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Let 𝑓 be a normalized biholomorphic mapping on the Euclidean unit ball B𝑛 in C𝑛 and let 𝛼 ∈ (0, 1). In this paper, we will show
that if 𝑓 is strongly starlike of order 𝛼 in the sense of Liczberski and Starkov, then it is also strongly starlike of order 𝛼 in the sense of
Kohr and Liczberski. We also give an example which shows that the converse of the above result does not hold in dimension 𝑛 ≥ 2.

1. Introduction and Preliminaries

Let C𝑛 denote the space of 𝑛 complex variables 𝑧 =
(𝑧
1
, . . . , 𝑧

𝑛
) with the Euclidean inner product ⟨𝑧, 𝑤⟩ =

∑
𝑛

𝑗=1
𝑧
𝑗
𝑤
𝑗
and the norm ‖ 𝑧 ‖= ⟨𝑧, 𝑧⟩1/2. The open unit ball

{𝑧 ∈ C𝑛 : ‖𝑧‖ < 1} is denoted by B𝑛. In the case of one
complex variable, B1 is denoted by 𝑈.

IfΩ is a domain inC𝑛, let𝐻(Ω) be the set of holomorphic
mappings fromΩ toC𝑛. IfΩ is a domain inC𝑛 which contains
the origin and 𝑓 ∈ 𝐻(Ω), we say that 𝑓 is normalized if
𝑓(0) = 0 and𝐷𝑓(0) = 𝐼

𝑛
, where 𝐼

𝑛
is the identity matrix.

A normalized mapping 𝑓 ∈ 𝐻(B𝑛) is said to be starlike if
𝑓 is biholomorphic on B𝑛 and 𝑡𝑓(B𝑛) ⊂ 𝑓(B𝑛) for 𝑡 ∈ [0, 1],
where the last condition says that the image𝑓(B𝑛) is a starlike
domain with respect to the origin. For a normalized locally
biholomorphic mapping 𝑓 on B𝑛, 𝑓 is starlike if and only if

R ⟨[𝐷𝑓 (𝑧)]
−1

𝑓 (𝑧) , 𝑧⟩ > 0, 𝑧 ∈ B
𝑛 \ {0} (1)

(see [1–4] and the references therein, cf. [5]).
Let 𝛼 ∈ (0, 1]. A function 𝑓 ∈ 𝐻(𝑈), normalized by

𝑓(0) = 0 and 𝑓(0) = 1, is said to be strongly starlike of order
𝛼 if


arg

𝑧𝑓 (𝑧)

𝑓 (𝑧)


< 𝛼

𝜋

2
, 𝑧 ∈ 𝑈. (2)

If 𝑓 is strongly starlike of order 𝛼, then 𝑓 is also starlike
and thus univalent on 𝑈. Stankiewicz [6] proved that if 𝛼 ∈
(0, 1), then a domain Ω ̸=C which contains the origin is 𝛼-
accessible if and only if Ω = 𝑓(𝑈), where 𝑈 is the unit disc
in C and 𝑓 is a strongly starlike function of order 1 − 𝛼 on
𝑈. For strongly starlike functions on𝑈, see also Brannan and
Kirwan [7], Ma and Minda [8], and Sugawa [9].

Kohr and Liczberski [10] introduced the following defini-
tion of strongly starlike mappings of order 𝛼 on B𝑛.

Definition 1. Let 0 < 𝛼 ≤ 1. A normalized locally
biholomorphic mapping 𝑓 ∈ 𝐻(B𝑛) is said to be strongly
starlike of order 𝛼 if

arg ⟨[𝐷𝑓 (𝑧)]
−1

𝑓 (𝑧) , 𝑧⟩
 < 𝛼

𝜋

2
, 𝑧 ∈ B

𝑛 \ {0} . (3)

Obviously, if 𝑓 is strongly starlike of order 𝛼, then 𝑓 is
also starlike, and if 𝛼 = 1 in (3), one obtains the usual notion
of starlikeness on the unit ball B𝑛.

Using this definition, Hamada and Honda [11], Hamada
and Kohr [12], Liczberski [13], and Liu and Li [14] obtained
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various results for strongly starlike mappings of order 𝛼 in
several complex variables.

Recently, Liczberski and Starkov [15] gave another defini-
tion of strongly starlikemappings of order 𝛼 on the Euclidean
unit ball B𝑛 in C𝑛, where 𝛼 ∈ (0, 1], and proved that
a normalized biholomorphic mapping 𝑓 on B𝑛 is strongly
starlike of order 1 − 𝛼 if and only if 𝑓(B𝑛) is an 𝛼-accessible
domain in C𝑛 for 𝛼 ∈ (0, 1). Their definition is as follows.

Definition 2. Let 0 < 𝛼 ≤ 1. A normalized locally
biholomorphic mapping 𝑓 ∈ 𝐻(B𝑛) is said to be strongly
starlike of order 𝛼 (in the sense of Liczberski and Starkov)
if

R ⟨[𝐷𝑓 (𝑧)]
−1

𝑓 (𝑧) , 𝑧⟩

≥

([𝐷𝑓 (𝑧)]

−1

)
∗

𝑧

⋅
𝑓 (𝑧)

 sin((1 − 𝛼)
𝜋

2
) ,

𝑧 ∈ B
𝑛 \ {0} .

(4)

In the case 𝑛 = 1, it is obvious that both notions of strong
starlikeness of order 𝛼 are equivalent. Thus, the following
natural question arises in dimension 𝑛 ≥ 2.

Question 1. Let 𝛼 ∈ (0, 1). Is there any relation between the
above two definitions of strong starlikeness of order 𝛼?

Let 𝑓 be a normalized biholomorphic mapping on the
Euclidean unit ball B𝑛 in C𝑛 and let 𝛼 ∈ (0, 1). In this paper,
wewill show that if𝑓 is strongly starlike of order𝛼 in the sense
ofDefinition 2, then it is also strongly starlike of order𝛼 in the
sense of Definition 1. As a corollary, the results obtained in
[11–14] for strongly starlike mappings of order 𝛼 in the sense
of Definition 1 also hold for strongly starlike mappings of
order 𝛼 in the sense of Definition 2. We also give an example
which shows that the converse of the above result does not
hold in dimension 𝑛 ≥ 2.

2. Main Results

Let ∠(𝑎, 𝑏) denote the angle between 𝑎, 𝑏 ∈ C𝑛 \ {0} regarding
𝑎, 𝑏 as real vectors in R2𝑛.

Lemma 3. Let 𝑎, 𝑏 ∈ C𝑛 \ {0} be such that ⟨𝑎, 𝑏⟩ ̸= 0. If
| arg⟨𝑎, 𝑏⟩| ≤ 𝜋 and 0 ≤ ∠(𝑎, 𝑏) < 𝜋/2, then

arg ⟨𝑎, 𝑏⟩
 ≤ ∠ (𝑎, 𝑏) . (5)

Proof. Let 𝜃 = arg⟨𝑎, 𝑏⟩, 𝜑 = ∠(𝑎, 𝑏). Then we have ⟨𝑎, 𝑏⟩ =
𝑟𝑒𝑖𝜃 for some 𝑟 ≥ 0 and

R ⟨𝑎, 𝑏⟩ = ‖𝑎‖ ⋅ ‖𝑏‖ cos𝜑 = 𝑟 cos 𝜃. (6)

Since cos𝜑 > 0 and 𝑟 = |⟨𝑎, 𝑏⟩| ≤ ‖𝑎‖ ⋅ ‖𝑏‖, we have

cos𝜑 ≤ cos 𝜃. (7)

Therefore, we have |𝜃| ≤ 𝜑, as desired.

Theorem 4. Let 𝑓 be a normalized biholomorphic mapping
on the Euclidean unit ball B𝑛 in C𝑛 and let 𝛼 ∈ (0, 1). If 𝑓 is

strongly starlike of order 𝛼 in the sense of Definition 2, then it
is also strongly starlike of order 𝛼 in the sense of Definition 1.

Proof. Assume that 𝑓 is strongly starlike of order 𝛼
in the sense of Definition 2. Then by (4), we have
⟨[𝐷𝑓(𝑧)]−1𝑓(𝑧), 𝑧⟩ ̸= 0 and

∠ (([𝐷𝑓 (𝑧)]
−1

)
∗

𝑧, 𝑓 (𝑧)) ≤ 𝛼
𝜋

2
, 𝑧 ∈ B

𝑛 \ {0} . (8)

Using Lemma 3, we have

arg ⟨[𝐷𝑓 (𝑧)]
−1

𝑓 (𝑧) , 𝑧⟩
 =


arg⟨𝑓 (𝑧) , ([𝐷𝑓 (𝑧)]−1)

∗

𝑧⟩


≤ ∠ (([𝐷𝑓 (𝑧)]
−1

)
∗

𝑧, 𝑓 (𝑧))

≤ 𝛼
𝜋

2
, 𝑧 ∈ B

𝑛 \ {0} .

(9)

For fixed 𝑧 ∈ B𝑛 \ {0}, let 𝑤 = 𝑧/‖𝑧‖ and

𝑝 (𝜁) =
{
{
{

1

𝜁
⟨[𝐷𝑓 (𝜁𝑤)]

−1

𝑓 (𝜁𝑤) , 𝑤⟩ , for 𝜁 ∈ 𝑈 \ {0} ,

1, for 𝜁 = 0.

(10)

Then 𝑝 is a holomorphic function on 𝑈 with | arg𝑝(𝜁)| ≤
𝜋𝛼/2 for 𝜁 ∈ 𝑈. Since arg𝑝 is a harmonic function on 𝑈
and arg 𝑝(0) = 0, by applying the maximum and minimum
principles for harmonic functions, we obtain | arg𝑝(𝜁)| <
𝜋𝛼/2 for 𝜁 ∈ 𝑈. Thus, we have

arg ⟨[𝐷𝑓 (𝑧)]
−1

𝑓 (𝑧) , 𝑧⟩
 < 𝛼

𝜋

2
, 𝑧 ∈ B

𝑛 \ {0} . (11)

Hence 𝑓 is strongly starlike of order 𝛼 in the sense of
Definition 1, as desired.

The following example shows that the converse of the
above theorem does not hold in dimension 𝑛 ≥ 2.

Example 5. For 𝛼 ∈ (0, 1), let

𝑓 (𝑧) = 𝑓
𝛼
(𝑧) = (𝑧

1
+ 𝑏𝑧2
2
, 𝑧
2
) , 𝑧 = (𝑧

1
, 𝑧
2
) ∈ B
2, (12)

where

𝑏 =
3√3

2
sin(𝛼𝜋

2
) . (13)

Then

𝐷𝑓 (𝑧) = [
1 2𝑏𝑧

2

0 1
] , [𝐷𝑓 (𝑧)]

−1

= [
1 −2𝑏𝑧

2

0 1
] . (14)

Therefore,

⟨[𝐷𝑓 (𝑧)]
−1

𝑓 (𝑧) , 𝑧⟩ = (𝑧
1
+ 𝑏𝑧2
2
− 2𝑏𝑧2
2
) 𝑧
1

+
𝑧2


2

=
𝑧1


2

+
𝑧2


2

− 𝑏𝑧
1
𝑧2
2
.

(15)
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Since |𝑧
1
𝑧2
2
| ≤ 2/(3√3), for 𝑧 ∈ 𝜕B2, we obtain that

|𝑏𝑧
1
𝑧2
2
| ≤ sin(𝛼𝜋/2)‖𝑧‖3 for 𝑧 ∈ B2. This implies that

⟨[𝐷𝑓(𝑧)]−1𝑓(𝑧), 𝑧⟩ lies in the disc of center ‖𝑧‖2 and radius
sin(𝛼𝜋/2)‖𝑧‖2 for each 𝑧 ∈ B2 \ {0} and thus

arg ⟨[𝐷𝑓 (𝑧)]
−1

𝑓 (𝑧) , 𝑧⟩
 < 𝛼

𝜋

2
, 𝑧 ∈ B

2 \ {0} . (16)

Therefore, 𝑓 = 𝑓
𝛼
is strongly starlike of order 𝛼 in the sense

of Definition 1.
On the other hand,

([𝐷𝑓 (𝑧)]
−1

)
∗

𝑧 = (𝑧
1
, 𝑧
2
− 2𝑏𝑧

2
𝑧
1
) . (17)

So, for 𝑧0 = (1/√3,√2/√3), we have

⟨[𝐷𝑓 (𝑧0)]
−1

𝑓 (𝑧0) , 𝑧0⟩ = 1 − 𝑚,


([𝐷𝑓 (𝑧0)]

−1

)
∗

𝑧0


2

=
1

3
+
2

3
(1 − 3𝑚)

2,

𝑓 (𝑧
0)

2

=
1

3
(1 + 3𝑚)

2 +
2

3
,

sin((1 − 𝛼) 𝜋
2
) = √1 − 𝑚2,

(18)

where

𝑚 = sin(𝛼𝜋
2
) . (19)

Then, we obtain

([𝐷𝑓 (𝑧0)]

−1

)
∗

𝑧0


2𝑓 (𝑧
0)

2

sin2 ((1 − 𝛼) 𝜋
2
)

− (R⟨[𝐷𝑓 (𝑧0)]
−1

𝑓 (𝑧0) , 𝑧0⟩)
2

= (1 − 𝑚) {[
1

3
+
2

3
(1 − 3𝑚)

2] [
1

3
(1 + 3𝑚)

2 +
2

3
]

× (1 + 𝑚) − (1 − 𝑚) } .

(20)

Since

[
1

3
+
2

3
(1 − 3𝑚)

2] [
1

3
(1 + 3𝑚)

2 +
2

3
] (1 + 𝑚) − (1 − 𝑚)

(21)

is increasing on [1/3, 1] and positive for𝑚 = 1/3, we have

R⟨[𝐷𝑓 (𝑧0)]
−1

𝑓 (𝑧0) , 𝑧0⟩ <

([𝐷𝑓 (𝑧0)]

−1

)
∗

𝑧0


×
𝑓 (𝑧
0)
 sin((1 − 𝛼)

𝜋

2
)

(22)

for𝑚 ∈ [1/3, 1).
On the other hand, for �̃�0 = (𝑖/√3,√2/√3), we have

⟨[𝐷𝑓 (�̃�0)]
−1

𝑓 (�̃�0) , �̃�0⟩ = 1 + 𝑚𝑖,


([𝐷𝑓 (�̃�0)]

−1

)
∗

�̃�0


2

=
1

3
+
2

3
|1 − 3𝑚𝑖|

2 = 6𝑚2 + 1,

𝑓 (�̃�
0)

2

=
1

3
|𝑖 + 3𝑚|

2 +
2

3
= 3𝑚2 + 1.

(23)

Then, we obtain

([𝐷𝑓 (�̃�0)]

−1

)
∗

�̃�0


2𝑓 (�̃�
0)

2

sin2 ((1 − 𝛼) 𝜋
2
)

− (R⟨[𝐷𝑓 (�̃�0)]
−1

𝑓 (�̃�0) , �̃�0⟩)
2

= (6𝑚2 + 1) (3𝑚2 + 1) (1 − 𝑚2) − 1

= 𝑚2 (−18𝑚4 + 9𝑚2 + 8) .

(24)

Since −18𝑚4 + 9𝑚2 + 8 is positive for𝑚 ∈ [0, 1/3], we have

R⟨[𝐷𝑓 (�̃�0)]
−1

𝑓 (�̃�0) , �̃�0⟩ <

([𝐷𝑓 (�̃�0)]

−1

)
∗

�̃�0


×
𝑓 (�̃�
0)
 sin((1 − 𝛼)

𝜋

2
)

(25)

for𝑚 ∈ (0, 1/3].
Thus,𝑓 = 𝑓

𝛼
is not strongly starlike of order𝛼 in the sense

of Definition 2 for 𝛼 ∈ (0, 1).
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