑘
𝐿
𝜙F (𝑥)

= ⋀

𝑦∈𝑋

⋀

𝑖∈𝐼

lim
𝑖
𝑓
⇒

𝑖
(𝜙 (𝑦)) (𝑓

𝑖
(𝑦))

∧⋀

𝑖∈𝐼

lim
𝑖
𝑓
⇒

𝑖
(𝑘
𝐿
𝜙F) (𝑓

𝑖 (𝑥))

= ⋀

𝑖∈𝐼

⋀

𝑧𝑖∈𝑋𝑖

lim
𝑖
𝜙
𝑖
(𝑧
𝑖
) (𝑧

𝑖
) ∧⋀

𝑖∈𝐼

lim
𝑖
𝑘
𝐿
𝜙
𝑖
(𝑓

⇒

𝑖
(F)) (𝑓𝑖 (𝑥))

≤ ⋀

𝑖∈𝐼

( ⋀

𝑧𝑖∈𝑋𝑖

lim
𝑖
𝜙
𝑖
(𝑧
𝑖
) (𝑧

𝑖
) ∧ lim

𝑖
𝑘
𝐿
𝜙
𝑖
(𝑓

⇒

𝑖
(F)) (𝑓𝑖 (𝑥)))

≤ ⋀

𝑖∈𝐼

lim
𝑖
𝑓
⇒

𝑖
(F) (𝑓𝑖 (𝑥)) = limF (𝑥) .

(8)

Here, the last inequality holds because each (𝑋
𝑖
, lim

𝑖
) is 𝑘-

regular. Now, we have proved that (𝑋, lim) is 𝑘-regular.

The following theorem gives the relationship between
types of lattice-valued weaker regularities.

Theorem 13. Let 𝐿 be a complete Boolean algebra. Then 𝑘-
regularity⇔ 𝑘∗-regularity and 𝑘󸀠-regularity⇔ 𝑘󸀠∗-regularity.

Proof. We check only the equivalence 𝑘-regularity ⇔ 𝑘
∗-

regularity. The other equivalence is similar. Obviously, 𝑘-
regularity ⇒ 𝑘

∗-regularity. Conversely, let (𝑋, lim) be 𝑘∗-
regular. Note that when 𝐿 is a complete Boolean algebra,
then for every stratified 𝐿-filter there exists a stratified 𝐿-
ultrafilter containing it.Thus, for each𝜙 ∈ Σ(𝑋), there is some
𝜙
∗
∈ Σ

∗ such that 𝜙(𝑦) ≤ 𝜙∗(𝑦) for all 𝑦 ∈ 𝑋. Assume that
F ∈ F𝑠

𝐿
(𝑋) with F𝜙

∈ F𝑠

𝐿
(𝑋). Then it is easily seen that

F𝜙∗

≤ F𝜙 andF𝜙∗

∈ F𝑠

𝐿
(𝑋). By Theorem 10,

⋀

𝑦∈𝑋

lim𝜙 (𝑦) (𝑦) ≤ ⋀
𝑦∈𝑋

lim𝜙∗ (𝑦) (𝑦) ≤ [limF, limF
𝜙
∗

]

≤ [limF, limF𝜙
] .

(9)

Thus, (𝑋, lim) is 𝑘-regular.

As a consequence, we obtain that when 𝐿 is a complete
Boolean algebra,Theorem 12 holds for 𝑘∗-regularity and 𝑘󸀠∗-
regularity.

Obviously, 𝑘-regularity⇒ 𝑘󸀠-regularity and 𝑘∗-regularity
⇒ 𝑘

󸀠∗-regularity. The following example shows that the
reverse inclusions do not hold generally.
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Example 14. Let𝑋 = {𝑥, 𝑦} and 𝐿 = {0, 𝛼, 𝛽, 1} with ordering
0 < 𝛼, 𝛽 < 1 and 𝛼 ∧ 𝛽 = 0, 𝛼 ∨ 𝛽 = 1. Then (𝐿, ∧) becomes
a complete Boolean algebra. Obviously, [𝑥] and [𝑦] are all
stratified 𝐿-ultrafilters on 𝑋. Thus, it is easily seen that the
function lim : F𝑠

𝐿
(𝑋) → 𝐿

𝑋 defined by

limF (𝑥) =
{{

{{

{

1, F = [𝑥] ;

𝛼, F = [𝑦] ;

0, otherwise,

limF (𝑦) =
{{

{{

{

1, F = [𝑦] ;

𝛽, F = [𝑥] ;

0, otherwise,

(10)

is a generalized stratified 𝐿-convergence structure on𝑋.

(1) (𝑋, lim) satisfies 𝐷𝐿𝐾󸀠(𝐷𝐿𝐾󸀠∗). Let 𝜙 ∈ Σ(𝑋) with
lim𝜙(𝑥)(𝑥) = lim𝜙(𝑦)(𝑦) = 1. Then 𝜙(𝑥) = [𝑥], 𝜙(𝑦) = [𝑦].
Thus, for each F ∈ F𝑠

𝐿
(𝑋), we have 𝑘

𝐿
𝜙F = F. Then the

axiom𝐷𝐿𝐾󸀠, and thus the axiom𝐷𝐿𝐾󸀠∗ holds obviously.

(2) (𝑋, lim) does not satisfy 𝐷𝐿𝐾(𝐷𝐿𝐾∗). Let 𝜙 ∈ Σ(𝑋) be
defined by 𝜙(𝑥) = 𝜙(𝑦) = [𝑦].Then, for each 𝜆 ∈ 𝐿𝑋, we have
𝜙(𝜆) = 𝜆(𝑦). For eachF ∈ F𝑠

𝐿
(𝑋),

𝑘
𝐿
𝜙F (𝜆) = F (𝜙 (𝜆)) = F (𝜆 (𝑦))

tight
= 𝜆 (𝑦)

= [𝑦] (𝜆) ;

that is, 𝑘
𝐿
𝜙F = [𝑦] .

(11)

Taking G = [𝑥] ∧ [𝑦], then limG(𝑥) = limG(𝑦) = 0, and
lim 𝑘

𝐿
𝜙G(𝑥) = lim[𝑦](𝑥) = 𝛼, lim 𝑘

𝐿
𝜙G(𝑦) = lim[𝑦](𝑦) = 1.

It follows that

𝛼 = ⋀

𝑧∈𝑋

lim𝜙 (𝑧) (𝑧) ≰ 0 = [lim 𝑘𝐿𝜙G, limG] . (12)

It follows that the axiom𝐷𝐿𝐾∗ and thus the axiomDLK does
not hold.

3.2. For Levelwise Stratified 𝐿-Convergence Spaces. Let (𝑋, 𝑞)
be a levelwise stratified 𝐿-convergence space.We consider the
following axioms:

DLLK. For each 𝜙 ∈ Σ(𝑋) and each 𝛼 ∈ 𝐿 with ∀𝑧 ∈ 𝑋,
𝜙(𝑧)

𝑞𝛼

󳨀󳨀→ 𝑧. Then ∀F ∈ F𝑠

𝐿
(𝑋), ∀𝑥 ∈ 𝑋, F

𝑞𝛼

󳨀󳨀→ 𝑥 whenever
𝑘
𝐿
𝜙F

𝑞𝛼

󳨀󳨀→ 𝑥.
ReplacingF𝑠

𝐿
(𝑋) byU𝑠

𝐿
(𝑋) inDLLK, we obtain a weaker

axiom in symbol𝐷𝐿𝐿𝐾∗.

Remark 15. The axiom DLLK is a special case of the regular
axiom (R2) in [23] with 𝐽 = 𝑋 and 𝜓 = 𝑖𝑑.

Definition 16. Let (𝑋, 𝑞) be a levelwise stratified 𝐿-
convergence space. Then (𝑋, 𝑞) is called 𝑘-regular (resp.,
𝑘
∗-regular) if it satisfies the axiom DLLK (resp.,𝐷𝐿𝐿𝐾∗).

For 𝑘-regularity (𝑘∗-regularity), we have the following
characteristic theorem.

Theorem 17. Let (𝑋, 𝑞) be a levelwise stratified 𝐿-convergence
space. Then (𝑋, 𝑞) is 𝑘-regular (resp., 𝑘∗-regular) if and only
if for each F ∈ F𝑠

𝐿
(𝑋) and each 𝜙 ∈ Σ(𝑋)(resp., 𝜙 ∈ Σ∗(𝑋))

and each 𝛼 ∈ 𝐿with ∀𝑧 ∈ 𝑋, 𝜙(𝑧)
𝑞𝛼

󳨀󳨀→ 𝑧, we have thatF
𝑞𝛼

󳨀󳨀→ 𝑥

impliesF𝜙
𝑞𝛼

󳨀󳨀→ 𝑥 wheneverF𝜙
∈ F𝑠

𝐿
(𝑋).

Proof. We prove only for 𝑘-regularity. Assume the given
condition is satisfied; let 𝜙 ∈ Σ(𝑋) satisfy the condition in
DLLK and 𝑘

𝐿
𝜙F

𝑞𝛼

󳨀󳨀→ 𝑥. By Lemma 9 we have (𝑘
𝐿
𝜙F)

𝜙
∈

F𝑠

𝐿
(𝑋) and (𝑘

𝐿
𝜙F)

𝜙
≤ F. By the given condition, we have

(𝑘
𝐿
𝜙F)

𝜙
𝑞𝛼

󳨀󳨀→ 𝑥 and thenF
𝑞𝛼

󳨀󳨀→ 𝑥. So, the axiomDLLK holds;
that is, (𝑋, 𝑞) is 𝑘-regular. Conversely, Let 𝜙 ∈ Σ(𝑋) and 𝛼 ∈ 𝐿
with ∀𝑧 ∈ 𝑋, 𝜙(𝑧)

𝑞𝛼

󳨀󳨀→ 𝑧. Suppose that F
𝑞𝛼

󳨀󳨀→ 𝑥 and F𝜙
∈

F𝑠

𝐿
(𝑋). By Lemma 8, 𝑘

𝐿
𝜙(F𝜙

) ≥ F, so, 𝑘
𝐿
𝜙(F𝜙

)
𝑞𝛼

󳨀󳨀→ 𝑥. It
follows by DLLK thatF𝜙

𝑞𝛼

󳨀󳨀→ 𝑥 as desired.

The following theorem shows that 𝑘-regular is an initial
property relative to any family of injection functions.

Theorem 18. Let (𝑋, 𝑞) be the initial structure relative to the

source (𝑋
𝑓𝑖

󳨀→ (𝑋
𝑖
, 𝑞𝑖))

𝑖∈𝐼
with each 𝑓

𝑖
: 𝑋 → 𝑋

𝑖
being

injective. If each (𝑋
𝑖
, 𝑞
𝑖
) is 𝑘-regular, then the same is true of

(𝑋, 𝑞).

Proof. Let 𝜙 ∈ Σ(𝑋) and 𝛼 ∈ 𝐿 satisfy 𝜙(𝑥)
𝑞𝛼

󳨀󳨀→ 𝑥 for all
𝑥 ∈ 𝑋. Fix 𝑖 ∈ 𝐼; define 𝜙

𝑖
∈ Σ(𝑋

𝑖
) as 𝜙

𝑖
(𝑦) = [𝑦] if

𝑦 ∉ 𝑓
𝑖
(𝑋) and 𝜙

𝑖
(𝑦) = 𝑓

𝑖

⇒
(𝜙(𝑓

−1

𝑖
(𝑦))) if 𝑦 ∈ 𝑓

𝑖
(𝑋). Then

𝜙i(𝑦)
𝑞𝛼

󳨀󳨀→ 𝑦 for each 𝑦 ∈ 𝑋
𝑖
. Indeed, if 𝑦 ∉ 𝑓

𝑖
(𝑋), then

𝜙
𝑖
(𝑦) = [𝑦]

𝑞𝛼

󳨀󳨀→ 𝑦, and if 𝑦 ∈ 𝑓
𝑖
(𝑋), then there exists an

𝑥 ∈ 𝑋 such that 𝑓
𝑖
(𝑥) = 𝑦 and so 𝜙

𝑖
(𝑦) = 𝑓

⇒

𝑖
(𝜙(𝑥))

𝑞𝛼

󳨀󳨀→

𝑓
𝑖
(𝑥) = 𝑦. Let 𝑘

𝐿
𝜙F

𝑞𝛼

󳨀󳨀→ 𝑥. Similar to Theorem 12, we have
𝑓
⇒

𝑖
(𝑘
𝐿
𝜙F) = 𝑘

𝐿
𝜙
𝑖
(𝑓
⇒

𝑖
(F)) for all 𝑖 ∈ 𝐼. Because each 𝑓

𝑖
is

continuous, thus 𝑘
𝐿
𝜙
𝑖
(𝑓
⇒

𝑖
(F)) = 𝑓⇒

𝑖
(𝑘
𝐿
𝜙F)

𝑞
𝑖

𝛼

󳨀󳨀→ 𝑓
𝑖
(𝑥).Then

𝑓
⇒

𝑖
(F)

𝑞
𝑖

𝛼

󳨀󳨀→ 𝑓
𝑖
(𝑥) since each (𝑋, 𝑞𝑖) is 𝑘-regular. It follows that

F
𝑞𝛼

󳨀󳨀→ 𝑥 by the definition of initial structure. We have proved
that (𝑋, 𝑞) is 𝑘-regular.

Theorem 19. Let 𝐿 be a complete Boolean algebra. Then 𝑘-
regularity⇔ 𝑘∗-regularity.

Proof. The proof is similar to Theorem 13 and thus it is
omitted.

As a consequence, we obtain that when 𝐿 is a complete
Boolean algebra, thenTheorem 18 holds for 𝑘∗-regularity.

The last theorem gives the relationship between 𝑘-
regularity for generalized stratified 𝐿-convergence space and
𝑘-regularity for levelwise stratified 𝐿-convergence space.

Let (𝑋, lim) be a generalized stratified 𝐿-convergence
space. It is proved in [22] that the pair (𝑋, 𝑞lim), where
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F
(𝑞

lim
)𝛼

󳨀󳨀󳨀󳨀󳨀→ 𝑥 if and only if limF(𝑥) ≥ 𝛼, is a levelwise stratified
𝐿-convergence space.

Theorem 20. Let (𝑋, lim) be a generalized stratified 𝐿-
convergence space. Then (𝑋, lim) is 𝑘-regular (resp., 𝑘∗-
regular) if and only if (𝑋, 𝑞lim) is 𝑘-regular (resp., 𝑘∗-regular).

Proof. We prove only for 𝑘-regularity. Let (𝑋, lim) be 𝑘-

regular. Take 𝜙 ∈ Σ(𝑋) and 𝛼 ∈ 𝐿with ∀𝑧 ∈ 𝑋, 𝜙(𝑧)
(𝑞

lim
)𝛼

󳨀󳨀󳨀󳨀󳨀→ 𝑧;
then we have 𝛼 ≤ ⋀

𝑦∈𝑋
lim𝜙(𝑦)(𝑦). Take F ∈ F𝑠

𝐿
(𝑋) with

F𝜙
∈ F𝑠

𝐿
(𝑋); then we have F

(𝑞
lim
)𝛼

󳨀󳨀󳨀󳨀󳨀→ 𝑥; that is, limF(𝑥) ≥
𝛼. By Theorem 10 we obtain 𝛼 ≤ ⋀

𝑦∈𝑋
lim𝜙(𝑦)(𝑦) ≤

[limF, limF𝜙
]. Then limF𝜙

(𝑥) ≥ 𝛼; that is, F𝜙
(𝑞

lim
)𝛼

󳨀󳨀󳨀󳨀󳨀→ 𝑥.
It follows byTheorem 17 that (𝑋, 𝑞lim) is 𝑘-regular.

Conversely, assume that (𝑋, 𝑞lim) is 𝑘-regular. Let us take
𝜙 ∈ Σ(𝑋) with ⋀

𝑦∈𝑋
lim𝜙(𝑦)(𝑦) = 𝛼 and take F ∈ F𝑠

𝐿
(𝑋)

with F𝜙
∈ F𝑠

𝐿
(𝑋). Then if limF(𝑥) = 𝛽 for 𝑥 ∈ 𝑋,

we have 𝜙(𝑦)
(𝑞

lim
)𝛼∧𝛽

󳨀󳨀󳨀󳨀󳨀󳨀→ 𝑦 and F
(𝑞

lim
)𝛼∧𝛽

󳨀󳨀󳨀󳨀󳨀󳨀→ 𝑥. It follows by

Theorem 17 thatF𝜙
(𝑞

lim
)𝛼∧𝛽

󳨀󳨀󳨀󳨀󳨀󳨀→ 𝑥; that is, limF𝜙
(𝑥) ≥ 𝛼∧𝛽. By

the arbitrariness of 𝑥 we note that ⋀
𝑦∈𝑋

lim𝜙(𝑦)(𝑦) = 𝛼 ≤
[limF, limF𝜙

]. It follows by Theorem 10 that (𝑋, lim) is 𝑘-
regular.

4. On the Relationship between Weaker
Regularity and 𝑝-Regularity

4.1. For Generalized Stratified 𝐿-Convergence Spaces. Gener-
ally, 𝑝-regularity relates to two different generalized stratified
𝐿-convergence structures on the same underlying set. Thus,
in this section, we add the lowercases 𝑝, 𝑞 as the superscript
of lim and use lim𝑝, lim𝑞 to denote different generalized
stratified 𝐿-convergence structures.

At first, we give the notion of closures of stratified 𝐿-filters
and then introduce a new 𝑝-regularity.

Definition 21. Let (𝑋, lim𝑝
) be a generalized stratified 𝐿-

convergence space. For each 𝜆 ∈ 𝐿𝑋, the 𝐿-set 𝜆
𝑝
∈ 𝐿

𝑋

defined by

∀𝑥 ∈ 𝑋, 𝜆
𝑝 (𝑥) = ⋁

F∈F𝑠
𝐿
(𝑋)

(lim𝑝
F (𝑥) ∧F (𝜆)) (13)

is called the closure of 𝜆 w.r.t (𝑋, lim𝑝
).

Lemma 22. Let (𝑋, lim𝑝
) be a generalized stratified 𝐿-

convergence space. Then for all 𝜆, 𝜇 ∈ 𝐿𝑋 and all 𝛼 ∈ 𝐿 we
get the following:

(1) 𝜆 ≤ 𝜆
𝑝
;

(2) 𝜆 ≤ 𝜇 implies 𝜆
𝑝
≤ 𝜇

𝑝
;

(3) (𝛽 ∧ 𝜆)
𝑝
≥ 𝛽 ∧ 𝜆

𝑝
and the equality holds if 𝐿 is a

complete Boolean algebra;

(4) if 𝐿 is a complete Boolean algebra, then ∀𝑥 ∈ 𝑋,
𝜆
𝑝
(𝑥) = ⋁F∈U𝑠

𝐿
(𝑋)
(lim𝑝F(𝑥)∧F(𝜆)), and (𝜆 ∨ 𝜇)

𝑝
=

𝜆
𝑝
∨ 𝜇

𝑝
.

Proof. (1) For each 𝑥 ∈ 𝑋, by lim𝑝
[𝑥](𝑥) = 1 we get 𝜆

𝑝
(𝑥) ≥

[𝑥](𝜆) = 𝜆(𝑥). So, 𝜆 ≤ 𝜆
𝑝
. Take 𝜆 = 1 in (1); we obtain 1

𝑝
= 1.

(2) It follows from the property (F2) of stratified 𝐿-filters.
(3) For each 𝑥 ∈ 𝑋 we have

(𝛽 ∧ 𝜆)
𝑝
(𝑥) = ⋁

F∈F𝑠
𝐿
(𝑋)

(lim𝑝
F (𝑥) ∧F (𝛽 ∧ 𝜆))

= ⋁

F∈F𝑠
𝐿
(𝑋)

(lim𝑝
F (𝑥) ∧F (𝛽) ∧F (𝜆))

≥ ⋁

F∈F𝑠
𝐿
(𝑋)

(lim𝑝
F (𝑥) ∧ 𝛽 ∧F (𝜆))

= 𝛽 ∧ ⋁

F∈F𝑠
𝐿
(𝑋)

(lim𝑝
F (𝑥) ∧F (𝜆))

= 𝛽 ∧ 𝜆
𝑝 (𝑥) .

(14)

When 𝐿 is a complete Boolean algebra, then ∀F ∈ F𝑠

𝐿
(𝑋),

F(𝛽) = 𝛽. So, the “≥” in the above inequality can be replaced
by “=”. Thus, (𝛽 ∧ 𝜆)

𝑝
= 𝛽 ∧ 𝜆

𝑝
.

(5) Let 𝐿 be a complete Boolean algebra. That 𝜆
𝑝
(𝑥) =

⋁F∈U𝑠
𝐿
(𝑋)
(lim𝑝F(𝑥) ∧F(𝜆)) follows because, for each F ∈

F𝑠

𝐿
(𝑋), there exists an 𝐿-ultrafilter G such that F ≤ G. To

prove (𝜆 ∨ 𝜇)
𝑝
= 𝜆

𝑝
∨ 𝜇

𝑝
, it suffices to check that (𝜆 ∨ 𝜇)

𝑝
≤

𝜆
𝑝
∨ 𝜇

𝑝
since the reverse inequality holds by (2). Indeed,

because each stratified 𝐿-ultrafilter is prime we have

𝜆
𝑝 (𝑥) ∨ 𝜇𝑝 (𝑥)

= ( ⋁

F∈U𝑠
𝐿
(𝑋)

(lim𝑝
F (𝑥) ∧F (𝜆)))

∨ ( ⋁

G∈U𝑠
𝐿
(𝑋)

(lim𝑝
G (𝑥) ∧G (𝜇)))

= ⋁

F,G∈U𝑠
𝐿
(𝑋)

((lim𝑝
F (𝑥) ∧F (𝜆))

∨ (lim𝑝
G (𝑥) ∧G (𝜇)))

≥ ⋁

F∈U𝑠
𝐿
(𝑋)

((lim𝑝
F (𝑥) ∧F (𝜆))

∨ (lim𝑝
F (𝑥) ∧F (𝜇)))

= ⋁

F∈U𝑠
𝐿
(𝑋)

(lim𝑝
F (𝑥) ∧ (F (𝜆) ∨F (𝜇)))

= ⋁

F∈U𝑠
𝐿
(𝑋)

(lim𝑝
F (𝑥) ∧F (𝜆 ∨ 𝜇)) = (𝜆 ∨ 𝜇)

𝑝
(𝑥) .

(15)
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Theorem 23. Let (𝑋, lim𝑝
) be a generalized stratified 𝐿-

convergence space. For each F ∈ F𝑠

𝐿
(𝑋), the function F

𝑝
:

𝐿
𝑋
→ 𝐿 defined by

∀𝜆 ∈ 𝐿
𝑋
, F

𝑝 (𝜆) = ⋁

𝜇∈𝐿
𝑋

(F (𝜇) ∧ [𝜇
𝑝
, 𝜆]) (16)

is a stratified 𝐿-filter, called the closure ofF.

Proof. (F1) That F
𝑝
(1) = 1 is obvious. By Lemma 22(1) we

have

F
𝑝 (𝜆) = ⋁

𝜇∈𝐿
𝑋

(F (𝜇) ∧ [𝜇
𝑝
, 𝜆])

≤ ⋁

𝜇∈𝐿
𝑋

(F (𝜇) ∧ [𝜇, 𝜆]) ≤ F (𝜆) .
(17)

Thus,F
𝑝
(0) = 0.

(F2) Firstly, note thatF
𝑝
(𝜆) ≤ F

𝑝
(𝜇) whenever 𝜆 ≤ 𝜇. It

follows thatF
𝑝
(𝜆 ∧ 𝜇) ≤ F

𝑝
(𝜆) ∧F

𝑝
(𝜇). Conversely,

F
𝑝 (𝜆) ∧F𝑝

(𝜇)

= ⋁

𝑎∈𝐿
𝑋

(F (𝑎) ∧ [𝑎𝑝, 𝜆]) ∧ ⋁

𝑏∈𝐿
𝑋

(F (𝑏) ∧ [𝑏𝑝, 𝜇])

= ⋁

𝑎,𝑏∈𝐿
𝑋

(F (𝑎) ∧F (𝑏) ∧ [𝑎𝑝, 𝜆] ∧ [𝑏𝑝, 𝜇])

≤ ⋁

𝑎,𝑏∈𝐿
𝑋

(F (𝑎 ∧ 𝑏) ∧ [(𝑎 ∧ 𝑏)𝑝, 𝜆 ∧ 𝜇])

≤ ⋁

𝑐∈𝐿
𝑋

(F (𝑐) ∧ [𝑐𝑝, 𝜆 ∧ 𝜇]) = F
𝑝
(𝜆 ∧ 𝜇) .

(18)

(Fs) For all 𝛽 ∈ 𝐿, it follows thatF
𝑝
(𝛽) = ⋁

𝜇∈𝐿
𝑋(F(𝜇) ∧

[𝜇
𝑝
, 𝛽]) ≥ F(1) ∧ 𝛽 = 𝛽 by 1

𝑝
= 1.

It is easily seen that the following lemma holds. We omit
the routine proof.

Lemma 24. Let (𝑋, lim𝑝
) be a generalized stratified 𝐿-

convergence space. Then, for each F,G ∈ F𝑠

𝐿
(𝑋), [F,G] ≤

[F
𝑝
,G

𝑝
].

Definition 25. Let (𝑋, lim𝑝
, lim𝑞

) be a pair of generalized
stratified 𝐿-convergence spaces. Then (𝑋, lim𝑞

) is called 𝑝-
regular if and only if, for eachF ∈ F𝑠

𝐿
(𝑋), we have lim𝑞F ≤

lim𝑞F
𝑝
.

Remark 26. When 𝐿 = {0, 1}, a generalized stratified 𝐿-
convergence space reduces to a convergence space. It is easily
seen that F

𝑝
is precisely the filter generated by {𝐴 : 𝐴 ∈

F} as a filterbasis [29]. And the 𝑝-regularity reduces to the
corresponding crisp notion in [3].

The following theorem shows that 𝑝-regularity is pre-
served under initial constructions.

Theorem 27. Let {(𝑋
𝑖
, lim𝑞𝑖 , lim𝑝𝑖)}

𝑖∈𝐼
be pairs of generalized

stratified𝐿-convergence spaces with each lim𝑞𝑖 being𝑝
𝑖
-regular.

If lim𝑞 (resp., lim𝑝) is the initial structure on 𝑋 relative to the

source (𝑋
𝑓𝑖

󳨀→ (𝑋
𝑖
, lim𝑞𝑖))

𝑖∈𝐼
(resp., (𝑋

𝑓𝑖

󳨀→ (𝑋
𝑖
, lim𝑝𝑖))

𝑖∈𝐼
), then

(𝑋, lim𝑞
) is 𝑝-regular.

Proof. At first, we check below that for each 𝑖 ∈ 𝐼 and each
𝜆
𝑖
∈ 𝐿

𝑋𝑖 we have (𝑓←
𝑖
(𝜆
𝑖
))
𝑝
≤ 𝑓

←

𝑖
((𝜆

𝑖
)
𝑝𝑖
). Indeed, for each

𝑥 ∈ 𝑋,

(𝑓
←

𝑖
(𝜆
𝑖
))
𝑝
(𝑥)

= ⋁

G∈F𝑠
𝐿
(𝑋)

(lim𝑝
G (𝑥) ∧G (𝑓

←

𝑖
(𝜆
𝑖
)))

= ⋁

G∈F𝑠
𝐿
(𝑋)

((⋀

𝑗∈𝐼

lim𝑝𝑗𝑓
⇒

𝑗
(G) (𝑓𝑗 (𝑥))) ∧G (𝑓

←

𝑖
(𝜆
𝑖
)))

≤ ⋁

G∈F𝑠
𝐿
(𝑋)

(lim𝑝𝑖𝑓
⇒

𝑖
(G) (𝑓𝑖 (𝑥)) ∧ 𝑓

⇒

𝑖
(G) (𝜆𝑖))

≤ ⋁

G𝑖∈F
𝑠

𝐿(𝑋𝑖)

(lim𝑝𝑖G
𝑖
(𝑓
𝑖 (𝑥)) ∧G𝑖

(𝜆
𝑖
))

= 𝑓
←

𝑖
((𝜆

𝑖
)
𝑝𝑖
) (𝑥) .

(19)

It follow that, for eachF ∈ F𝑠

𝐿
(𝑋) and each 𝜆

𝑖
∈ 𝐿

𝑋𝑖 ,

𝑓
⇒

𝑖
(F

𝑝
) (𝜆

𝑖
)

= F
𝑝
(𝑓

←

𝑖
(𝜆)) = ⋁

𝜇∈𝐿
𝑋

([𝜇
𝑝
, 𝑓

←

𝑖
(𝜆
𝑖
)] ∧F (𝜇))

≥ ⋁

𝜇𝑖∈𝐿
𝑋𝑖

([(𝑓
←

𝑖
(𝜇
𝑖
))
𝑝
, 𝑓

←

𝑖
(𝜆
𝑖
)] ∧F (𝑓

←

𝑖
(𝜇
𝑖
)))

≥ ⋁

𝜇𝑖∈𝐿
𝑋𝑖

([𝑓
←

𝑖
((𝜇

𝑖
)
𝑝𝑖
) , 𝑓

←

𝑖
(𝜆
𝑖
)] ∧F (𝑓

←

𝑖
(𝜇
𝑖
)))

≥ ⋁

𝜇𝑖∈𝐿
𝑋𝑖

([(𝜇
𝑖
)
𝑝𝑖
, 𝜆
𝑖
] ∧ 𝑓

⇒

𝑖
(F) (𝜇𝑖))

= (𝑓
⇒

𝑖
(F))

𝑝𝑖
(𝜆
𝑖
) .

(20)

Thus, 𝑓⇒
𝑖
(F

𝑝
) ≥ (𝑓

⇒

𝑖
(F))

𝑝𝑖
for all 𝑖 ∈ 𝐼. It follows by each

(𝑋
𝑖
, lim𝑞𝑖) being 𝑝

𝑖
-regular that

lim𝑞
F
𝑝 (𝑥) = ⋀

𝑖∈𝐼

lim𝑞𝑖𝑓
⇒

𝑖
(F

𝑝
) (𝑓

𝑖 (𝑥))

≥ ⋀

𝑖∈𝐼

lim𝑞𝑖(𝑓
⇒

𝑖
(F))

𝑝𝑖
(𝑓
𝑖 (𝑥))

≥ ⋀

𝑖∈𝐼

lim𝑞𝑖𝑓
⇒

𝑖
(F) (𝑓𝑖 (𝑥)) = lim𝑞

F (𝑥) .

(21)

Thus, (𝑋, lim𝑞
) is 𝑝-regular.
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When 𝐿 = {0, 1}, Kent and Richardson [6] studied the
relationships between weaker regularities and 𝑝-regularity.
Now we discuss them for the general case.

Definition 28. A generalized (strong) stratified 𝐿-
convergence space (𝑋, lim𝑞

) is called
(i) a (strong) 𝐿-Kent convergence space [10] if ∀F ∈

F𝑠

𝐿
(𝑋), ∀𝑥 ∈ 𝑋, lim𝑞F(𝑥) ≤ lim𝑞

(F ∧ [𝑥])(𝑥);
(ii) pretopological [11] if ∀F ∈ F𝑠

𝐿
(𝑋), ∀𝑥 ∈ 𝑋,

lim𝑞F(𝑥) = [U
𝑞
(𝑥),F], where U

𝑞
(𝑥), defined by ∀𝜆 ∈

𝐿
𝑋, U

𝑞
(𝑥)(𝜆) = ⋀F∈F𝑠

𝐿
(𝑋)
(lim𝑞F(𝑥) → F(𝜆)), is called

the stratified neighborhood 𝐿-filter of 𝑥 w.r.t. lim𝑞, and
when (𝑋, lim𝑞

) is a strong stratified 𝐿-convergence space,
then (𝑋, lim𝑞

) is pretopological if and only if it satisfies
lim𝑞U

𝑞
(𝑥)(𝑥) = 1 for all 𝑥 ∈ 𝑋 [17];

(iii) ultrapretopological if it is pretopological and for each
𝑥 ∈ 𝑋, there exists a stratified 𝐿-ultrafilter F

𝑥
such that

U
𝑞
(𝑥) = [𝑥] ∧F

𝑥
;

(iv) topological [11] if there exists a stratified 𝐿-topology
T such that ∀𝜆 ∈ 𝐿𝑋, ∀𝑥 ∈ 𝑋, we haveU

𝑞
(𝑥)(𝜆) = int(𝜆)(𝑥),

where int(𝜆) = ⋁
𝜇∈T(𝜇 ∧ [𝜇, 𝜆]) is called the interior of 𝜆

w.r.t.T [11, 30].

Proposition 29. Let (𝑋, lim𝑞
) be a strong stratified 𝐿-Kent

convergence space which is 𝑝-regular relative to every ultra-
pretopological generalized stratified 𝐿-convergence structure
lim𝑝

≤ lim𝑞. Then (𝑋, lim𝑞
) is 𝑘󸀠∗-regular.

Proof. Let 𝜙 ∈ Σ∗(𝑋) with ∀𝑦 ∈ 𝑋, lim𝑞
𝜙(𝑦)(𝑦) = 1.

Let lim𝑝 be the ultrapretopological generalized stratified 𝐿-
convergence structure defined by ∀𝑦 ∈ 𝑋, U

𝑝
(𝑦) = 𝜙(𝑦) ∧

[𝑦]. From 𝜙(𝑦) ≥ U
𝑝
(𝑦) we have lim𝑝

𝜙(𝑦)(𝑦) = 1. For each
F ∈ F𝑠

𝐿
(𝑋) with F𝜙

∈ F𝑠

𝐿
(𝑋), it follows that for each

𝜆 ∈ 𝐿
𝑋, 𝜆

𝑝

(𝑦) = ⋁F∈F𝑠
𝐿
(𝑋)
(lim𝑝F(𝑦) ∧ F(𝜆)) ≥ 𝜙(𝑦)(𝜆),

which means 𝜆
𝑝
≥ 𝜙(𝜆). Thus,

F
𝑝 (𝜆) = ⋁

𝜇∈𝐿
𝑋

(F (𝜇) ∧ [𝜇
𝑝
, 𝜆])

≤ ⋁

𝜇∈𝐿
𝑋

(F (𝜇) ∧ [𝜙 (𝜇) , 𝜆]) = F
𝜙
(𝜆) ;

(22)

that is, F
𝑝
≤ F𝜙. Because (𝑋, lim𝑞

) is a strong 𝐿-
Kent convergence space, then it follows that lim𝑞U

𝑝
(𝑦) =

lim𝑞
(𝜙(𝑦) ∧ [𝑦])(𝑦) ≥ lim𝑞

𝜙(𝑦)(𝑦) = 1, and so

∀G ∈ F
𝑠

𝐿
(𝑋) , ∀𝑦 ∈ 𝑋,

lim𝑝
G (𝑦) = [U

𝑝
(𝑦) ,G] = lim𝑞

U
𝑝
(𝑦) ∧ [U

𝑝
(𝑦) ,G]

(𝐿𝐶2
󸀠
)

≤ lim𝑞
G (𝑦) .

(23)

That is, lim𝑝
≤ lim𝑞. It follows by the assumption that

(𝑋, lim𝑞
) is 𝑝-regular. Thus lim𝑞F𝜙

(𝑥) ≥ lim𝑞F
𝑝
(𝑥) ≥

lim𝑞F(𝑥). By Theorem 17 we know that (𝑋, lim𝑞
) is 𝑘󸀠

∗

-
regular.

It is easily seen that when 𝐿 is a complete Boolean algebra,
then the above proposition holds for 𝑘󸀠-regularity.

Lemma 30. Let (𝑋, lim𝑞
) be a topological generalized strati-

fied 𝐿-convergence space and letT be the stratified 𝐿-topology
corresponding to lim𝑞. ThenF ≥ U

𝑞
(𝑥) if and only ifF(𝜇) ≥

U
𝑞
(𝑥)(𝜇) for all 𝜇 ∈ T.

Proof. We need only to check the sufficiency. Note that to
for each 𝜇 ∈ 𝐿𝑋, U

𝑞
(𝑥)(𝜇) = int(𝜇)(𝑥) and U

𝑞
(𝑥)(𝜇) =

int(𝜇)(𝑥) = 𝜇(𝑥) if 𝜇 ∈ T [11, 30]. It follows that, for each
𝜆 ∈ 𝐿

𝑋,

F (𝜆) = ⋁

𝜇∈𝐿
𝑋

(F (𝜇) ∧ [𝜇, 𝜆])

≥ ⋁

𝜇∈T

(F (𝜇) ∧ [𝜇, 𝜆]) ≥ ⋁
𝜇∈T

(U
𝑞 (𝑥) (𝜇) ∧ [𝜇, 𝜆])

= ⋁

𝜇∈T

(𝜇 (𝑥) ∧ [𝜇, 𝜆]) = int (𝜆) (𝑥) = U
𝑞 (𝑥) (𝜆) .

(24)

Theorem 31. Let 𝐿 be a linearly order frame or let 0 ∈ 𝐿
be prime. A topological generalized stratified 𝐿-convergence
space (𝑋, lim𝑞

) is 𝑘󸀠
∗

-regular if and only if it is 𝑝-regular for
every ultrapretopological generalized stratified 𝐿-convergence
structure lim𝑝

≤ lim𝑞.

Proof. Note that a topological generalized stratified 𝐿-
convergence space is natural a strong stratified 𝐿-Kent
convergence space [17]. Then the sufficiency follows by
Proposition 29. Thus, we prove only the necessity. Let
(𝑋, lim𝑞

) be 𝑘󸀠
∗

-regular and let lim𝑝 be an arbitrary ultra-
pretopological generalized stratified 𝐿-convergence structure
with lim𝑝

≤ lim𝑞. Then, for each 𝑦 ∈ 𝑋, there exists a
H
𝑦
∈ U𝑠

𝐿
(𝑋) such that U

𝑝
(𝑦) = H

𝑦
∧ [𝑦]. Obviously,

lim𝑝H
𝑦
(𝑦) ≥ lim𝑝U

𝑝
(𝑦)(𝑦) = 1 and then lim𝑞H

𝑦
(𝑦) = 1

by lim𝑝
≤ lim𝑞.

Let 𝜙 ∈ Σ∗(𝑋) be defined by 𝜙(𝑦) = H
𝑦
, for all 𝑦 ∈

𝑋. Then lim𝑞
𝜙(𝑦)(𝑦) = 1 for each 𝑦 ∈ X. For each 𝜆 ∈ T,

we check below [𝜆
𝑝
, 𝜙(𝜆)] = 1. Here, T is the stratified 𝐿-

topology corresponding to lim𝑞. For each 𝜙(𝑦) ∈ U𝑠

𝐿
(𝑋), it

follows by Lemma 1 that 𝜙(𝑦)F𝜙(𝑦) = 𝜙(𝑦); that is,

𝜙 (𝜆) (𝑦) = 𝜙 (𝑦) (𝜆) = {
1, 𝜄𝜆 ∈ F

𝜙(𝑦)
;

0, 𝜄𝜆 ∉ F
𝜙(𝑦)
.

(25)

Note that [𝜆
𝑝
, 𝜙(𝜆)] = ⋀

𝑦∈𝜄(𝜆𝑝)
(𝜆
𝑝
(𝑦) → 𝜙(𝑦)(𝜆)). For each

𝑦 ∈ 𝜄(𝜆
𝑝
), it follows that 𝜆

𝑝
(𝑦) = ⋁F∈F𝑠

𝐿
(𝑋)
(lim𝑝F(𝑥) ∧

F(𝜆)) > 0, which means that there exists an F
𝑦
∈ F𝑠

𝐿
(𝑋)

such that lim𝑝F
𝑦
(𝑦) > 0 and F

𝑦
(𝜆) > 0. Thus, F

𝑦
(1
𝜄𝜆
) ≥

F
𝑦
(𝜆) > 0. Fix 𝑦 ∈ 𝜄(𝜆

𝑝
); we have 𝑦 ∈ 𝜄𝜆 or 𝑦 ∈ 𝑋 − 𝜄𝜆.

Case 1. 𝑦 ∈ 𝜄𝜆; that is, 𝜆(𝑦) > 0. Because (𝑋, lim𝑞
) is topo-

logical, then 𝜆(𝑦) = U
𝑞
(𝑦)(𝜆) > 0. From lim𝑞

𝜙(𝑦)(𝑦) = 1,
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we get𝜙(𝑦) ≥ U
𝑞
(𝑦) and then𝜙(𝑦)(𝜆) > 0; indeed,𝜙(𝑦)(𝜆) =

1 since 𝜙(𝑦) ∈ U𝑠

𝐿
(𝑋) takes values in {0, 1}.

Case 2. 𝑦 ∈ 𝑋 − 𝜄𝜆; that is, 𝜆(𝑦) = 0. We assume that
𝜙(𝑦)(𝜆) ̸= 1; it follows by equality (25) that 𝜄𝜆 ∉ F

𝜙(𝑦)
. Because

F
𝜙(𝑦)

is an ultrafilter on 𝑋, then 𝑋 − 𝜄(𝜆) ∈ F
𝜙(𝑦)

and
so 𝜙(𝑦)(1

𝑋−𝜄𝜆
) = 1. As we have known lim𝑝F

𝑦
(𝑦) > 0

and (𝑋, lim𝑝
) is ultrapretopological; hence, lim𝑝F

𝑦
(𝑦) =

[U
𝑝
(𝑦),F

𝑦
] > 0, then by U

𝑝
(𝑦)(1

𝑋−𝜄𝜆
) = 𝜙(𝑦)(1

𝑋−𝜄𝜆
) ∧

[𝑦](1
𝑋−𝜄𝜆
) = 1 it follows thatF

𝑦
(1
𝑋−𝜄𝜆
) > 0. Now,

0 = F
𝑦
(1
𝜄𝜆
∧ 1

𝑋−𝜄𝜆
) ≥ F

𝑦
(1
𝜄𝜆
) ∧F

𝑦
(1
𝑋−𝜄𝜆
) > 0. (26)

A contradiction! Thus, if 𝑦 ∈ 𝑋 − 𝜄𝜆, then 𝜙(𝑦)(𝜆) = 1.
Combining Cases 1 and 2 we get that if 𝑦 ∈ 𝜄(𝜆

𝑝
) then

𝜙(𝜆)(𝑦) = 1. It follows immediately that [𝜆
𝑝
, 𝜙(𝜆)] = 1.

Next we prove that 𝑘
𝐿
𝜙(U

𝑞
(𝑥)

𝑝
) ≥ U

𝑞
(𝑥). By Lemma 30,

we need only to check that 𝑘
𝐿
𝜙(U

𝑞
(𝑥)

𝑝
)(𝜆) ≥ U

𝑞
(𝑥)(𝜆) for

all 𝜆 ∈ T. Indeed,

𝑘
𝐿
𝜙 (U

𝑞 (𝑥)𝑝
) (𝜆) = U

𝑞
(𝑥)

𝑝
(𝜙 (𝜆))

= ⋁

𝜇∈𝐿
𝑋

(U
𝑞 (𝑥) (𝜇) ∧ [𝜇𝑝, 𝜙 (𝜆)])

≥ U
𝑞 (𝑥) (𝜆) ∧ [𝜆𝑝, 𝜙 (𝜆)]

= U
𝑞 (𝑥) (𝜆) .

(27)

Then, for eachF ∈ F𝑠

𝐿
(𝑋),

lim𝑞
F (𝑥) = [U𝑞 (𝑥) ,F] ≤ [U𝑞

(𝑥)
𝑝
,F

𝑝
]

≤ [𝑘
𝐿
𝜙 (U

𝑞 (𝑥)𝑝
) , 𝑘

𝐿
𝜙 (F

𝑝
)]

≤ [U
𝑞 (𝑥) , 𝑘𝐿𝜙 (F𝑝

)]

= lim𝑞
𝑘
𝐿
𝜙 (F

𝑝
) (𝑥)

≤ lim𝑞
F
𝑝 (𝑥) ,

(28)

where the first and the second equalities hold by the pre-
topologicalness of (𝑋, lim𝑞

), the first inequality holds by
Lemma 24, the second inequality holds by Lemma 5(4), and
the last inequality holds because (𝑋, lim𝑞

) is 𝑘󸀠∗-regular.Then
it follows that (𝑋, lim𝑞

) is 𝑝-regular.

Remark 32. To prove thatTheorem 31 holds for 𝑘󸀠-regularity,
it seems that 𝐿 must be a complete Boolean algebra. If we
further assume that 𝐿 is linearly ordered or 0 ∈ 𝐿 is prime
then 𝐿 = {0, 1}. Thus, we guess that Theorem 31 holds for 𝑘󸀠-
regularity only if 𝐿 = {0, 1}.

4.2. For Levelwise Stratified 𝐿-Convergence Spaces

Definition 33 (see [31]). Let (𝑋, 𝑝) be a levelwise stratified
𝐿-convergence space. For each 𝜆 ∈ 𝐿𝑋, the 𝐿-set 𝜆

𝛼

𝑝
∈ 𝐿

𝑋

defined by

∀𝑥 ∈ 𝑋, 𝜆
𝛼

𝑝
(𝑥) = ⋁

F∈𝑐𝛼
𝑝
(𝑥)

F (𝜆) ,

𝑐
𝛼

𝑝
(𝑥) = {F ∈ F

𝑠

𝐿
(𝑋) : F

𝑝𝛼

󳨀→ 𝑥}

(29)

is called 𝛼-level closure of 𝜆 w.r.t. (𝑋, 𝑝).

It is easily seen that 𝛼-level closures of 𝐿-sets have similar
properties to closures of 𝐿-sets. We do not list them but use
them directly.

In [20], Boustique and Richardson modified Jäger’s def-
inition [11] and introduced a notion of 𝛼-level closures of
stratified 𝐿-filters. In [25], we give an equivalent charac-
terization of Boustique and Richardson’s definition. This
characterization seemsmore simple andmore intuitive.Thus,
we use it as the definition of 𝛼-level closures of stratified 𝐿-
filters.

Definition 34. Let (𝑋, 𝑝) be a levelwise stratified 𝐿-
convergence space. For each 𝛼 ∈ 𝐿 and each F ∈ F𝑠

𝐿
(𝑋),

it is easily seen that the function F
𝛼

𝑝
: 𝐿

𝑋
→ 𝐿, defined

by ∀𝜆 ∈ 𝐿𝑋, F
𝛼

𝑝
(𝜆) = ⋁

𝜇∈𝐿
𝑋(F(𝜇) ∧ [𝜇

𝛼

𝑝
, 𝜆]), is a stratified

𝐿-filter; then F
𝛼

𝑝
is called the 𝛼-level closure of F w.r.t.

(𝑋, 𝑝).

Definition 35 (see [24]). Let (𝑋, 𝑝, 𝑞) be a pair of levelwise
stratified 𝐿-convergence spaces. Then (𝑋, 𝑞) is called 𝑝-
regular if, for each 𝛼 ∈ 𝐿 and each F ∈ F𝑠

𝐿
(𝑋), we have

F
𝛼

𝑝

𝑞𝛼

󳨀󳨀→ 𝑥 wheneverF
𝑞𝛼

󳨀󳨀→ 𝑥.

It is proved in [25] that 𝑝-regularity is preserved under
initial constructions. Now, we look at the relationships
between weaker regularities and 𝑝-regularity.

Definition 36. A levelwise stratified 𝐿-convergence space
(𝑋, 𝑞) is called

(i) an 𝐿-Kent convergence space if [𝑥] ∧ F
𝑞𝛼

󳨀󳨀→ 𝑥

wheneverF
𝑞𝛼

󳨀󳨀→ 𝑥;

(ii) pretopological [23] if F
𝑞𝛼

󳨀󳨀→ 𝑥 if and only if F ≥

U𝛼

𝑞
(𝑥) = ∧{F | F

𝑞𝛼

󳨀󳨀→ 𝑥};

(iii) ultrapretopological if, for each 𝑥 ∈ 𝑋 and each 𝛼 ∈
𝐿, there exists a stratified 𝐿-ultrafilter F

𝑥
such that

U𝛼

𝑞
(𝑥) = [𝑥] ∧F

𝑥
;

(iv) topological [23] if there exists a stratified 𝐿-topology
T
𝛼
for each𝛼 ∈ 𝐿 such that∀𝜆 ∈ 𝐿𝑋,∀𝑥 ∈ 𝑋, we have

U𝛼

𝑞
(𝑥)(𝜆) = int𝛼(𝜆)(𝑥), where int𝛼(𝜆) is the interior

of 𝜆 w.r.t.T
𝛼
.
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Proposition 37. Let (𝑋, 𝑞) be a levelwise stratified 𝐿-Kent
convergence space which is 𝑝-regular relative to every ultrapre-
topological levelwise stratified 𝐿-convergence structure 𝑝 ≥ 𝑞.
Here for 𝑝 ≥ 𝑞, we mean thatF

𝑝𝛼

󳨀󳨀→ 𝑥 impliesF
𝑞𝛼

󳨀󳨀→ 𝑥. Then
(𝑋, 𝑞) is 𝑘∗-regular.

Proof. Let 𝜙 ∈ Σ∗(𝑋) and 𝛼 ∈ 𝐿 with ∀𝑦 ∈ 𝑋, 𝜙(𝑦)
𝑞𝛼

󳨀󳨀→

𝑦. Let 𝑝 be the ultrapretopological levelwise stratified 𝐿-
convergence structure defined by ∀𝛼 ∈ 𝐿, ∀𝑦 ∈ 𝑋, U𝛼

𝑝
(𝑦) =

𝜙(𝑦) ∧ [𝑦]. From 𝜙(𝑦) ≥ U𝛼

𝑝
(𝑦) we have 𝜙(𝑦)

𝑝𝛼

󳨀󳨀→ 𝑦. For each

F ∈ F𝑠

𝐿
(𝑋) such that F𝜙

∈ F𝑠

𝐿
(𝑋) and F

𝑞𝛼

󳨀󳨀→ 𝑥, it follows
that for each 𝜆 ∈ 𝐿𝑋, 𝜆

𝛼

𝑝
(𝑦) = ⋁F∈𝑐𝛼

𝑝
(𝑦)
F(𝜆) ≥ 𝜙(𝑦)(𝜆),

which means 𝜆
𝛼

𝑝
≥ 𝜙(𝜆). Thus,

F
𝛼

𝑝
(𝜆) = ⋁

𝜇∈𝐿
𝑋

(F (𝜇) ∧ [𝜇
𝛼

𝑝
, 𝜆])

≤ ⋁

𝜇∈𝐿
𝑋

(F (𝜇) ∧ [𝜙 (𝜇) , 𝜆]) = F
𝜙
(𝜆) ;

(30)

that is, F
𝛼

𝑝
≤ F𝜙. Because (𝑋, 𝑞) is an 𝐿-Kent convergence

space, then it follows by 𝜙(𝑦)
𝑞𝛼

󳨀󳨀→ 𝑦 that U𝛼

𝑝
(𝑦) = 𝜙(𝑦) ∧

[𝑦]
𝑞𝛼

󳨀󳨀→ 𝑦. Thus, 𝑝 ≥ 𝑞; then (𝑋, 𝑞) is 𝑝-regular by the
assumption. It follows that F

𝛼

𝑝

𝑞𝛼

󳨀󳨀→ 𝑥 and then F𝜙
𝑞𝛼

󳨀󳨀→ 𝑥

by F
𝛼

𝑝
≤ F𝜙. By Theorem 17 we know that (𝑋, 𝑞) is 𝑘∗-

regular.

It is easily seen that when 𝐿 is a complete Boolean algebra,
then the above proposition holds for 𝑘-regularity.

Lemma 38. Let (𝑋, 𝑞) be a topological levelwise stratified 𝐿-
convergence space and let T

𝛼
(𝛼 ∈ 𝐿) be the stratified 𝐿-

topologies corresponding to 𝑞. Then F ≥ U𝛼

𝑞
(𝑥) if and only

ifF(𝜇) ≥ U𝛼

𝑞
(𝑥)(𝜇) for all 𝜇 ∈ T

𝛼
.

Proof. The proof is similar to Lemma 30 and thus it is
omitted.

Theorem 39. Let 𝐿 be a linearly order frame or let 0 ∈ 𝐿 be
prime. A topological levelwise stratified 𝐿-convergence space
(𝑋, 𝑞) is 𝑘∗-regular if and only if it is 𝑝-regular for every
ultrapretopological levelwise stratified 𝐿-convergence structure
𝑝 ≥ 𝑞.

Proof. The sufficiency follows by Proposition 37. We prove
only the necessity. Let (𝑋, 𝑞) be 𝑘∗-regular and let 𝑝
be an arbitrary ultrapretopological levelwise stratified 𝐿-
convergence structure with 𝑝 ≥ 𝑞. Fix 𝛼 ∈ 𝐿; then, for each
𝑦 ∈ 𝑋, there exists a H

𝑦
∈ U𝑠

𝐿
(𝑋) such that U𝛼

𝑝
(𝑦) =

H
𝑦
∧ [𝑦]. Obviously,H

𝑦

𝑝𝛼

󳨀󳨀→ 𝑦 and thenH
𝑦

𝑞𝛼

󳨀󳨀→ 𝑦 by 𝑝 ≥ 𝑞.
Let𝜙 ∈ Σ∗(𝑋) be defined by𝜙(𝑦) =H

𝑦
, for all𝑦 ∈ 𝑋. For

each𝜆 ∈ T
𝛼
, we check below [𝜆

𝛼

𝑝
, 𝜙(𝜆)] = 1. Here,T

𝛼
(𝛼 ∈ 𝐿)

are the stratified 𝐿-topologies corresponding to 𝑞.

Note that [𝜆
𝛼

𝑝
, 𝜙(𝜆)] = ⋀

𝑦∈𝜄(𝜆
𝛼

𝑝
)
(𝜆
𝛼

𝑝
(𝑦) → 𝜙(𝑦)(𝜆)). For

each 𝑦 ∈ 𝜄(𝜆
𝛼

𝑝
), it follows that 𝜆

𝛼

𝑝
(𝑦) = ⋁F∈𝑐𝛼

𝑝
(𝑦)
F(𝜆) > 0,

whichmeans that there exists anF
𝑦

𝑝𝛼

󳨀󳨀→ 𝑦 such thatF
𝑦
(𝜆) >

0. Thus,F
𝑦
(1
𝜄𝜆
) ≥ F

𝑦
(𝜆) > 0. Fix 𝑦 ∈ 𝜄(𝜆

𝛼

𝑝
); then 𝑦 ∈ 𝜄𝜆 or

𝑦 ∈ 𝑋 − 𝜄𝜆.

Case 1. 𝑦 ∈ 𝜄𝜆; that is, 𝜆(𝑦) > 0. Because (𝑋, 𝑞) is topological,
thus 𝜆(𝑦) = U𝛼

𝑞
(𝑦)(𝜆) = ∧{F(𝜆) | F

𝑞𝛼

󳨀󳨀→ 𝑦} > 0. From

𝜙(𝑦)
𝑞𝛼

󳨀󳨀→ 𝑦, we get 𝜙(𝑦)(𝜆) > 0; indeed, 𝜙(𝑦)(𝜆) = 1 since
𝜙(𝑦) ∈ U𝑠

𝐿
(𝑋) takes values in {0, 1}.

Case 2. 𝑦 ∈ 𝑋 − 𝜄𝜆; that is, 𝜆(𝑦) = 0. We assume that
𝜙(𝑦)(𝜆) ̸= 1; it follows by equality (25) that 𝜄𝜆 ∉ F

𝜙(𝑦)
. Because

F
𝜙(𝑦)

is an ultrafilter on 𝑋, then 𝑋 − 𝜄(𝜆) ∈ F
𝜙(𝑦)

and so

𝜙(𝑦)(1
𝑋−𝜄𝜆
) = 1. As we have known F

𝑦

𝑝𝛼

󳨀󳨀→ 𝑦; hence,
F
𝑦
≥ U𝛼

𝑝
(𝑦) = 𝜙(𝑦) ∧ [𝑦]; then F

𝑦
(1
𝑋−𝜄𝜆
) ≥ 𝜙(𝑦)(1

𝑋−𝜄𝜆
) ∧

1
𝑋−𝜄𝜆
(𝑦) = 1. Now,

0 = F
𝑦
(1
𝜄𝜆
∧ 1

𝑋−𝜄𝜆
)

≥ F
𝑦
(1
𝜄𝜆
) ∧F

𝑦
(1
𝑋−𝜄𝜆
) = F

𝑦
(1
𝜄𝜆
) > 0.

(31)

A contradiction! Thus, if 𝑦 ∈ 𝑋 − 𝜄𝜆, then 𝜙(𝑦)(𝜆) = 1.
Combining of Cases 1 and 2 we get that if 𝑦 ∈ 𝜄(𝜆

𝛼

𝑝
) then

𝜙(𝜆)(𝑦) = 1. It follows immediately that [𝜆
𝛼

𝑝
, 𝜙(𝜆)] = 1. Then

similar to Lemma 30 we have 𝑘
𝐿
𝜙(U𝛼

𝑞
(𝑥)

𝛼

𝑝
) ≥ U𝛼

𝑞
(𝑥). Let

F
𝑞𝛼

󳨀󳨀→ 𝑥; thenF ≥ U𝛼

𝑞
(𝑥) by the topologicalness of 𝑞. Hence,

F
𝛼

𝑝
≥ U𝛼

𝑞
(𝑥)

𝛼

𝑝
and then 𝑘

𝐿
𝜙(F

𝛼

𝑝
) ≥ 𝑘

𝐿
𝜙(U𝛼

𝑞
(𝑥)

𝛼

𝑝
) ≥ U𝛼

𝑞
(𝑥),

which means 𝑘
𝐿
𝜙(F

𝛼

𝑝
)

𝑞𝛼

󳨀󳨀→ 𝑥. Because (𝑋, 𝑞) is 𝑘∗-regular,

thenF
𝛼

𝑝

𝑞𝛼

󳨀󳨀→ 𝑥. It follows that (𝑋, 𝑞) is 𝑝-regular.

Remark 40. Similar to Remark 32, we guess that Theorem 39
holds for 𝑘-regularity only if 𝐿 = {0, 1}.

5. Conclusions

In this paper, we introduce some weaker regularities for
levelwise stratified 𝐿-convergence spaces and generalized
stratified 𝐿-convergence spaces and study their characteriza-
tions and properties. For generalized stratified𝐿-convergence
spaces, we also investigate a notion of closures of stratified
𝐿-filters and then define by it a new 𝑝-regularity which
is different from the 𝑝-regularity in [25] defined by the
notion of 𝛼-level closures of stratified 𝐿-filters. At last, we
discuss the relationships between weaker regularities and
𝑝-regularities. In addition, it seems that the 𝑝-regularity
(for generalized stratified 𝐿-convergence spaces in [25]) has
close relationshipswith 𝑘-regularity and 𝑘∗-regularity. Butwe
fail to establish those relationships for it is difficult to find
an appropriate definition for ultrapretopological generalized
stratified 𝐿-convergence spaces.
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