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We investigate the properties of symmetry in two variables related to multiple Euler 𝑞-𝑙-function which interpolates higher-order
𝑞-Euler polynomials at negative integers. From our investigation, we can derive many interesting identities of symmetry in two
variables related to generalized higher-order 𝑞-Euler polynomials and alternating generalized 𝑞-power sums.

1. Introduction

Throughout this paper, the notations N, Z, R, and C denote
the sets of positive integers, integers, real numbers, and
complex numbers, respectively, and Z

≥0
:= N ∪ {0}. Let 𝜒

be a Dirichlet character with 𝑑 ∈ N with conductor 𝑑 ≡

1(mod2). Then the generalized Euler polynomials attached
to 𝜒 are defined by the following generating function (see [1–
3]):
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The generalized Euler polynomials of order 𝑟 ∈ N attached to
𝜒 are also defined by the generating function:
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When 𝑥 = 0, 𝐸(𝑟)
𝑛,𝜒

= 𝐸
(𝑟)

𝑛𝜒
(0) are called the generalized Euler

numbers attached to 𝜒 (see [2, 4]).

Assume that 𝑞 ∈ C with |𝑞| < 1 and define 𝑞-numbers by
(see [2–15])

[𝑥]
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𝑥

1 − 𝑞
. (3)

Note that lim
𝑞→1

[𝑥]
𝑞
= 𝑥.

In [4, 8], Kim initiated to consider various 𝑞-extensions
(or (ℎ, 𝑞)-extensions) of Euler numbers and polynomials and
constructed analytic continuations which interpolate his 𝑞-
numbers and polynomials. Until recently, many authors have
studied 𝑞-Euler or (ℎ, 𝑞)-Euler polynomials due to him (see
[1–21]). In [4], Kimdefined the (ℎ, 𝑞)-extension of generalized
higher-order Euler polynomials attached to 𝜒 which is given
by the generating function:
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(4)

where ℎ ∈ Z and 𝑟 ∈ N.
Note that
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of generalized higher-order Euler numbers attached to 𝜒.
We find from (4) that
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with the usual convention about replacing (𝐸(ℎ⋅𝑟)
𝜒,𝑞

)
𝑛

by 𝐸(ℎ⋅𝑟)
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.
In [4], Dirichlet-type multiple (ℎ, 𝑞)-𝑙-function is defined

by Kim to be
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where 𝑠, ℎ ∈ C and 𝑥 ∈ R, with 𝑥 ̸= 0, −1, −2, . . . .
By using Cauchy residue theorem, we get
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In this paper, we investigate certain properties of symmetry
in two variables related to Dirichlet-type multiple (ℎ, 𝑞)-
function which interpolates the (ℎ, 𝑞)-extension of general-
ized higher-order Euler polynomials attached to 𝜒 at negative
integers. Fromour investigation, we can derivemany interest-
ing identities of symmetry in two variables related to (ℎ, 𝑞)-
extension of generalized higher-order Euler polynomials and
alternating generalized 𝑞-power sums.

2. Identities for the (ℎ, 𝑞)-Extension
of Generalized Higher-Order Euler
Polynomials

In this section, we assume that 𝜒 is a Dirichlet character with
conductor 𝑑 ∈ N with 𝑑 ≡ 1(mod2).
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Thus, by (9), we get

[𝑤
2
]
𝑠

𝑞

[2]
𝑟

𝑞
𝑤1

𝑑𝑤
1
−1

∑

𝑗
1
,...,𝑗
𝑟
=0

(−1)
∑
𝑟

𝑙=1
𝑗
𝑙 (

𝑟

∏

𝑙=1

𝜒 (𝑗
𝑙
))

× 𝑞
𝑏∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑗

𝑙 𝑙
(ℎ)

𝑞
𝑤1 ,𝑟

(𝑠, 𝑤
2
𝑥 +

𝑤
2

𝑤
1

𝑟

∑

𝑙=1

𝑗
𝑙
| 𝜒)

= [𝑤
1
]
𝑠

𝑞
[𝑤
2
]
𝑠

𝑞

×

𝑑𝑤
2
−1

∑

𝑖
1
,...,𝑖
𝑟
=0

𝑑w
1
−1

∑

𝑗
1
,...,𝑗
𝑟
=0

∞

∑

𝑛
1
,...,𝑛
𝑟
=0

(((−1)
∑
𝑟

𝑙=1
(𝑖
𝑙
+𝑗
𝑙
+𝑛
𝑙
)

× (

𝑟

∏

𝑙=1

𝜒 (𝑗
𝑙
))(

𝑟

∏

𝑙=1

𝜒 (𝑖
𝑙
))

× 𝑞
𝑤
2
∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑗

𝑙
+𝑤
1
∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑖

𝑙)

× ([𝑤
1
𝑤
2
(𝑥 + 𝑑

𝑟

∑

𝑙=1

𝑛
𝑙
)

+𝑤
2

𝑟

∑

𝑙=1

𝑗
𝑙
+ 𝑤
1

𝑟

∑

𝑙=1

𝑖
𝑙
]

𝑠

𝑞

)

−1

)

× 𝑞
𝑤
1
𝑤
2
𝑑∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑛

𝑙 .

(10)

By using the same method as (10), we get
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Therefore, by (10) and (11), we obtain the following theo-
rem.

Theorem 1. For 𝑤
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∑
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∑
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By (8) andTheorem 1, we obtain the following theorem.
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𝑞
)
𝑛

=

𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑞
𝑥𝑖
(𝑞
𝑦
𝐸
(ℎ,𝑟)

𝜒,𝑞
+ [𝑦]
𝑞
)
𝑖

[𝑥]
𝑛−𝑖

𝑞

=

𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑞
𝑥𝑖
𝐸
(ℎ,𝑟)

𝑖,𝜒,𝑞
(𝑦) [𝑥]

𝑛−𝑖

𝑞
.

(14)
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By (14), we get
𝑑𝑤
1
−1

∑

𝑗
1
,...,𝑗
𝑟
=0

(−1)
∑
𝑟

𝑙=1
𝑗
𝑙𝑞
𝑤
2
∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑗

𝑙 (

𝑟

∏

𝑙=1

𝜒 (𝑗
𝑙
))

× 𝐸
(ℎ,𝑟)

𝑛,𝜒,𝑞
𝑤1
(𝑤
2
𝑥 +

𝑤
2

𝑤
1

𝑟

∑

𝑙=1

𝑗
𝑙
)

=

𝑑𝑤
1
−1

∑

𝑗
1
,...,𝑗
𝑟
=0

(−1)
∑
𝑟

𝑙=1
𝑗
𝑙𝑞
𝑤
2
∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑗

𝑙 (

𝑟

∏

𝑙=1

𝜒 (𝑗
𝑙
))

×

𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑞
𝑖𝑤
2
(𝑗
1
+⋅⋅⋅+𝑗

𝑟
)
𝐸
(ℎ,𝑟)

𝑖,𝜒,𝑞
𝑤1
(𝑤
2
𝑥)

× [
𝑤
2
(𝑗
1
+ ⋅ ⋅ ⋅ + 𝑗

𝑟
)

𝑤
1

]

𝑛−𝑖

𝑞
𝑤1

=

𝑑𝑤
1
−1

∑

𝑗
1
,...,𝑗
𝑟
=0

(−1)
∑
𝑟

𝑙=1
𝑗
𝑙𝑞
𝑤
2
∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑗

𝑙 (

𝑟

∏

𝑙=1

𝜒 (𝑗
𝑙
))

×

𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑞
(𝑛−𝑖)𝑤

2
∑
𝑟

𝑙=1
𝑗
𝑙𝐸
(ℎ,𝑟)

𝑛−𝑖,𝜒,𝑞
𝑤1
(𝑤
2
𝑥) [

𝑤
2

𝑤
1

𝑟

∑

𝑙=1

𝑗
𝑙
]

𝑖

𝑞
𝑤1

=

𝑛

∑

𝑖=0

(
𝑛

𝑖
)(

[𝑤
2
]
𝑞

[𝑤
1
]
𝑞

)

𝑖

𝐸
(ℎ,𝑟)

𝑛−𝑖,𝜒,𝑞
𝑤1
(𝑤
2
𝑥)

×

𝑑𝑤
1
−1

∑

𝑗
1
,...,𝑗
𝑟
=0

(−1)
∑
𝑟

𝑙=1
𝑗
𝑙𝑞
𝑤
2

𝑟

∑

𝑙=1

(ℎ−𝑙+𝑛−𝑖+1)𝑗
𝑙

× (

𝑟

∏

𝑙=1

𝜒 (𝑗
𝑙
)) [𝑗
1
+ ⋅ ⋅ ⋅ + 𝑗

𝑟
]
𝑖

𝑞
𝑤2

=

𝑛

∑

𝑖=0

(
𝑛

𝑖
)(

[𝑤
2
]
𝑞

[𝑤
1
]
𝑞

)

𝑖

𝐸
(ℎ,𝑟)

𝑛−𝑖,𝜒,𝑞
𝑤1
(𝑤
2
𝑥) 𝑆
(ℎ,𝑟)

𝑛,𝑖,𝑞
𝑤2
(𝑤
1
𝑑 | 𝜒) ,

(15)

where

𝑆
(ℎ,𝑟)

𝑛,𝑖,𝑞
(𝑤 | 𝜒) =

𝑤−1

∑

𝑗
1
,...,𝑗
𝑟
=0

(−1)
∑
𝑟

𝑙=1
𝑗
𝑙𝑞
∑
𝑟

𝑙=1
(ℎ−𝑙+𝑛−𝑖+1)𝑗

𝑙

× [𝑗
1
+ ⋅ ⋅ ⋅ + 𝑗

𝑟
]
𝑖

𝑞
(

𝑟

∏

𝑙=1

𝜒 (𝑗
𝑙
)) .

(16)

From (15), we have

[2]
𝑟

𝑞
𝑤2
[𝑤
1
]
𝑛

𝑞

×

𝑑𝑤
1
−1

∑

𝑗
1
,...,𝑗
𝑟
=0

(−1)
∑
𝑟

𝑙=1
𝑗
𝑙𝑞
𝑤
2
∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑗

𝑙

× (

𝑟

∏

𝑙=1

𝜒 (𝑗
𝑙
))𝐸
(ℎ,𝑟)

𝑛,𝜒,𝑞
𝑤1

× (𝑤
2
𝑥 +

𝑤
2

𝑤
1

(𝑗
1
+ ⋅ ⋅ ⋅ + 𝑗

𝑟
))

= [2]
𝑟

𝑞
𝑤2

𝑛

∑

𝑖=0

(
𝑛

𝑖
) [𝑤
1
]
𝑛−𝑖

𝑞
[𝑤
2
]
𝑖

𝑞
𝐸
(ℎ,𝑟)

𝑛−𝑖,𝜒,𝑞
𝑤1
(𝑤
2
𝑥) 𝑆
(ℎ,𝑟)

𝑛,𝑖,𝑞
𝑤2

× (𝑤
1
𝑑 | 𝜒) .

(17)

By using the same method as in (17), we get

[2]
𝑟

𝑞
𝑤1
[𝑤
2
]
𝑛

𝑞

𝑑𝑤
2
−1

∑

𝑗
1
,...,𝑗
𝑟
=0

(−1)
∑
𝑟

𝑙=1
𝑗
𝑙𝑞
𝑤
1
∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑗

𝑙

× (

𝑟

∏

𝑙=1

𝜒 (𝑗
𝑙
))𝐸
(ℎ,𝑟)

𝑛,𝜒,𝑞
𝑤2
(𝑤
1
𝑥 +

𝑤
1

𝑤
2

𝑟

∑

𝑙=1

𝑗
𝑙
)

= [2]
𝑟

𝑞
𝑤1

𝑛

∑

𝑖=0

(
𝑛

𝑖
) [𝑤
2
]
𝑛−𝑖

𝑞
[𝑤
1
]
𝑖

𝑞
𝐸
(ℎ,𝑟)

𝑛−𝑖,𝜒,𝑞
𝑤2

× (𝑤
1
𝑥) 𝑆
(ℎ,𝑟)

𝑛,𝑖,𝑞
𝑤1
(𝑤
2
𝑑 | 𝜒) .

(18)

Therefore, by (17) and (18), we obtain the following theorem.

Theorem 3. For 𝑛 ∈ Z
≥0

and 𝑤
1
, 𝑤
2
∈ N, with 𝑤

1
≡ 1(mod

2) and 𝑤
2
≡ 1(mod2), one has

[2]
𝑟

𝑞
𝑤2

𝑛

∑

𝑖=0

(
𝑛

𝑖
) [𝑤
1
]
𝑛−𝑖

𝑞
[𝑤
2
]
𝑖

𝑞
𝐸
(ℎ,𝑟)

𝑛−𝑖,𝜒,𝑞
𝑤1
(𝑤
2
𝑥) 𝑆
(ℎ,𝑟)

𝑛,𝑖,𝑞
𝑤2
(𝑤
1
𝑑 | 𝜒)

= [2]
𝑟

𝑞
𝑤1

𝑛

∑

𝑖=0

(
𝑛

𝑖
) [𝑤
2
]
𝑛−𝑖

𝑞
[𝑤
1
]
𝑖

𝑞
𝐸
(ℎ,𝑟)

𝑛−𝑖,𝜒,𝑞
𝑤2
(𝑤
1
𝑥) 𝑆
(ℎ,𝑟)

𝑛,𝑖,𝑞
𝑤1

× (𝑤
2
𝑑 | 𝜒) .

(19)

Now, we observe that

𝑒
[𝑥]
𝑞
𝑢

∞

∑

𝑚
1
,...,𝑚
𝑟
=0

𝑞
∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑚

𝑙(−1)
∑
𝑟

𝑙=1
𝑚
𝑙

× (

𝑟

∏

𝑙=1

𝜒 (𝑚
𝑙
)) 𝑒
[𝑦+∑

𝑟

𝑙=1
𝑚
𝑙
]
𝑞
𝑞
𝑥
(𝑢+V)

= 𝑒
−[𝑥]
𝑞
𝑢

∞

∑

𝑚
1
,...,𝑚
𝑟
=0

𝑞
∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑚

𝑙(−1)
∑
𝑟

𝑙=1
𝑚
𝑙

× (

𝑟

∏

𝑙=1

𝜒 (𝑚
𝑙
)) 𝑒
[𝑥+𝑦+∑

𝑟

𝑙=1
𝑚
𝑙
]
𝑞
(𝑢+V)

.

(20)

The left hand side of (20) multiplied by [2]𝑟
𝑞
is given by

[2]
𝑟

𝑞
𝑒
[𝑥]
𝑞
𝑢

×

∞

∑

𝑚
1
,...,𝑚
𝑟
=0

𝑞
∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑚

𝑙(−1)
∑
𝑟

𝑙=1
𝑚
𝑙𝑒
[𝑦+∑

𝑟

𝑙=1
𝑚
𝑙
]
𝑞
𝑞
𝑥
(𝑢+V)
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× (

𝑟

∏

𝑙=1

𝜒 (𝑚
𝑙
))

= 𝑒
[𝑥]
𝑞
𝑢

∞

∑

𝑛=0

𝑞
𝑛𝑥
𝐸
(ℎ,𝑟)

𝑛,𝜒,𝑞
(𝑦)

(𝑢 + V)𝑛

𝑛!

= (

∞

∑

𝑙=0

[𝑥]
𝑙

𝑞

𝑢
𝑙

𝑙!
)

× (

∞

∑

𝑘=0

∞

∑

𝑛=0

𝑞
(𝑘+𝑛)𝑥

𝐸
(ℎ,𝑟)

𝑘+𝑛,𝜒,𝑞
(𝑦)

𝑢
𝑘

𝑘!

V𝑛

𝑛!
)

=

∞

∑

𝑚=0

∞

∑

𝑛=0

(

𝑚

∑

𝑘=0

(
𝑚

𝑘
) 𝑞
(𝑘+𝑛)𝑥

𝐸
(ℎ,𝑟)

𝑘+𝑛,𝜒,𝑞
(𝑦) [𝑥]

𝑚−𝑘

𝑞
)

×
𝑢
𝑚

𝑚!

V𝑛

𝑛!
.

(21)

The right hand side of (20) multiplied by [2]𝑟
𝑞
is given by

[2]
𝑟

𝑞
𝑒
−[𝑥]
𝑞
V
∞

∑

𝑚
1
,...,𝑚
𝑟
=0

(−1)
∑
𝑟

𝑙=1
𝑚
𝑙𝑞
∑
𝑟

𝑙=1
(ℎ−𝑙+1)𝑚

𝑙

× (

𝑟

∏

𝑙=1

𝜒 (𝑚
𝑙
)) 𝑒
[𝑥+∑

𝑟

𝑙=1
𝑚
𝑙
]
𝑞
(𝑢+V)

= 𝑒
−[𝑥]
𝑞
V
∞

∑

𝑛=0

𝐸
(ℎ,𝑟)

𝑛,𝜒,𝑞
(𝑥 + 𝑦)

(𝑢 + V)𝑛

𝑛!

= (

∞

∑

𝑙=0

(−[𝑥]
𝑞
)
𝑙

𝑙!
V𝑙)

× (

∞

∑

𝑚=0

∞

∑

𝑘=0

𝐸
(ℎ,𝑟)

𝑚+𝑘,𝜒,𝑞
(𝑥 + 𝑦)

𝑢
𝑚

𝑚!

V𝑘

𝑘!
)

=

∞

∑

𝑛=0

∞

∑

𝑚=0

(

𝑛

∑

𝑘=0

(
𝑛

𝑘
)𝐸
(ℎ,𝑟)

𝑚+𝑘,𝜒,𝑞
(𝑥 + 𝑦) (−[𝑥]

𝑞
)
𝑛−𝑘

)

×
𝑢
𝑚

𝑚!

V𝑛

𝑛!

=

∞

∑

𝑛=0

∞

∑

𝑚=0

(

𝑛

∑

𝑘=0

(
𝑛

𝑘
)𝐸
(ℎ,𝑟)

𝑚+𝑘,𝜒,𝑞
(𝑥 + 𝑦) 𝑞

(𝑛−𝑘)𝑥
[−𝑥]
𝑛−𝑘

𝑞
)

×
𝑢
𝑚

𝑚!

V𝑛

𝑛!
.

(22)

Therefore, by (21) and (22), we obtain the following theorem.

Theorem 4. For𝑚, 𝑛 ∈ Z
≥0
, one has

𝑚

∑

𝑘=0

(
𝑚

𝑘
) 𝑞
𝑘𝑥
𝐸
(ℎ,𝑟)

𝑛+𝑘,𝜒,𝑞
(𝑦) [𝑥]

𝑞

𝑚−𝑘

=

𝑛

∑

𝑘=0

(
𝑛

𝑘
) 𝑞
−𝑘𝑥

𝐸
(ℎ,𝑟)

𝑚+𝑘,𝜒,𝑞
(𝑥 + 𝑦) [−𝑥]

𝑛−𝑘

𝑞
.

(23)
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adic 𝑞-deformed fermionic integrals in the 𝑝-adic integer ring,”
Journal of Number Theory, vol. 133, no. 10, pp. 3348–3361, 2013.

[17] S. Araci, J. J. Seo, and D. Erdal, “New construction weighted
(ℎ, 𝑞)-Genocchi numbers and polynomials related to zeta type
functions,” Discrete Dynamics in Nature and Society, vol. 2011,
Article ID 487490, 7 pages, 2011.

[18] I. N. Cangul, H. Ozden, and Y. Simsek, “Generating functions of
the (ℎ, 𝑞) extension of twisted Euler polynomials and numbers,”
Acta Mathematica Hungarica, vol. 120, no. 3, pp. 281–299, 2008.

[19] K.-W. Hwang, D. V. Dolgy, D. S. Kim, T. Kim, and S. H.
Lee, “Some theorems on Bernoulli and Euler numbers,” Ars
Combinatoria, vol. 109, pp. 285–297, 2013.

[20] D. S. Kim, “Identities of symmetry for generalized Euler
polynomials,” International Journal of Combinatorics, vol. 2011,
Article ID 432738, 12 pages, 2011.

[21] D. S. Kim, N. Lee, J. Na, and K. H. Park, “Identities of symmetry
for higher-order Euler polynomials in three variables (II),”
Journal of Mathematical Analysis and Applications, vol. 379, no.
1, pp. 388–400, 2011.


