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The conjugate gradient method is an efficient method for solving large-scale nonlinear optimization problems. In this paper, we
propose a nonlinear conjugate gradient method which can be considered as a hybrid of DL andWYL conjugate gradient methods.
The given method possesses the sufficient descent condition under the Wolfe-Powell line search and is globally convergent for
general functions. Our numerical results show that the proposed method is very robust and efficient for the test problems.

1. Introduction

The nonlinear conjugate gradient (CG) method has played a
special role in solving large-scale nonlinear optimization due
to the simplicity of their iterations and their very lowmemory
requirements. In fact, the CG method is not among the
fastest or most robust optimization algorithms for nonlinear
problems available today, but it remains very popular for
engineers and mathematicians who are interested in solving
large-scale problems. As we know, the nonlinear conjugate
gradient method is the extended based on linear conjugate
gradient method. The first linear conjugate gradient method
is proposed by Hestenes and Stiefel 1952 [1] for solving linear
equations. In 1964, Fletcher and Reeves [2] extended it to
nonlinear problems and get the first nonlinear conjugate
gradient method (FR method).

In this paper, we focus on solving the following nonlinear
unconstrained optimization problem by conjugate gradient
method:

min {𝑓 (𝑥) : 𝑥 ∈ 𝑅𝑛} , (1)

where𝑓(𝑥) : 𝑅𝑛 → 𝑅 is a smooth, nonlinear function whose
gradient will be denoted by 𝑔(𝑥). The iterative formula of the
conjugate gradient method is given by

𝑥
𝑘
= 𝑥
𝑘−1

+ 𝛼
𝑘−1

𝑑
𝑘−1

, (2)

where, 𝑑
𝑘−1

is the search direction at 𝑥
𝑘−1

and 𝛼
𝑘−1

is the
step-length. For nonlinear conjugate gradient method, 𝑑

𝑘
is

computed by

𝑑
𝑘
= −𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

, 𝑑
1
= −𝑔
1
, (3)

where 𝛽
𝑘
is a scalar and 𝑔

𝑘
= ∇𝑓(𝑥

𝑘
) denotes the gradient.

Different conjugate gradient methods correspond to the
different ways to compute 𝛽

𝑘
. Some well-known formulae

for 𝛽
𝑘
are the Fletcher-Reeves (FR), Polak-Ribière (PR),

Hestense-Stiefel (HS), Dai-Yuan (DY), and CG-DESCENT,
which are given, respectively, by

𝛽FR
𝑘

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2

(4)

(see [2]),

𝛽PR
𝑘

=
𝑔𝑇
𝑘
𝑦
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2

(5)

(see [3]),

𝛽HS
𝑘

=
𝑔𝑇
𝑘
𝑦
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

(6)
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(see [1]),

𝛽DY
𝑘

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

𝑑𝑇
𝑘−1

𝑦
𝑘−1

(7)

(see [4]),

𝛽𝑁
𝑘

= (𝑦
𝑘−1

− 2𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑦𝑘−1
󵄩󵄩󵄩󵄩
2

𝑑𝑇
𝑘−1

𝑦
𝑘−1

)

𝑇

𝑔
𝑘

𝑑𝑇
𝑘−1

𝑦
𝑘−1

(8)

(see [5]), where 𝑦
𝑘−1

= 𝑔
𝑘
−𝑔
𝑘−1

denotes the gradient change.
Although all these methods are equivalent in the linear

case, namely, when 𝑓 is a strictly convex quadratic function
and𝛼
𝑘
are determined by exact line search, their behaviors for

general objective functions may be far different. For general
functions, Zoutendijk [6] proved the global convergence of
FR method with exact line search. (Here and throughout
this paper, for global convergence, we mean the sequence
generated by the corresponding methods will either termi-
nate after finite steps or contain a subsequence such that it
converges to a stationary point of the objective function from
a given initial point.) Although one would be satisfied with
its global convergence properties, the FR method performs
much worse than the PR (HS) method in real computations.
Powell [7] analyzed a major numerical drawback of the FR
method, namely, if a small step is generated away from the
solution point, the subsequent steps may be also very short.
On the other hand, in practical computation, the HS method
resembles the PR method, and both methods are generally
believed to be the most efficient conjugate gradient methods
since these two methods essentially perform a restart if
a bad direction occurs. However, Powell [8] constructed
a counterexample and showed that the PR method and
HS method can cycle infinitely without approaching the
solution. This example suggests that these two methods have
a drawback that they are not globally convergent for general
functions. Therefore, over the past few years, much effort has
been put to find out new formulas for conjugate methods
such that they are not only globally convergent for general
functions but also have good numerical performance. The
similar counterexamples are also constructed by Dai and
Yuan [9].

From the structure of the above formulae 𝛽
𝑘
, we know

that 𝛽FR
𝑘

and 𝛽DY
𝑘

have the common numerator ‖𝑔
𝑘
‖2. They

are globally convergent if the objective function Lipschitz
continuous and the level set {𝑥 ∈ 𝑅𝑛 : 𝑓(𝑥) < 𝑓(𝑥

0
)} is

bounded. For inexact line search, Al-Baali [10] proved the
global convergence of FR method under the strong Wolfe-
Powell line search with the restriction 𝜎 < 1/2. Based on Al-
Baali’s result, Liu et al. [11] extended the global convergence
of FR method to the case 𝜎 = 1/2. Dai and Yuan [12] proved
that the sufficient descent condition must hold for one of the
directions 𝑑

𝑘+1
and 𝑑

𝑘
, and proposed the global convergence

of FR method with general Wolfe line searches.
𝛽PR
𝑘

and 𝛽HS
𝑘

share the common numerator 𝑔𝑇
𝑘
𝑦
𝑘−1

, they
possess a built-in restart feature to avoid the jamming prob-
lem as follows: when the step 𝑥

𝑘
−𝑥
𝑘−1

is small, the factor 𝑦
𝑘−1

in the numerator of𝛽
𝑘
tends to be zero.Hence, the next search

direction 𝑑
𝑘
is essentially the steepest descent direction

−𝑔
𝑘
. So, the numerical performance of these methods is

better than the performance of the methods with ‖𝑔
𝑘
‖2 in

numerator of 𝛽
𝑘
. In [3] Polak and Ribière proved that if

the objective function is strongly convex and line search is
exact, the PR method is globally convergent. For general
functions, Powell [7, 8] analyzed the convergence properties
of PR method and constructed an example which shows that
the PR method may cycle infinitely between nonstationary
points. To get the global convergence, Gilbert and Nocedal
[13] made the following nonnegative restriction on 𝛽

𝑘
:

𝛽PR+
𝑘

= max {𝛽PR
𝑘

, 0} . (9)

Generally speaking, methods with numerator 𝑔𝑇
𝑘
𝑦
𝑘−1

possess better convergence than the methods with numer-
ator ‖𝑔

𝑘
‖2. But from numerical performance point of view,

methods with numerator ‖𝑔
𝑘
‖2 outperform themethods with

the numerator 𝑔𝑇
𝑘
𝑦
𝑘−1

. So, a lot of effort has been made to
find the method which has nice convergence properties and
efficient numerical performance in the past decades. In [14],
authors proposed a new conjugacy conditionwhichmade use
of not only gradient values but also function values. Based on
the given conjugacy condition, a class of nonlinear conjugate
gradient methods is proposed. The PR method outperforms
a lot of methods in numerical experiments, but it does not
possess the sufficient descent condition. So, some modified
forms of PR method have been studied in [15, 16], the given
methods possess the sufficient descent condition and are
globally convergent for general functions.

2. Motivations and the New Formula

Since the PRmethod is considered as one of themost efficient
nonlinear conjugate gradientmethods, a lot of effort has been
made on its convergence properties and its modifications.
In [13], with the sufficient descent assumption, Gilbert and
Nocedal proved the global convergence of PR+methodunder
the Wolfe line search. Grippo and Lucidi [17] constructed
an Armijo-type line search and proved that under this line
search, directions 𝑑

𝑘
generated by PR method satisfy the

sufficient descent condition.
Recently, Wei et al. [18] and Huang et al. [19] gave a

modified formula for computing 𝛽
𝑘
as follows:

𝛽WYL
𝑘

=
𝑔𝑇
𝑘
𝑦
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, (10)

where 𝑦
𝑘−1

= 𝑔
𝑘
− (‖𝑔
𝑘
‖/‖𝑔
𝑘−1

‖)𝑔
𝑘−1

.
Themethod with formula 𝛽WYL

𝑘
not only has nice numer-

ical results but also possess the sufficient descent condition
and global convergence properties under the strong Wolfe-
Powell line search. From the structure of 𝛽WYL

𝑘
, we know

that, the method with 𝛽WYL
𝑘

can also avoid jamming such
that when the step 𝑥

𝑘
− 𝑥
𝑘−1

is small, ‖𝑔
𝑘
‖/‖𝑔
𝑘−1

‖ tends to
be 1 and the next search direction tends to be the steepest
descent direction which is similar to PR method. But WYL
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method has some advantages, such as under strong Wolfe-
Powell line search, 𝛽WYL

𝑘
≥ 0, and if the parameter 𝜎 ≤ 1/4 in

SWP,WYLmethod possesses the sufficient descent condition
which deduces the global convergence of the WYL method.

In [20, 21], Shengwei et al. andHuang et al. extended such
modification to HS method as follows:

𝛽MHS
𝑘

=
𝑔𝑇
𝑘
𝑦∗
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, 𝑦∗
𝑘−1

= 𝑔
𝑘
−

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
𝑔
𝑘−1

. (11)

The above formulae 𝛽WYL
𝑘

and 𝛽MHS
𝑘

can be considered as the
modification form of 𝛽PR

𝑘
and 𝛽HS

𝑘
by using 𝑦∗

𝑘−1
to replace

𝑦
𝑘−1

, respectively. In [20, 21], the corresponding methods are
proved to be globally convergent for general functions under
the strong Wolfe-Powell line search and Grippo-Lucidi line
search. Based on the same approach, some authors extended
other discussions and modifications in [22–24]. In fact, 𝑦∗

𝑘−1

is not our point at the beginning, our purpose is involving
the information of the angle between 𝑔

𝑘
and 𝑔

𝑘−1
. From this

point of view, 𝛽WYL
𝑘

has the following form:

𝛽WYL
𝑘

= 𝛽FR
𝑘

(1 − cos (𝜃
𝑘
)) , (12)

where 𝜃
𝑘
is the angle between 𝑔

𝑘
and 𝑔
𝑘−1

. Bymultiplying𝛽FR
𝑘

with 1 − cos 𝜃
𝑘
, the method not only has similar convergence

properties with FR method, but also avoid jamming which is
similar to PR method.

Recently, Dai and Liao [25] proposed a new conjugacy
condition which is based on the Quasi-Newton techniques.
According to the new conjugacy condition, the following
formula 𝛽DL

𝑘
is given:

𝛽DL1
𝑘

=
𝑔𝑇
𝑘
(𝑦
𝑘−1

− 𝑡𝑠
𝑘−1

)

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, (13)

where 𝑡 ≥ 0, for simplicity, we call the method with (13) as
DL1 method. It is obviously that

𝛽DL1
𝑘

= 𝛽HS
𝑘

− 𝑡
𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

. (14)

In [25], for the method with 𝛽DL1
𝑘

, if the line search is exact,
DL1 method has the same convergence properties with PR
method, which indicates that DL1 method does not converge
for general functions. To get the global convergence, Dai and
Liao replace (13) by

𝛽DL
𝑘

= max {𝛽HS
𝑘

, 0} − 𝑡
𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

. (15)

The formula (15) can be considered as a modified form
of 𝛽HS
𝑘
, by adding the part 𝑡(𝑔𝑇

𝑘
𝑠
𝑘−1

/𝑑𝑇
𝑘−1

𝑦
𝑘−1

) which may
contain some information of Hessian ∇2𝑓(𝑥) [25]. From
the convergence analysis in [25], the nonnegative restriction
max{𝛽HS

𝑘
, 0} and the sufficient descent condition are signifi-

cant for the global convergence results.

Motivated by the above discussion, in this paper, we give
the following formula to compute the parameter 𝛽

𝑘
:

𝛽∗
𝑘
= 𝛽WYL
𝑘

− 𝑡
𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

. (16)

The formula𝛽∗
𝑘
can be considered amodification of𝛽WYL

𝑘
,

namely, by adding 𝑡(𝑔𝑇
𝑘
𝑠
𝑘−1

/𝑑𝑇
𝑘−1

𝑦
𝑘−1

), the 𝛽∗
𝑘
may contain

some Hessian information [25]. It also can be considered as a
modified form of 𝛽DL

𝑘
by substituting max{𝛽HS

𝑘
, 0}with 𝛽WYL

𝑘
.

We call the method with (2), (3), and (16) asWYLDLmethod
and give the corresponding algorithm as follows.

Algorithm 1 (WYLDL).

Step 1. Given 𝑥
1
∈ 𝑅𝑛, 𝜀 ≥ 0, set 𝑑

1
= −𝑔
1
, 𝑘 = 1, if ‖𝑔

1
‖ ≤ 𝜀,

then stop;

Step 2. Compute 𝛼
𝑘
by the Strong Wolfe-Powell line search;

Step 3. Let 𝑥
𝑘
= 𝑥
𝑘−1

+ 𝛼
𝑘−1

𝑑
𝑘−1

, 𝑔
𝑘
= 𝑔(𝑥

𝑘
), if ‖𝑔

𝑘
‖ ≤ 𝜀, then

stop;

Step 4. Compute 𝛽
𝑘
by (16) and generate 𝑑

𝑘
by (3);

Step 5. Set 𝑘 := 𝑘 + 1, go to Step 2.

The convergence properties of Algorithm 1 will be dis-
cussed in Section 3.

3. Convergence Analysis

For conjugate gradientmethods, during the iteration process,
the gradient of the objective function is required. We make
the following basic assumptions on the objective functions.

Assumption 2. (i) The level set Γ = {𝑥 ∈ 𝑅𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥
1
)}

is bounded, namely, there exists a constant 𝐵 > 0 such that

‖𝑥‖ ≤ 𝐵, ∀𝑥 ∈ Γ. (17)

(ii) In some neighborhood 𝑁 of Γ, 𝑓 is continuously dif-
ferentiable and its gradient is Lipschitz continuous, namely,
there exists a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑁. (18)

Under the above assumptions of𝑓, there exists a constant
𝛾 ≥ 0 such that

󵄩󵄩󵄩󵄩∇𝑓 (𝑥)󵄩󵄩󵄩󵄩 ≤ 𝛾, ∀𝑥 ∈ Γ. (19)

Exact Line Search. Suppose that 𝑑
𝑘
is a descent direction and

step length 𝛼
𝑘
is the solution of

min
𝛼𝑘>0

𝑓 (𝑥
𝑘
+ 𝛼𝑑
𝑘
) . (20)

For exact line search,

𝑔𝑇
𝑘
𝑑
𝑘−1

= 0. (21)
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Form (16) and (21), we can get that 𝛽∗
𝑘
= 𝛽WYL
𝑘

. In [18], author
proved that if the line search is exact, the method with 𝛽WYL

𝑘

is globally convergent for the uniformly convex functions.
For conjugate gradient methods, the sufficient descent

condition is significant to the global convergence. We say the
sufficient descent condition holds if there exists a constant
𝑐 > 0 such that

𝑔𝑇
𝑘
𝑑
𝑘
≤ −𝑐󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

, ∀𝑘. (22)

In nonlinear optimization algorithm, the Strong Wolfe-
Powell conditions, namely,

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝑓 (𝑥

𝑘
) ≤ 𝛿𝛼

𝑘
𝑔𝑇
𝑘
𝑑
𝑘
, (23)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑔(𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜎

󵄨󵄨󵄨󵄨󵄨𝑔
𝑇

𝑘
𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨 , (24)

where 0 < 𝛿 < 𝜎 < 1, are often imposed on the line search.

In [25], Dai and Liao proved that, if directions 𝑑
𝑘

satisfy the sufficient descent condition (22), the DL method
is globally convergent under the strong Wolfe-Powell line
search for general functions. In this section, we will prove
that the directions 𝑑

𝑘
generated by Algorithm 1 satisfy the

sufficient descent condition (22). Based on this result, the
global convergence of Algorithm 1 will be established.

Lemma 3. Suppose that the sequence {𝑥
𝑘
} is generated by

Algorithm 1, the step-length 𝛼
𝑘
satisfy the strong Wolfe-Powell

conditions (23) and (24), if 0 < 𝜎 < 1/4; then, the generated
directions 𝑑

𝑘
satisfy the sufficient descent condition (22).

Proof. Weprove this result by induction. By using (3), we have
𝑔𝑇
𝑘
𝑑
𝑘
= −‖𝑔

𝑘
‖2+𝛽WYLDL
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

, and combining this equation
with (𝛽WYLDL

𝑘
), we can deduce that

𝑔𝑇
𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
= −1 +

𝑔𝑇
𝑘
𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
(1 − cos (𝜃

𝑘
))

− 𝑡
𝛼
𝑘
(𝑔𝑇
𝑘
𝑑
𝑘−1

)
2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

𝑑𝑇
𝑘−1

𝑦
𝑘−1

.

(25)

By strong Wolfe-Powell condition (24), it follows that
𝑑𝑇
𝑘−1

𝑦
𝑘−1

≥ (𝜎 − 1)𝑔𝑇
𝑘−1

𝑑
𝑘−1

> 0. Which means that

𝑡
𝛼
𝑘
(𝑔𝑇
𝑘
𝑑
𝑘−1

)
2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

𝑑𝑇
𝑘−1

𝑦
𝑘−1

> 0. (26)

From (25), the following inequality holds:

𝑔𝑇
𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
≤ −1 +

𝑔𝑇
𝑘
𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
(1 − cos (𝜃

𝑘
)) . (27)

(25) and Wolfe-Powell condition (24) deduce that

𝑔𝑇
𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
≤ −1 +

−𝜎𝑔𝑇
𝑘−1

𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2

(1 − cos (𝜃
𝑘
)) , (28)

namely,

𝑔𝑇
𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
≤ −1 +

−2𝜎𝑔𝑇
𝑘−1

𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2

. (29)

The repeating of (29) can deduce that

𝑔𝑇
𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
≤ −2 +

𝑘−1

∑
𝑗=0

(2𝜎)𝑗. (30)

Since

𝑘−1

∑
𝑗=0

(2𝜎)𝑗 <
∞

∑
𝑗=0

(2𝜎)𝑗 =
1

1 − 2𝜎
, (31)

(30) can be expressed as

𝑔𝑇
𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
≤ −2 +

1

1 − 2𝜎
. (32)

With the restrictions 𝜎 ∈ (0, 1/4) and 𝑔𝑇
1
𝑑
1

= −‖𝑔
1
‖2, for

𝑐 = (1 − 4𝜎)/(1 − 2𝜎), the inequality (32) means that

𝑔𝑇
𝑘
𝑑
𝑘
≤ −𝑐󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

. (33)

For PRmethod, when a small step-length occurs, 𝛽PR
𝑘

will
tend to be zero, and the next search direction𝑑

𝑘
automatically

approaches to−𝑔
𝑘
. By suchway, the PRmethod automatically

avoids jamming. This property was first studied by Gilbert
and Nocedal [13], which is called Property (∗). We are going
to show that themethodwith𝛽WYLDL

𝑘
possesses such property

(∗).

Property 1. (∗) Consider a method of form (2) and (3).
Suppose that

0 < 𝛾 ≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≤ 𝛾 ∀ 𝑘 ≥ 1. (34)

We say that the method has Property (∗), if for all 𝑘, there
exist constants 𝑏 > 1, 𝜆 > 0 such that |𝛽

𝑘
| ≤ 𝑏, and if ‖𝑠

𝑘−1
‖ ≤

𝜆, we have |𝛽
𝑘
| ≤ 1/2𝑏.

Lemma 4. Consider a method of form (2) and (3). If 𝛽
𝑘
is

determined by 𝛽WYLDL
𝑘

, 𝛼
𝑘
satisfies the Wolfe-Powell condition

(24), then the method possesses Property 1(∗).

Proof. By Lemma 3, we know that the sufficient descent con-
dition (22) holds. Combining with Wolfe-Powell condition
(24), we have

𝑑𝑇
𝑘−1

𝑦
𝑘−1

≥ (𝜎 − 1) 𝑔𝑇
𝑘−1

𝑑
𝑘−1

≥ (1 − 𝜎) 𝑐𝛾2. (35)
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It follows from (17), (35), and 𝛽WYLDL
𝑘

that
󵄨󵄨󵄨󵄨󵄨𝛽

WYLDL
𝑘

󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔

𝑘−1

󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑔𝑘−1 − (󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 /

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩) 𝑔𝑘−1

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

+ 𝑡
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨󵄨𝑑
𝑇

𝑘−1
𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 (2
󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔

𝑘−1

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

+ 𝑡
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩
𝑐 (1 − 𝜎) 󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 (2𝐿
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

+ 𝑡
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩
𝑐 (1 − 𝜎) 󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

≤
2𝐵𝛾 (𝑐 (1 − 𝜎) 2𝐿 + 𝑡)

𝛾2𝑐 (1 − 𝜎)
.

(36)

Set

𝑏 :=
2𝐵𝛾 (𝑐 (1 − 𝜎) 2𝐿 + 𝑡)

𝛾2𝑐 (1 − 𝜎)
, (37)

which means that |𝛽WYLDL
𝑘

| < 𝑏. By setting

𝜆 :=
𝛾2𝑐 (1 − 𝜎)

2𝑏𝛾 (𝑐 (1 − 𝜎) 2𝐿 + 𝑡)
, (38)

we have

󵄨󵄨󵄨󵄨󵄨𝛽
WYLDL
𝑘

󵄨󵄨󵄨󵄨󵄨 <
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩 𝛾 (𝑐 (1 − 𝜎) 2𝐿 + 𝑡)

𝛾2𝑐 (1 − 𝜎)
,

<
1

2𝑏
.

(39)

For nonlinear conjugate gradient methods, Dai et al. [4]
proposed the following general conclusion.

Lemma 5. Suppose that Assumption 2 holds. Consider any
conjugate gradient method, where 𝑑

𝑘
is a descent direction and

𝛼
𝑘
is obtained by the strong Wolfe-Powell line search. if

∑
1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2
= ∞, (40)

we have

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (41)

By Lemma 3, we know that the method with 𝛽WYLDL
𝑘

possesses the sufficient descent condition under the Wolfe-
Powell line search. Combining with Lemma 5, we can have
the following theorem.

Theorem 6. Suppose that Assumption 2 holds. Consider
WYLDL method, where 𝛼

𝑘
is obtained by strong Wolfe-Powell

lien search with 𝜎 < 1/4. If there exists a constant 𝛾 > 0 such
that

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≥ 𝛾, ∀𝑘 ≥ 1, (42)

then 𝑑
𝑘

̸= 0 and

∑
𝑘≥2

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩
2

< ∞, (43)

where 𝑢
𝑘
= 𝑑
𝑘
/‖𝑑
𝑘
‖.

Proof. Firstly, note that 𝑑
𝑘

̸= 0; otherwise, the sufficient
descent condition (22) fails. Therefore, 𝑢

𝑘
is well defined. In

addition, by relation (42) and Lemma 5 we have

∑
𝑘≥1

1
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
< ∞. (44)

Now, we divide formula 𝛽WYLDL
𝑘

into two parts as follows:

𝛽1
𝑘
= 𝛽WYL
𝑘

, 𝛽2
𝑘
= −𝑡

𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, (45)

and define

𝑟
𝑘
:=

𝜗
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
, 𝛿

𝑘
:= 𝛽1
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

, (46)

where 𝜗
𝑘
= −𝑔
𝑘
+ 𝛽2
𝑘
𝑑
𝑘−1

.
Then by (3), we have, for all 𝑘 ≥ 2,

𝑢
𝑘
= 𝑟
𝑘
+ 𝛿
𝑘
𝑢
𝑘−1

. (47)

Using the identity ‖𝑢
𝑘
‖ = ‖𝑢

𝑘−1
‖ = 1 and (47), we can obtain

󵄩󵄩󵄩󵄩𝑟𝑘
󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿

𝑘
𝑢
𝑘−1

󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩 . (48)

Using the condition 𝛿
𝑘

= 𝛽WYL
𝑘

(‖𝑑
𝑘−1

‖/‖𝑑
𝑘
‖) = (‖𝑔

𝑘
‖2/

‖𝑔
𝑘−1

‖2) (1 − cos(𝜃
𝑘
))(‖𝑑
𝑘−1

‖/‖𝑑
𝑘
‖) ≥ 0, the triangle inequal-

ity, and (48), we obtain
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩(1 + 𝛿) 𝑢
𝑘
− (1 + 𝛿) 𝑢

𝑘−1

󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿
𝑘
𝑢
𝑘−1

󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩

= 2 󵄩󵄩󵄩󵄩𝑟𝑘
󵄩󵄩󵄩󵄩 .

(49)

On the other hand, line search condition (24) gives

𝑦𝑇
𝑘−1

𝑑
𝑘−1

≥ (𝜎 − 1) 𝑔𝑇
𝑘−1

𝑑
𝑘−1

. (50)

Equations (22), (24), and (50) imply that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑇
𝑘
𝑑
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝜎

1 − 𝜎
. (51)

It follows from the definition of 𝜗
𝑘
, (17), (36), and (51) that

󵄩󵄩󵄩󵄩𝜗𝑘
󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 + 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 + 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑇
𝑘
𝑑
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

≤ 𝛾 + 𝑡
𝜎

1 − 𝜎
2𝐵.

(52)
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So we have

∑󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩
2

≤ 4∑󵄩󵄩󵄩󵄩𝑟𝑘
󵄩󵄩󵄩󵄩
2

≤ 4∑
𝜗2
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≤ 4(𝛾 + 𝑡
𝜎

1 − 𝜎
2𝐵)
2

∑
1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

< ∞.

(53)

Let 𝑁∗ denote the set of positive integers. For 𝜆 > 0 and a
positive integer Δ, denote

𝐾𝜆
𝑘,Δ

:= {𝑖 ∈ 𝑁∗: 𝑘 ≤ 𝑖 ≤ 𝑘 + Δ − 1, 󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 > 𝜆} . (54)

Let |𝐾𝜆
𝑘,Δ

| denote the number of elements in 𝐾𝜆
𝑘,Δ

. Dai and
Liao [25] pointed out that for conjugate gradient method
which satisfies

(i) Property 1(∗);

(ii) the sufficient descent condition;

(iii) Theorem 6;

if (42) holds, then the small step-sizes should not be too
many. This property is described as follows.

Lemma 7. Suppose that Assumption 2 holds. Consider
WYLDL method, where 𝛼

𝑘
is obtained by the strong Wolfe-

Powell line search in which 𝜎 < 1/4. Then if (42) holds, there
exists 𝜆 > 0 such that, for any Δ ∈ 𝑁∗ and any index 𝑘

0
, there

is an index 𝑘 ≥ 𝑘
0
such that

󵄨󵄨󵄨󵄨󵄨𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨 >
Δ

2
. (55)

Proof. It follows from Lemmas 3 and 4 and Theorem 6 that
WYLDLmethod possesses the above three conditions in [25].
So, according to Lemma 3.5 in [25], the Lemma 7 holds. We
omit the detailed proof of this Lemma 7.

According to the above lemmas and theorems, we
can prove the following convergence theorem for WYLDL
method.

Theorem 8. Suppose that Assumption 2 holds. Consider
WYLDL method, if 𝛼

𝑘
is obtained by strong Wolfe-Powell line

search with 𝜎 < 1/4, then we have

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (56)

Proof. We prove this theorem by contradiction. If
lim inf

𝑘→∞
‖𝑔
𝑘
‖ > 0, then (42) must hold. Then the

conditions of Theorem 6 and Lemma 7 hold. Defining
𝑢
𝑖
= 𝑑
𝑖
/‖𝑑
𝑖
‖, we have, for any indices 𝑙, 𝑘, with 𝑙 ≥ 𝑘,

𝑥
𝑙
− 𝑥
𝑘−1

=
𝑙

∑
𝑖=𝑘

𝑥
𝑖
− 𝑥
𝑖−1

=
𝑙

∑
𝑖=𝑘

𝛼
𝑖−1

𝑑
𝑖−1

=
𝑙

∑
𝑖=𝑘

𝑢
𝑖−1

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩

=
𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 𝑢𝑘−1 +

𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 (𝑢𝑖−1 − 𝑢

𝑘−1
) .

(57)

(57), ‖𝑢
𝑖
‖ = 1, and (17) give the following:

𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥𝑙 − 𝑥

𝑘−1

󵄩󵄩󵄩󵄩

+
𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩

≤ 2𝐵 +
𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩 .

(58)

Let 𝜆 > 0 be given by Lemma 7 and define Δ := ⌈8𝐵/𝜆⌉ to be
the smallest integer not less than 8𝐵/𝜆. ByTheorem 6, we can
find an index 𝑘

0
≥ 1 such that

∑
𝑖≥𝑘0

󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩
2

≤
1

4Δ
. (59)

With this Δ and 𝑘
0
, Lemma 7 gives an index 𝑘 ≥ 𝑘

0
such that

󵄨󵄨󵄨󵄨󵄨𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨 >
Δ

2
. (60)

For any index 𝑖 ∈ [𝑘, 𝑘+Δ−1], by Cauchy-Schwartz inequality
and (59),

󵄩󵄩󵄩󵄩𝑢𝑖 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩 ≤
𝑖

∑
𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩𝑢𝑗 − 𝑢
𝑗−1

󵄩󵄩󵄩󵄩󵄩

≤ (𝑖 − 𝑘 + 1)1/2(
𝑖

∑
𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩𝑢𝑗 − 𝑢
𝑗−1

󵄩󵄩󵄩󵄩󵄩
2

)

1/2

≤ Δ1/2(
1

4Δ
)
1/2

=
1

2
.

(61)

From these relations (61) and (60) and taking 𝑙 = 𝑘 + Δ − 1 in
(58), we get

2𝐵 ≥
1

2

𝑘+Δ−1

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 >

𝜆

2

󵄨󵄨󵄨󵄨󵄨𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨 >
𝜆Δ

4
. (62)

Thus Δ < 8𝐵/𝜆, which contradicts the definition of Δ. The
proof is completed.
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4. Numerical Experiments

In this section, we report the performance of the Algorithm 1
(WYLDL) on a set of test problems. The codes were written
in Fortran 77 and in double precision arithmetic. All the
tests were performed on the same PC. The experiments
were performed on a set of 73 nonlinear unconstrained
problems in [26]. Some of the problems are from CUTE
[27] library. For each test problem, we have performed
10 numerical experiments with number of variables 𝑛 =
1000, 2000, . . . , 10000.

In order to assess the reliability of theWYLDL algorithm,
we also tested this method against the DL method and WYL
method using the same problems. All these algorithms are
terminated when ‖𝑔

𝑘
‖ ≤ 10−5. We also force stopped the

routines if the iterations exceeded 1000 or the number of
function evaluations reached 2000. In the Wolfe-Powell line
search conditions (23) and (24), the parameters are 𝛿 = 10−4,
𝜎 = 10−1. For DL method, 𝑡 = 0.1, which is the same with
[25]. We also test WYLDL algorithm with 𝑡 = 0.1 which is
the best choice.

The comparing data contain the iterations, function and
gradient evaluations, and CPU time. To approximatively
assess the performance of WYLDL, WYL and DL methods,
we use the profile of Dolan and Moré [28] as an evaluated
tool.

Dolan and Moré [28] gave a new tool to analyze the
efficiency of algorithms. They introduced the notion of a
performance profile as a means to evaluate and compare the
performance of the set of solvers 𝑆 on a test set 𝑃. Assuming
that there exist 𝑛

𝑠
solvers and 𝑛

𝑝
problems, for each problem

𝑝 and solver 𝑠, they defined that
𝑡
𝑝,𝑠

= computing cost (iterations or function and gradient
evaluations or CPU time) is required to solve problem 𝑝 by
solver 𝑠.

Requiring a baseline for comparisons, they compared
the performance on problem 𝑝 by solver 𝑠 with the best
performance by any solver on this problem; that is, using the
performance ratio as follows:

𝑟
𝑝,𝑠

=
𝑡
𝑝,𝑠

min {𝑡
𝑝,𝑠

: 𝑠 ∈ 𝑆}
. (63)

Suppose that a parameter𝑀 ≥ 𝑟
𝑝,𝑠

for all𝑝, 𝑠. Set 𝑟
𝑝,𝑠

= 𝑀
if and only if solver 𝑠 does not solve problem 𝑝. Then they
defined

𝜌
𝑠
(𝜏) =

1

𝑛
𝑝

size {𝑝 ∈ 𝑃 : 𝑟
𝑝,𝑠

≤ 𝜏} , (64)

thus 𝜌
𝑠
(𝜏) is the probability for solver 𝑠 that a performance

ratio 𝑟
𝑝,𝑠

is within a factor 𝜏 ≥ 1 of the best possible ratio.
Then function 𝜌

𝑠
is the distribution function for the perfor-

mance ratio. The performance profile 𝜌
𝑠
is a nondecreasing,

piecewise constant function.That is, for subset of themethods
being analyzed, we plot the fraction 𝑃 of the problems for
which any given method is within a factor 𝜏 of the best.

For the testing problems, if all three methods cannot
terminate successfully, then we got rid of them. In case one
method fails, but there are other methods that terminate
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Figure 1: Performance profiles based on iterations.
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Figure 2: Performance profiles based on function and gradient
evaluations.

successfully, then the performance ratio of the failed method
is set to be𝑀 (𝑀 are the maxima of the performance ratios).
The performance profiles based on iterations, function and
gradient evaluations, and CPU-time of the three methods are
plotted in Figures 1, 2, and 3, respectively.

From Figure 1, which plots the performance profile based
on iterations, when 𝜏 = 1, the DL method performs better
than WYL and WYLDL methods. With the increasing of 𝜏,
when 𝜏 ≥ 2.2, the profiles of WYLDL and WYL methods
outperform DL method. This means that, from the iteration
point of view, for a subset of problems, DL method is better
than WYL and WYLDL methods. But, for all the testing
problems, WYLDL method is more robust than DL method.
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Figure 3: Performance profiles based on CPU time.

From Figure 2, which plots the performance profile based
on function and gradient evaluations, it can be seen that
for 𝜏 < 2, DL method performs better than WYL and
WYLDL methods. Comparing with Figure 1, the difference
of these methods is much less than the iterations’ profile.
One of the possible reason is as follows: for WYLDL and
WYL methods, the average times of function and gradient
evaluations required during the iterations are less than DL
method. From this point of view, the CPU time consumed by
WYLDL or WYL methods should be less than DL method,
since the CPU time is mainly dependent on function and
gradient evaluations. Figure 3 validates this phenomenon.
From Figures 1 to 3, it is easy to see that the performances
of WYL method and WYLDL method are quite similar. The
possible reason I thank is that the second part of 𝛽WYLDL

𝑘
: −

𝑡(𝑔𝑇
𝑘
𝑠
𝑘−1

/𝑑𝑇
𝑘−1

𝑦
𝑘−1

), 𝑡 = 0.1 is very small compared with
𝛽WYL
𝑘

. One of the reasons may be relevant to the Wolfe line
search. Since the line search used in this paper is based on
Lemarechal [29], Fletcher [30], or More and Thuente’s [31]
strategy, this may make the directional derivative |𝑔𝑇

𝑘
𝑑
𝑘−1

|
very small.
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