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We study stochastic partial differential equations with singular drifts and with reflection, driven by space-time white noise with
nonconstant diffusion coefficients under periodic boundary conditions. The existence and uniqueness of invariant measures is
established under appropriate conditions. As a byproduct, the Hölder continuity of the solution is obtained. The strong Feller
property is also obtained. Moreover, we show large deviation principle.

1. Introduction

Stochastic partial differential equations (SPDEs in short) with
reflection can be used to model the evolution of random
interfaces near a hard wall. Nualart and Pardoux [1] and
Donati-Martin and Pardoux [2] introduced “reflection” to
prevent stochastic heat equations from becoming negative,
which could be viewed as an extension of one-dimensional
stochastic differential equations reflected at 0. Funaki and
Olla [3] considered fluctuations around the hydrodynamical
limit of a Ginzburg-Landau ∇𝜙 interface model on a wall.
When the interface touches the wall, it will be repulsed.They
proved that the fluctuations of a ∇𝜙 interface model near
a hard wall converge in law to the stationary solution of a
SPDE with reflection. They also showed that SPDEs with
reflection have natural and meaningful bases in statistical
mechanics, like entropic repulsion phenomena in Deuschel
and Giacomin [4] and in Lebowitz and Maes [5]. There
are also various models using SPDEs with reflection, such
as stochastic Cahn-Hilliard equations with reflection (see
da Prato and Zabczyk [6] and Debussche and Zambotti
[7]) and stochastic generalized porous media equations with
reflection (see Röckner et al. [8]).

In the case considered here, two reflections have been
added to our model (1), and it is believed that it is a natural
extension of one reflection. There are some works on this
topic recently; see [9–13].

Through introducing the drift 𝑢
−𝛼, Mueller [14] gave a

proof that solutions of SPDEs 𝑢
𝑡

= 𝑢
𝑥𝑥

+ 𝑔(𝑢)𝑊̇(𝑡, 𝑥),

where 𝑔(𝑢) is non-Lipschitz, do not blow up in finite time.
As a byproduct, it was proved that if 𝛼 > 3, this drift
forces solutions to stay positive with probability 1, and it was
believed that this result “may be of interest.”ThenMueller and
Pardoux [15] concentrated on the case when 0 < 𝛼 < 3 and
showed that the solutions hit 0 in finite time with positive
probability. Thus, the case 𝛼 = 3 is the critical case for 𝑢 to
hit zero and has been showed that it has essential relationship
with reflections; for details, see Mueller [14], Mueller and
Pardoux [15], and Zambotti [16, 17].

Inspired by these, our interest stays in studying SPDEs
which have double smooth reflecting walls ℎ1 and ℎ2 and two
singular drifts 𝑐

1

/(𝑢 − ℎ
1

)
𝛼 and 𝑐

2

/(ℎ
2

− 𝑢)
𝛼, for all 𝛼 > 0.

For the case 𝛼 = 3, it is a quite interesting topic and needs
more detailed studies. As an extension from one reflection
(see Zambotti [16, 17]) to two-reflection case, one interesting
problem is to find the explicit invariant probability measure
and then study the detailed hitting properties of the solutions
(see Dalang et al. [18]).

In this paper, we consider the following SPDEs:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
=
𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 𝑓 (𝑢 (𝑥, 𝑡))

+
𝑐
1

(𝑢 (𝑥, 𝑡) − ℎ
1

(𝑥))
𝛼

−
𝑐
2

(ℎ2 (𝑥) − 𝑢 (𝑥, 𝑡))
𝛼

+ 𝜎 (𝑢 (𝑥, 𝑡)) 𝑊̇ (𝑥, 𝑡) + 𝜂 (𝑥, 𝑡) − 𝜉 (𝑥, 𝑡) ;

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 264263, 13 pages
http://dx.doi.org/10.1155/2014/264263

http://dx.doi.org/10.1155/2014/264263


2 Abstract and Applied Analysis

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) ∈ 𝐶 (𝑆
1

) ;

ℎ
1

(𝑥) ≤ 𝑢 (𝑥, 𝑡) ≤ ℎ
2

(𝑥) , for (𝑥, 𝑡) ∈ 𝑄,
(1)

where 𝑄 := 𝑆
1

× R
+

, 𝛼 ≥ 0, 𝑐
1

> 0, 𝑐
2

> 0, 𝑆1 :=

R(mod2𝜋), or {𝑒𝑖𝜃; 𝜃 ∈ R} denotes a circular ring and the
random field 𝑊(𝑥, 𝑡) := 𝑊({𝑒

𝑖𝜃

; 0 ≤ 𝜃 ≤ 𝑥} × [0, 𝑡]) is a
regular Brownian sheet defined on a filtered probability space
(Ω, 𝑃,F; {F

𝑡

}
𝑡≥0

).The random forces 𝜉 and 𝜂 are added to (1)
to prevent the solution from leaving the interval [ℎ1, ℎ2].

We assume that the reflecting walls ℎ1(⋅), ℎ2(⋅) are con-
tinuous functions satisfying the following.

(H1) ℎ1(𝑥) < ℎ2(𝑥) for 𝑥 ∈ 𝑆1.

(H2) (𝜕2ℎ𝑖(𝑥)/𝜕𝑥2) ∈ 𝐿
2

(𝑆
1

), where 𝜕2/𝜕𝑥2 is interpreted
in a distributional sense.

We also assume that the coefficients 𝑓, 𝜎 : R → R

satisfy the following:

(F1) there exists 𝐿 > 0 such that

󵄨󵄨󵄨󵄨𝑓 (𝑧1) − 𝑓 (𝑧2)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝜎 (𝑧1) − 𝜎 (𝑧2)
󵄨󵄨󵄨󵄨

≤ 𝐿
󵄨󵄨󵄨󵄨𝑧1 − 𝑧2

󵄨󵄨󵄨󵄨 , 𝑧
1

, 𝑧
2

∈ R;
(2)

(F2) there exists 𝐶 > 0 such that

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 + |𝜎 (𝑧)| ≤ 𝐶 (1 + |𝑧|) , 𝑧 ∈ R. (3)

The initial condition 𝑢
0

(𝑥) satisfies the following:

(F3) 𝑢
0

(𝑥) ∈ 𝐶(𝑆
1

) satisfy ℎ1(𝑥) ≤ 𝑢
0

(𝑥) ≤ ℎ
2

(𝑥), for 𝑥 ∈
𝑆
1.

The following is the definition of a solution of a SPDEwith
two reflecting walls ℎ1(𝑥) and ℎ2(𝑥), 𝑥 ∈ 𝑆1.

Definition 1. A triplet (𝑢, 𝜂, 𝜉) is a solution to the SPDE (1) if

(i) 𝑢 = {𝑢(𝑥, 𝑡); (𝑥, 𝑡) ∈ 𝑄} is a continuous, adapted
random field (i.e., 𝑢(𝑥, 𝑡) is F

𝑡

-measurable ∀𝑡 ≥

0, 𝑥 ∈ 𝑆
1) satisfying ℎ1(𝑥) ≤ 𝑢(𝑥, 𝑡) ≤ ℎ2(𝑥) a.s.;

(ii) 𝜂(𝑑𝑥, 𝑑𝑡) and 𝜉(𝑑𝑥, 𝑑𝑡) are positive and adapted (i.e.,
𝜂(𝐵) and 𝜉(𝐵) are F

𝑡

-measurable if 𝐵 ⊂ 𝑆
1

× [0, 𝑡])
random measures on 𝑄 satisfying

𝜂 (𝑆
1

× [0, 𝑇]) < ∞, 𝜉 (𝑆
1

× [0, 𝑇]) < ∞, (4)

for 𝑇 > 0;

(iii) for all 𝑡 ≥ 0 and 𝜙 ∈ 𝐶∞

(𝑆
1

), one has

(𝑢 (𝑡) , 𝜙) − (𝑢
0

, 𝜙) − ∫

𝑡

0

(𝑢 (𝑠) , 𝜙
󸀠󸀠

) 𝑑𝑠

− ∫

𝑡

0

(𝑓 (𝑢 (𝑠)) , 𝜙) 𝑑𝑠

= ∫

𝑡

0

(
𝑐
1

(𝑢 (𝑠) − ℎ
1)

𝛼

−
𝑐
2

(ℎ2 − 𝑢 (𝑠))
𝛼

, 𝜙) 𝑑𝑠

+ ∫

𝑡

0

∫
𝑆

1

𝜙 (𝑥) 𝜎 (𝑢 (𝑥, 𝑠))𝑊 (𝑑𝑥, 𝑑𝑠)

+ ∫

𝑡

0

∫
𝑆

1

𝜙 (𝑥) 𝜂 (𝑑𝑥, 𝑑𝑠)

− ∫

𝑡

0

∫
𝑆

1

𝜙 (𝑥) 𝜉 (𝑑𝑥, 𝑑𝑠) , a.s.,

(5)

where (, ) denotes the inner product in 𝐿2(𝑆1) and 𝑢(𝑡)
denotes 𝑢(⋅, 𝑡);

(iv) we consider the following:

∫
𝑄

(𝑢 (𝑥, 𝑡) − ℎ
1

(𝑥)) 𝜂 (𝑑𝑥, 𝑑𝑡)

= ∫
𝑄

(ℎ
2

(𝑥) − 𝑢 (𝑥, 𝑡)) 𝜉 (𝑑𝑥, 𝑑𝑡) = 0.

(6)

For SPDEs without reflection, the existence and unique-
ness of invariant measures has been studied by many people;
see Sowers [19],Mueller [20], Peszat and Zabczyk [21], and da
Prato and Zabczyk [6]. For SPDEs with reflection, when the
diffusion coefficient 𝜎 is a constant, existence and uniqueness
of invariant measures was obtained by Zambotti [16] and
Otobe [10, 22], while the result was also obtained in [12]
for the SPDE with a nonlinear diffusion coefficient by using
coupling method. The strong Feller property of SPDEs has
been studied by several authors; see Peszat and Zabczyk [21]
and da Prato and Zabczyk [6]. The strong Feller property of
SPDEswith reflectionwas proved in Zhang [23] andYang and
Zhang [12]. Moreover, with regard to the large deviations for
the solution of the small noise perturbation of the equation,
there exists a large amount of literature; see Dembo and
Zeitouni [24] and references therein. For white noise-driven
SPDEs, Sowers [19] and Cerrai and Röckner [25] set up some
exponential estimates for proving large derivation principle.
For SPDEwith reflection, it ismore efficient through theweak
convergence approach; see Xu and Zhang [26] and, for the
detail of this approach, the readers are referred to [27, 28].

All of the results mentioned above are devoted to the case
of the Lipschitz coefficient. The purpose of this paper is to
deal with SPDEs with reflection and singular drifts (1). The
existence and uniqueness of the solution of (1) is established
in [11].We show in this paper the existence and uniqueness of
invariant measures and the strong Feller property, as well as
large deviation principle of (1). For the existence of invariant
measures, our approach is to use the Krylov-Bogolyubov
theorem. For the uniqueness, we adapted a coupling method
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used in [20]; also see [12]. The strong Feller property will
be obtained by introducing a sequence of approximating
solutions with the uniform strong Feller property and passing
to the limit; also see [23]. For large deviation principle, we
adopted weak convergence approach as in [26].

The rest of the paper is organized as follows. The exis-
tence and uniqueness of invariant measures and the Hölder
continuity will be solved in Section 2. Section 3 establishes
the strong Feller property. In Section 4, we deal with large
deviation principle.

2. Existence and Uniqueness of
Invariant Measures

In the beginning of this section, we present the Hölder
continuity of the solution of (1) which will be used in the
proof of the existence of invariant measures.

Consider the penalized problem as follows:

𝜕𝑢
𝜀,𝛿

𝜕𝑡
=
𝜕
2

𝑢
𝜀,𝛿

𝜕𝑥2
+ 𝑓 (𝑢

𝜀,𝛿

) + 𝜎 (𝑢
𝜀,𝛿

) ⋅ 𝑊̇ + 𝑓
𝜀,𝛿

(𝑢
𝜀,𝛿

) ;

𝑢
𝜀,𝛿

(𝑥, 0) = 𝑢
0

(𝑥) ∈ 𝐶 (𝑆
1

) ,

(7)

where

𝑓
𝜀,𝛿

(⋅) := (

arctan ([(⋅ − ℎ1 (𝑥)) ∧ 0]
2

)

𝛿

+
𝑐
1

[𝛿 + [(⋅ − ℎ1 (𝑥)) ∨ 0]
2

]
𝛼/2

)

−(

arctan ([(ℎ2 (𝑥) − ⋅) ∧ 0]
2

)

𝜀

+
𝑐
2

[𝜀 + [(ℎ2 (𝑥) − ⋅) ∨ 0]
2

]
𝛼/2

) ,

(8)

with 𝛿, 𝜀 > 0. Notice that 𝑓
𝜀,𝛿

is differentiable and 𝑓󸀠

𝜀,𝛿

≤ 0.
We need three lemmas before we present the regularity

result.

Lemma 2. Suppose the hypotheses (H1), (H2), and (F1)–(F3)
hold. For any 𝑝 ≥ 1 and 𝑇 > 0, there exists 󰜚 > 0 such that
sup

0<𝜀,𝛿<󰜚

E(‖𝑢𝜀,𝛿‖
𝑇

∞

)
𝑝

< ∞(‖𝜔‖
𝑇

∞

:= sup
𝑥∈𝑆

1
,𝑡∈[0,𝑇]

|𝜔(𝑥, 𝑡)|)

and 𝑢𝜀,𝛿 converges uniformly on 𝑆1 × [0, 𝑇] to 𝑢 as 𝜀, 𝛿 → 0

a.s., where 𝑢 and 𝑢𝜀,𝛿 are the solutions of (1) and the penalized
SPDEs (7), respectively.

Proof. Without loss of generality, assume 𝑐
1

= 𝑐
2

= 1. By (H1),
there exists 𝛿

0

∈ (0, 1) such that ℎ2(𝑥) − ℎ1(𝑥) ≥ 𝛿
0

, ∀𝑥 ∈ 𝑆
1.

Set 0 < 𝜀, 𝛿 < 𝛿2
0

/2.

Let V𝜀,𝛿 be the solution of equation

𝜕V𝜀,𝛿 (𝑥, 𝑡)
𝜕𝑡

=
𝜕
2V𝜀,𝛿 (𝑥, 𝑡)
𝜕𝑥2

+ 𝑓 (𝑢
𝜀,𝛿

(𝑥, 𝑡))

+ 𝜎 (𝑢
𝜀,𝛿

(𝑥, 𝑡)) 𝑊̇ (𝑥, 𝑡) ;

V𝜀,𝛿 (𝑥, 0) = 𝑢
0

(𝑥) .

(9)

Set Φ𝜀,𝛿

(𝑡) = sup
𝑠≤𝑡,𝑦∈𝑆

1(V𝜀,𝛿(𝑦, 𝑠) − (ℎ1(𝑦) + ℎ2(𝑦) − 𝛿
0

)/2).

Note thatΦ𝜀,𝛿

(𝑡) is increasing with respect to 𝑡 and V𝜀,𝛿(𝑥, 𝑡)−
Φ

𝜀,𝛿

(𝑡) ≤ (ℎ
1

(𝑥) + ℎ
2

(𝑥) − 𝛿
0

)/2. From analogue method as
the proof in Proposition 3.1 in [11], 𝑧𝜀,𝛿(𝑥, 𝑡) := V𝜀,𝛿(𝑥, 𝑡) −
Φ

𝜀,𝛿

(𝑡) − 𝑢
𝜀,𝛿

(𝑥, 𝑡) is a solution of equation

𝜕𝑧
𝜀,𝛿

𝜕𝑡
+
𝜕Φ

𝜀,𝛿

𝜕𝑡
=
𝜕
2

𝑧
𝜀,𝛿

𝜕𝑥2
− 𝑓

𝜀,𝛿

(𝑢
𝜀,𝛿

) ;

𝑧
𝜀,𝛿

(𝑥, 0) = 0.

(10)

Assume (𝑧𝜀,𝛿)+(𝑥, 𝑡) > 0; we have

0 < (𝑧
𝜀,𝛿

)
+

(𝑥, 𝑡) ⇐⇒

0 < V𝜀,𝛿 (𝑥, 𝑡) − Φ
𝜀,𝛿

(𝑡) − 𝑢
𝜀,𝛿

(𝑥, 𝑡)

≤ V𝜀,𝛿 (𝑥, 𝑡) − (V𝜀,𝛿 (𝑥, 𝑡) −
ℎ
1

(𝑥) + ℎ
2

(𝑥) − 𝛿
0

2
)

− 𝑢
𝜀,𝛿

(𝑥, 𝑡)

=
ℎ
1

(𝑥) + ℎ
2

(𝑥) − 𝛿
0

2
− 𝑢

𝜀,𝛿

(𝑥, 𝑡) ;

(11)

hence

𝑢
𝜀,𝛿

(𝑥, 𝑡) ≤ ℎ
2

(𝑥) . (12)

If (𝑧𝜀,𝛿)+(𝑥, 𝑡) > 0 and 𝑢𝜀,𝛿(𝑥, 𝑡) ≤ ℎ1(𝑥), then, by (12),

𝛿 + [(𝑢
𝜀,𝛿

(𝑥, 𝑡) − ℎ
1

(𝑥)) ∨ 0]
2

= 𝛿

≤ 𝜀 + 𝛿
2

0

≤ 𝜀 + [(ℎ
2

(𝑥) − 𝑢
𝜀,𝛿

(𝑥, 𝑡)) ∨ 0]
2

.

(13)
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On the other hand, if (𝑧𝜀,𝛿)+(𝑥, 𝑡) > 0 and 𝑢𝜀,𝛿(𝑥, 𝑡) > ℎ1(𝑥),
then, by (11) and (12),

𝜀 + [(ℎ
2

(𝑥) − 𝑢
𝜀,𝛿

(𝑥, 𝑡)) ∨ 0]
2

− (𝛿 + [(𝑢
𝜀,𝛿

(𝑥, 𝑡) − ℎ
1

(𝑥)) ∨ 0]
2

)

= 𝜀 − 𝛿 + [ℎ
2

(𝑥) − 𝑢
𝜀,𝛿

(𝑥, 𝑡)]
2

− [𝑢
𝜀,𝛿

(𝑥, 𝑡) − ℎ
1

(𝑥)]
2

= 𝜀 − 𝛿 + [ℎ
2

(𝑥) − ℎ
1

(𝑥)]

× [ℎ
2

(𝑥) + ℎ
1

(𝑥) − 2𝑢
𝜀,𝛿

(𝑥, 𝑡)]

≥ 𝜀 − 𝛿 + 𝛿
2

0

≥
𝛿
2

0

2
.

(14)

Hence combining (13) and (14), (𝑧𝜀,𝛿)+(𝑥, 𝑡) > 0 implies

𝛿 + [(𝑢
𝜀,𝛿

(𝑥, 𝑡) − ℎ
1

(𝑥)) ∨ 0]
2

≤ 𝜀 + [(ℎ
2

(𝑥) − 𝑢
𝜀,𝛿

(𝑥, 𝑡)) ∨ 0]
2

.

(15)

By (12) and (15), multiplying (10) by (𝑧𝜀,𝛿)+, we have

arctan ([(ℎ2 (𝑥) − 𝑢𝜀,𝛿 (𝑥, 𝑡)) ∧ 0]
2

)

𝜀
(𝑧

𝜀,𝛿

)
+

(𝑥, 𝑡) 𝑑𝑡 = 0,

[

[

1

[𝛿 + [(𝑢𝜀,𝛿 (𝑥, 𝑡) − ℎ
1

(𝑥)) ∨ 0]
2

]
𝛼/2

−
1

[𝜀 + [(ℎ2 (𝑥) − 𝑢
𝜀,𝛿

(𝑥, 𝑡)) ∨ 0]
2

]
𝛼/2

]

]

× (𝑧
𝜀,𝛿

)
+

(𝑥, 𝑡) 𝑑𝑡 ≥ 0.

(16)

Combining the fact that Φ𝜀,𝛿

(𝑡) is increasing with respect to
𝑡, we have (𝑧𝜀,𝛿)+ = 0. Hence

𝑢
𝜀,𝛿

(𝑥, 𝑡) ≥ V𝜀,𝛿 (𝑥, 𝑡) − Φ
𝜀,𝛿

(𝑥, 𝑡) . (17)

Similarly, setting 𝑧
𝜀,𝛿

(𝑥, 𝑡) = 𝑢
𝜀,𝛿

(𝑥, 𝑡) − V𝜀,𝛿(𝑥, 𝑡) −
sup

𝑠≤𝑡,𝑦∈𝑆

1((ℎ
1

(𝑦) + ℎ
2

(𝑦) − 𝛿
0

)/2 − V𝜀,𝛿(𝑦, 𝑠)), we can show
that

𝑢
𝜀,𝛿

(𝑥, 𝑡) ≤ V𝜀,𝛿 (𝑥, 𝑡)

+ sup
𝑠≤𝑡,𝑦∈𝑆

1

(
ℎ
1

(𝑦) + ℎ
2

(𝑦) − 𝛿
0

2
− V𝜀,𝛿 (𝑦, 𝑠)) .

(18)

Using a similar proof in Donati-Martin and Pardoux [2],
it can be shown that sup

𝜀,𝛿

E(‖V𝜀,𝛿‖
𝑇

∞

)
𝑝

< ∞; hence the
inequalities (17) and (18) imply

sup
𝜀,𝛿

E(
󵄩󵄩󵄩󵄩󵄩
𝑢
𝜀,𝛿

󵄩󵄩󵄩󵄩󵄩

𝑇

∞

)

𝑝

< ∞. (19)

Since 𝑢𝜀,𝛿 is increasing as 𝛿 ↓ 0 by the comparison theorem of
SPDEs (seeTheorem 2.1 in [2]), we can show 𝑢

𝜀

:= lim
𝛿↓0

𝑢
𝜀,𝛿

exists a.s. and 𝑢𝜀 solves

𝜕𝑢
𝜀

(𝑥, 𝑡)

𝜕𝑡
=
𝜕
2

𝑢
𝜀

(𝑥, 𝑡)

𝜕𝑥2
+ 𝑓 (𝑢

𝜀

(𝑥, 𝑡))

+ 𝜎 (𝑢
𝜀

(𝑥, 𝑡)) 𝑊̇ (𝑥, 𝑡)

+ (𝜂
𝜀

(𝑥, 𝑡) +
1

(𝑢𝜀 (𝑥, 𝑡) − ℎ
1

(𝑥))
𝛼

)

−(

arctan ([(ℎ2 (𝑥) − 𝑢𝜀 (𝑥, 𝑡)) ∧ 0]
2

)

𝜀

+
1

[𝜀 + [(ℎ2 (𝑥) − 𝑢
𝜀

(𝑥, 𝑡)) ∨ 0]
2

]
𝛼/2

);

𝑢
𝜀

(𝑥, 0) = 𝑢
0

(𝑥) ,

(20)

where 𝜂𝜀(𝑑𝑥, 𝑑𝑡) := lim
𝛿↓0

((𝑢
𝜀,𝛿

(𝑥, 𝑡) − ℎ
1

(𝑥))
+

/𝛿)𝑑𝑥 𝑑𝑡.
By Lemma 3.1 and Remark 3.1 of [11], we know that 𝑢𝜀 is
decreasing as 𝜀 ↓ 0. Let V𝜀 be the solution of (9) replacing 𝑢𝜀,𝛿
by 𝑢𝜀. Setting 𝑧𝜀(𝑥, 𝑡) = 𝑢𝜀(𝑥, 𝑡)−V𝜀(𝑥, 𝑡)−sup

𝑠≤𝑡,𝑦∈𝑆

1((ℎ
1

(𝑦)+

ℎ
2

(𝑦) − 𝛿
0

)/2 − V𝜀(𝑦, 𝑠)), similar to (18), we can show

𝑢
𝜀

(𝑥, 𝑡) ≤ V𝜀 (𝑥, 𝑡)

+ sup
𝑠≤𝑡,𝑦∈𝑆

1

(
ℎ
1

(𝑦) + ℎ
2

(𝑦) − 𝛿
0

2
− V𝜀 (𝑦, 𝑠)) .

(21)

In addition, by the fact that 𝑢𝜀(𝑥, 𝑡) ≥ ℎ1(𝑥), 𝑢 := lim
𝜀↓0

𝑢
𝜀

=

lim
𝜀↓0

lim
𝛿↓0

𝑢
𝜀,𝛿 exists a.s., and we can show 𝑢 is the solution

of (1); see [11].
The continuity of 𝑢 can be proved similarly as inTheorem

4.1 of [2]. The uniform convergence of 𝑢𝜀,𝛿 with respect to
(𝑥, 𝑡) follows from Dini’s theorem.

Recall the following lemma from [29].

Lemma 3. Let 𝑆 ∈ 𝐶𝛼,𝛽

(𝑆
1

× [0, 𝑇]) satisfying

󵄨󵄨󵄨󵄨𝑆 (𝑥, 𝑡) − 𝑆 (𝑦, 𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝑆

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝛼

+ |𝑡 − 𝑠|
𝛽

) . (22)
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Then, for 𝜌
1

, 𝜌
2

> 0, there exists 𝑆𝜌1 ,𝜌2 ∈ 𝐶∞

(𝑆
1

× [0, 𝑇]) such
that

󵄩󵄩󵄩󵄩𝑆
𝜌

1
,𝜌

2 − 𝑆
󵄩󵄩󵄩󵄩

𝑇

∞

≤ 𝐶
𝛼,𝛽

𝐶
𝑆

(𝜌
𝛼

1

+ 𝜌
𝛽

2

) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑆
𝜌

1
,𝜌

2

𝜕𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤ 𝐶
𝛼,𝛽

𝐶
𝑆

𝜌
𝛼−1

1

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑆
𝜌

1
,𝜌

2

𝜕𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤ 𝐶
𝛼,𝛽

𝐶
𝑆

𝜌
𝛽−1

2

,

(23)

where 𝐶
𝑆

, 𝐶
𝛼,𝛽

are constants only depending on 𝑆 and 𝛼, 𝛽,
respectively.

The following result is stated in [29].

Lemma 4. Let 𝑉 ∈ 𝐶
1,2

(𝑆
1

× [0, 𝑇]) andΨ, 𝐹 ∈ 𝐶(𝑆1 × [0, 𝑇])
with Ψ ≤ 0; 𝑉 solves the equation with the homogeneous
Dirichlet or Neumann boundary as follows:

𝜕𝑉

𝜕𝑡
=
𝜕
2

𝑉

𝜕𝑥2
+ Ψ𝑉 + Ψ𝐹;

𝑉 (𝑥, 0) = 0;

(24)

then ‖𝑉‖𝑇
∞

≤ ‖𝐹‖
𝑇

∞

.

Theorem 5. Let 𝑢 be the solution of (1). Denote

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − ∫
𝑆

1

𝐺
𝑡

(𝑥, 𝑦) 𝑢
0

(𝑦) 𝑑𝑦. (25)

Here 𝐺
𝑡

(𝑥, 𝑦) is the fundamental solution of the heat equation
on 𝑆1. Then, for any 𝜗 ∈ (0, 1), there exists a finite random
variable 𝛾

𝜗

, which is independent of 𝑢
0

(𝑥), such that, for 𝑥, 𝑦 ∈
𝑆
1

, 𝑡, 𝑠 ∈ [0, 𝑇],

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢 (𝑦, 𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝛾𝜗 (

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝜗/2

+ |𝑡 − 𝑠|
𝜗/4

) , (26)

and, for any 𝑝 ≥ 1,

E𝛾
𝑝

𝜗

< ∞. (27)

Moreover, if 𝑢
0

∈ 𝐶
𝛽

(𝑆
1

), 𝛽 ∈ (0, 1/2), then, for 0 < 𝜛 <

𝛽, there exists a finite random variable 𝛾𝜛
𝑢

, which is dependent
on 𝑢

0

(𝑥), such that

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢 (𝑦, 𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝛾

𝜛

𝑢

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝜛

+ |𝑡 − 𝑠|
𝜛/2

) , (28)

for 𝑥, 𝑦 ∈ 𝑆1, 𝑡, 𝑠 ∈ [0, 𝑇], and for any 𝑝 ≥ 1,

E[𝛾
𝜛

𝑢

]
𝑝

< ∞. (29)

Note.𝐶𝛽

(𝑆
1

) denote the space ofHölder continuous functions
on 𝑆1 with Hölder exponent 𝛽, equipped with the norm

‖𝑢‖
𝛽

:= sup
𝑥∈𝑆

1

|𝑢 (𝑥)| + sup
𝑥,𝑦∈𝑆

1
;𝑥 ̸= 𝑦

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝛽

. (30)

Proof. The scheme of verifying inequality (26) is similar to
that in [29]. For reader’s convenience, we write the proof in
detail.

Define the stochastic convolution as follows:

𝑆
𝜀,𝛿

𝑡

(𝑥) := ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝑓 (𝑢
𝜀,𝛿

(𝑦, 𝑠)) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝜎 (𝑢
𝜀,𝛿

(𝑦, 𝑠))𝑊 (𝑑𝑦, 𝑑𝑠) .

(31)

Here 𝑢𝜀,𝛿 is the solution of (7).
By Lemma 2 and using similar arguments as Lemma 2.1

of [29], we have that, for any 𝜗 ∈ (0, 1), there exists a random
variable 𝐶

𝜀,𝛿

such that, for any 𝑠, 𝑡 ∈ [0, 𝑇], 𝑥, 𝑦 ∈ 𝑆1,
󵄨󵄨󵄨󵄨󵄨
𝑆
𝜀,𝛿

𝑡

(𝑥) − 𝑆
𝜀,𝛿

𝑠

(𝑦)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

𝜀,𝛿

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝜗/2

+ |𝑡 − 𝑠|
𝜗/4

) , (32)

and for any 𝑝 ≥ 1

sup
𝜀,𝛿

E(𝐶
𝜀,𝛿

)
𝑝

< ∞. (33)

Let 𝑢𝜀,𝛿(𝑥, 𝑡) = 𝑢𝜀,𝛿(𝑥, 𝑡)−∫
𝑆

1
𝐺
𝑡

(𝑥, 𝑦)𝑢
0

(𝑦)𝑑𝑦, and resolve
𝑢
𝜀,𝛿 into determine part and stochastic part; that is,

𝑢
𝜀,𝛿

(𝑥, 𝑡) = 𝑧
𝑆

𝜀,𝛿

(𝑥, 𝑡) + 𝑆
𝜀,𝛿

𝑡

(𝑥) , (34)

where 𝑧𝑆
𝜀,𝛿

is the unique solution of the following PDE:

𝜕𝑧
𝑆

𝜀,𝛿

𝜕𝑡
=
𝜕
2

𝑧
𝑆

𝜀,𝛿

𝜕𝑥2
+ 𝑓

𝜀,𝛿

(𝑧
𝑆

𝜀,𝛿

+ 𝑆
𝜀,𝛿

) ;

𝑧
𝑆

𝜀,𝛿

(𝑥, 0) = 0,

(35)

and 𝑆
𝜀,𝛿 is defined in (31), 𝑓

𝜀,𝛿

(⋅) = 𝑓
𝜀,𝛿

(⋅ + ∫
𝑆

1
𝐺
𝑡

(𝑥, 𝑦)

𝑢
0

(𝑦)𝑑𝑦). Let 𝑆𝜌1 ,𝜌2 ∈ 𝐶∞

(𝑆
1

×[0, 𝑇]), which depends on𝜌
1

, 𝜌
2

and will be determined later. Denote 𝑧𝑆
𝜌1,𝜌2 by the unique

solution of (35) replacing 𝑆𝜀,𝛿 by 𝑆𝜌1 ,𝜌2 .
As similar proof in Proposition 3.1 in [11], we obtain

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑆

𝜀,𝛿

− 𝑧
𝑆

𝜌1,𝜌2 󵄩󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤
󵄩󵄩󵄩󵄩󵄩
𝑆
𝜀,𝛿

− 𝑆
𝜌

1
,𝜌

2
󵄩󵄩󵄩󵄩󵄩

𝑇

∞

. (36)

Also, Lemma 2 implies that
󵄩󵄩󵄩󵄩󵄩
𝑆
𝜀,𝛿

− 𝑆
𝜌

1
,𝜌

2
󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤ 𝐶
𝜗/2

𝐶
𝜀,𝛿

(𝜌
1

𝜗/2

+ 𝜌
2

𝜗/4

) . (37)

And so
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑆

− 𝑧
𝑆

𝜌1,𝜌2 󵄩󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤ 𝐶
𝜗/2

𝐶
𝜀,𝛿

(𝜌
1

𝜗/2

+ 𝜌
2

𝜗/4

) . (38)

Differentiating 𝑧 in (35), 𝑧̃(:= 𝜕
𝑥

𝑧
𝑆

𝜌1,𝜌2

) and 𝑧(:= 𝜕
𝑡

𝑧
𝑆

𝜌1,𝜌2

)

satisfy, respectively,

𝜕𝑧̃

𝜕𝑡
=
𝜕
2

𝑧̃

𝜕𝑥2
+ 𝑓

󸀠

𝜀,𝛿

(𝑧
𝑆

𝜌1,𝜌2

+ 𝑆
𝜌

1
,𝜌

2) ⋅ (𝑧̃ + 𝜕
𝑥

𝑆
𝜌

1
,𝜌

2) ;

𝑧̃ (𝑥, 0) = 0,

𝜕𝑧

𝜕𝑡
=
𝜕
2

𝑧

𝜕𝑥2
+ 𝑓

󸀠

𝜀,𝛿

(𝑧
𝑆

𝜌1,𝜌2

+ 𝑆
𝜌

1
,𝜌

2) ⋅ (𝑧 + 𝜕
𝑡

𝑆
𝜌

1
,𝜌

2) ;

𝑧 (𝑥, 0) = 0.

(39)
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Therefore, from Lemmas 3 and 4, we get

‖𝑧̃‖
𝑇

∞

≤
󵄩󵄩󵄩󵄩𝜕𝑥𝑆

𝜌

1
,𝜌

2
󵄩󵄩󵄩󵄩

𝑇

∞

≤ 𝐶
𝜗/2

𝐶
𝜀,𝛿

⋅ 𝜌
1

𝜗/2−1

;

‖𝑧‖
𝑇

∞

≤
󵄩󵄩󵄩󵄩𝜕𝑡𝑆

𝜌

1
,𝜌

2
󵄩󵄩󵄩󵄩

𝑇

∞

≤ 𝐶
𝜗/2

𝐶
𝜀,𝛿

⋅ 𝜌
2

𝜗/4−1

.

(40)

In view of (34), (36), (38), and (40), one has
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜀,𝛿

(𝑥, 𝑡) − 𝑢
𝜀,𝛿

(𝑦, 𝑠)
󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨
𝑧
𝑆

𝜀,𝛿

(𝑥, 𝑡) − 𝑧
𝑆

𝜀,𝛿

(𝑦, 𝑠)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑆
𝜀,𝛿

𝑡

(𝑥) − 𝑆
𝜀,𝛿

𝑠

(𝑦)
󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨
𝑧
𝑆

𝜀,𝛿

(𝑥, 𝑡) − 𝑧
𝑆

𝜌1,𝜌2

(𝑥, 𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑧
𝑆

𝜌1,𝜌2

(𝑥, 𝑡) − 𝑧
𝑆

𝜌1,𝜌2

(𝑦, 𝑠)
󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑧
𝑆

𝜌1,𝜌2

(𝑦, 𝑠) − 𝑧
𝑆

𝜀,𝛿

(𝑦, 𝑠)
󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝐶
𝜀,𝛿

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝜗/2

+ |𝑡 − 𝑠|
𝜗/4

)

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑆
𝜀,𝛿

− 𝑆
𝜌

1
,𝜌

2
󵄩󵄩󵄩󵄩󵄩

𝑇

∞

+ ‖𝑧̃‖
𝑇

∞

⋅
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

+ ‖𝑧‖
𝑇

∞

⋅ |𝑡 − 𝑠| + 𝐶
𝜀,𝛿

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝜗/2

+ |𝑡 − 𝑠|
𝜗/4

)

≤ 2𝐶
𝜗/2

𝐶
𝜀,𝛿

(𝜌
1

𝜗/2

+ 𝜌
2

𝜗/4

)

+ 𝐶
𝜗/2

𝐶
𝜀,𝛿

(𝜌
1

𝜗/2−1

⋅
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 + 𝜌2
𝜗/4−1

⋅ |𝑡 − 𝑠|)

+ 𝐶
𝜀,𝛿

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝜗/2

+ |𝑡 − 𝑠|
𝛽/2

) .

(41)

Set 𝜌
1

:= |𝑥 − 𝑦| and 𝜌
2

:= |𝑡 − 𝑠|; then

󵄨󵄨󵄨󵄨󵄨
𝑢
𝜀,𝛿

(𝑥, 𝑡) − 𝑢
𝜀,𝛿

(𝑦, 𝑠)
󵄨󵄨󵄨󵄨󵄨
≤ 𝛾

𝜀,𝛿

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝜗/2

+ |𝑡 − 𝑠|
𝜗/4

) , (42)

where 𝛾
𝜀,𝛿

:= (3𝐶
𝜗/2

+ 1)𝐶
𝜀,𝛿

and, for 𝑝 ≥ 1, sup
𝜀,𝛿

E𝛾
𝑝

𝜀,𝛿

< ∞.
This yields, for 𝑝 ≥ 1,

sup
𝜀,𝛿

E
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜀,𝛿

(𝑥, 𝑡) − 𝑢
𝜀,𝛿

(𝑦, 𝑠)
󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶𝑀
𝑝

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

(𝜗/2)𝑝

+ |𝑡 − 𝑠|
(𝜗/4)𝑝

) .

(43)

By Lemma 2, we obtain from (43) that

E
󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢 (𝑦, 𝑠)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶
𝑝

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

(𝜗/2)𝑝

+ |𝑡 − 𝑠|
(𝜗/4)𝑝

) .

(44)

Applying a variant of Garsia’s lemma (see Proposition A.1
and Corollary A.3 in [30]), we conclude that

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢 (𝑦, 𝑠)
󵄨󵄨󵄨󵄨

≤ 𝐶
𝑝

(𝜔) (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝜗/2−4/𝑝

+ |𝑡 − 𝑠|
𝜗/4−2/𝑝

) .

(45)

Since 𝑝 can be chosen to be arbitrarily large and 𝜗 to be as
close to 1 as one wants, we have (26).

By Lemma 2.2 of [31], for any 0 < 𝜛 < 𝛽,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑆

1

𝐺
𝑡

(𝑥, 𝑦) 𝑢
0

(𝑦) 𝑑𝑦 − ∫
𝑆

1

𝐺
𝑡

(𝑧, 𝑦) 𝑢
0

(𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
𝜛

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝜛
(|𝑡 − 𝑠|

𝜛/2

+ |𝑥 − 𝑧|
𝜛

) ,

(46)

and combining (26), we have (28).
The proof is complete.

Denote by B(𝐶(𝑆
1

)) the 𝜎-field of all Borel subsets of
𝐶(𝑆

1

) and by M(𝐶(𝑆
1

)) the set of all probability measures
defined on (𝐶(𝑆

1

),B(𝐶(𝑆
1

))). We denote by 𝑢(𝑥, 𝑡, 𝑢
0

) the
solution of (1) and by 𝑃

𝑡

(𝑢
0

, ⋅) the corresponding transition
function

𝑃
𝑡

(𝑢
0

, Γ) = 𝑃 (𝑢 (⋅, 𝑡, 𝑢
0

) ∈ Γ) , Γ ∈B (𝐶 (𝑆
1

)) , 𝑡 > 0,

(47)

where 𝑢
0

is the initial condition. For 𝜇 ∈M(𝐶(𝑆
1

)), we set

𝑃
∗

𝑡

𝜇 (Γ) = ∫
𝐶(𝑆

1
)

𝑃
𝑡

(𝑥, Γ) 𝜇 (𝑑𝑥) , (48)

where 𝑡 ≥ 0, Γ ∈B(𝐶(𝑆
1

)).

Theorem 6. Suppose the hypotheses (H1), (H2), and (F1)–(F3)
hold.Then there exists an invariant measure to (1) on𝐶(𝑆1) for
all 𝛼 ≥ 0, 𝑐

1

> 0, and 𝑐
2

> 0.

Proof. According to the Krylov-Bogolyubov theorem (see
[6]), if there exists 𝑢

0

∈ 𝐶(𝑆
1

) such that the family
𝑃
𝑡

(𝑢
0

, ⋅), 𝑡 ≥ 1 is uniformly tight, then there exists an
invariant measure for (1). We need to show that for any 𝜀 > 0
there is a compact set 𝐾 ⊂ 𝐶(𝑆

1

) such that

𝑃 (𝑢 (𝑡) ∈ 𝐾) ≥ 1 − 𝜀, for any 𝑡 ≥ 1, (49)

where 𝑢(𝑡) = 𝑢(𝑡, 𝑢
0

) = 𝑢(⋅, 𝑡, 𝑢
0

). On the other hand, for any
𝑡 ≥ 1, we have by the Markov property

𝑃 (𝑢 (𝑡) ∈ 𝐾) = E (𝑃
1

(𝑢 (𝑡 − 1) , 𝐾)) . (50)

Thus it is enough to show 𝑃(𝑢(1, 𝑢(𝑡 − 1)) ∈ 𝐾) ≥ 1 − 𝜀,
for any 𝑡 ≥ 1. As ℎ1(⋅) ≤ 𝑢(𝑡 − 1)(⋅) ≤ ℎ2(⋅), it suffices to find
a compact subset 𝐾 ⊂ 𝐶(𝑆

1

) such that

𝑃
1

(𝑔, 𝐾) ≥ 1 − 𝜀, ∀𝑔 ∈ 𝐶 (𝑆
1

) with ℎ1 ≤ 𝑔 ≤ ℎ2. (51)

Put

𝑢 (𝑥, 𝑡, 𝑔) = 𝑢 (𝑥, 𝑡, 𝑔) − ∫
𝑆

1

𝐺
𝑡

(𝑥, 𝑦) 𝑔 (𝑦) 𝑑𝑦. (52)

Then (𝑢, 𝜂, 𝜉) solves a random obstacle problem.
Define

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝛽
= sup

{

{

{

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡) − 𝑓 (𝑦, 𝑠)
󵄨󵄨󵄨󵄨

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

2

+ (𝑡 − 𝑠)
2

)
1/2

:

(𝑥, 𝑡) , (𝑦, 𝑠) ∈ 𝑆
1

× [0, 1] , (𝑥, 𝑡) ̸= (𝑦, 𝑠)
}

}

}

.

(53)
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By the Arzela-Ascoli theorem, for all 𝑟 > 0, 𝐾
𝑟

:=

{𝑓; ‖𝑓‖
𝛽

≤ 𝑟} is a compact subset of 𝐶(𝑆1 × [0, 1]). In view
of (26), we see that, for given 𝜀 > 0, there exists 𝑟

0

such that

𝑃 (𝑢 (⋅, ⋅, 𝑔) ∈ 𝐾
𝑐

𝑟

0

) ≤ 𝜀, ∀𝑔 with ℎ1 ≤ 𝑔 ≤ ℎ2. (54)

Let 𝐾󸀠

= {𝜑(⋅, 1) : 𝜑(⋅, ⋅) ∈ 𝐾
𝑟

0

} which is a compact subset
in 𝐶(𝑆1); we obtain 𝑃(𝑢(⋅, 1, 𝑔) ∈ 𝐾󸀠

) ≥ 1 − 𝜀, for all 𝑔 with
ℎ
1

≤ 𝑔 ≤ ℎ
2.

Also, it is easy to see that there is a compact subset 𝐾
0

⊂

𝐶(𝑆
1

) such that

{∫
𝑆

1

𝐺
1

(𝑥, 𝑦) 𝑔 (𝑦) 𝑑𝑦; ℎ
1

≤ 𝑔 ≤ ℎ
2

} ⊂ 𝐾
0

. (55)

Define𝐾 = 𝐾
󸀠

+ 𝐾
0

. We have

𝑃
1

(𝑔, 𝐾) = 𝑃 (𝑢 (⋅, 1, 𝑔) ∈ 𝐾)

≥ 𝑃 (𝑢 (⋅, 1, 𝑔) ∈ 𝐾
󸀠

) ≥ 1 − 𝜀,

(56)

for all𝑔 ∈ 𝐶(𝑆1)with ℎ1 ≤ 𝑔 ≤ ℎ2.This finishes the proof.

The following result is the uniqueness of invariant mea-
sures.

Theorem 7. Under the assumptions inTheorem 6 and the fact
that |𝜎(⋅)| ≥ 𝐿

0

for some constant 𝐿
0

> 0, there is a unique
invariant measure for (1) for all 𝛼 ≥ 0, 𝑐

1

> 0, and 𝑐
2

> 0.

Proof of Theorem 7. To prove the uniqueness, we apply cou-
plingmethod to SPDEswith reflection and singular terms; see
in [20] or in [12]. Suppose there are two invariant probabilities
𝜇
1

and 𝜇
2

which are distributions of initial values 𝑢1(𝑥, 0) and
𝑢
2

(𝑥, 0), respectively. And so 𝑢1(𝑥, 𝑡) and 𝑢2(𝑥, 𝑡) have these
distributions for any 𝑡 > 0. Then the total variation distance
between 𝜇

1

and 𝜇
2

satisfies

Var (𝜇
1

− 𝜇
2

) ≤ 𝑃(sup
𝑥∈𝑆

1

󵄨󵄨󵄨󵄨󵄨
𝑢
1

(𝑥, 𝑡) − 𝑢
2

(𝑥, 𝑡)
󵄨󵄨󵄨󵄨󵄨
̸= 0) . (57)

Consider the following SPDEs:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
=
𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 𝑓 (𝑢 (𝑥, 𝑡))

+ 𝜎 (𝑢 (𝑥, 𝑡)) 𝑊̇
1

(𝑥, 𝑡)

+ 𝜂
1

(𝑥, 𝑡) − 𝜉
1

(𝑥, 𝑡) +
𝑐
1

(𝑢 (𝑥, 𝑡) − ℎ
1

(𝑥))
𝛼

−
𝑐
2

(ℎ2 (𝑥) − 𝑢 (𝑥, 𝑡))
𝛼

,

𝜕V (𝑥, 𝑡)
𝜕𝑡

=
𝜕
2V (𝑥, 𝑡)
𝜕𝑥2

+ 𝑓 (V (𝑥, 𝑡))

+ 𝜎 (V (𝑥, 𝑡))

× [(1 − |𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| ∧ 1)1/2𝑊̇
1

(𝑥, 𝑡)

+(|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| ∧ 1)1/2𝑊̇
2

(𝑥, 𝑡)]

+ 𝜂
2

(𝑥, 𝑡) − 𝜉
2

(𝑥, 𝑡) +
𝑐
1

(V (𝑥, 𝑡) − ℎ1 (𝑥))𝛼

−
𝑐
2

(ℎ2 (𝑥) − V (𝑥, 𝑡))𝛼
,

𝑢 (𝑥, 0) = 𝑢
1

(𝑥, 0) , V (𝑥, 0) = 𝑢2 (𝑥, 0) ,
(58)

where 𝑊
1

(𝑥, 𝑡), 𝑊
2

(𝑥, 𝑡) are two independent space-time
white noises defined on the same probability space (Ω,F, 𝑃).
The existence of solutions of (58) can be obtained by a similar
method as that in the paper [11]. Indeed, (𝑢, V) is the limit of
the following SPDEs with Lipschitz diffusion coefficients:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
=
𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 𝑓 (𝑢 (𝑥, 𝑡))

+ 𝜎 (𝑢 (𝑥, 𝑡)) 𝑊̇
1

(𝑥, 𝑡)

+ 𝜂
1

(𝑥, 𝑡) − 𝜉
1

(𝑥, 𝑡) +
𝑐
1

(𝑢 (𝑥, 𝑡) − ℎ
1

(𝑥))
𝛼

−
𝑐
2

(ℎ2 (𝑥) − 𝑢 (𝑥, 𝑡))
𝛼

,

𝜕V𝑛 (𝑥, 𝑡)
𝜕𝑡

=
𝜕
2V𝑛 (𝑥, 𝑡)
𝜕𝑥2

+ 𝑓 (V𝑛 (𝑥, 𝑡))

+ 𝜎 (V𝑛 (𝑥, 𝑡))

× [𝑔
𝑛

(
󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − V𝑛 (𝑥, 𝑡)󵄨󵄨󵄨󵄨 ∧ 1) 𝑊̇1

(𝑥, 𝑡)

+𝑓
𝑛

(
󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − V𝑛 (𝑥, 𝑡)󵄨󵄨󵄨󵄨 ∧ 1) 𝑊̇2

(𝑥, 𝑡)]

+ 𝜂
𝑛

2

(𝑥, 𝑡) − 𝜉
𝑛

2

(𝑥, 𝑡) +
𝑐
1

(V𝑛 (𝑥, 𝑡) − ℎ1 (𝑥))𝛼

−
c
2

(ℎ2 (𝑥) − V𝑛 (𝑥, 𝑡))𝛼
,

𝑢 (𝑥, 0) = 𝑢
1

(𝑥, 0) , V (𝑥, 0) = 𝑢2 (𝑥, 0) ,
(59)

where𝑓
𝑛

(⋅) = (⋅+1/𝑛)
1/2

−(1/𝑛)
1/2 and 𝑔

𝑛

(⋅) = (1−𝑓
𝑛

(⋅)
2

)
1/2.

Therefore, in order to get the uniqueness of invariant
measure, it is enough to show

lim
𝑡→∞

𝑃(sup
𝑥∈𝑆

1

󵄨󵄨󵄨󵄨󵄨
𝑢
1

(𝑥, 𝑡) − 𝑢
2

(𝑥, 𝑡)
󵄨󵄨󵄨󵄨󵄨
̸= 0) = 0, (60)

for given two initial functions 𝑢1(𝑥, 0) and 𝑢2(𝑥, 0).
Using a similar argument as in the proof of Theorem 2.2

in [12], the details of which we omit, it suffices to establish the
following equation when 𝑢1(𝑥, 0) ≥ 𝑢2(𝑥, 0), 𝑥 ∈ 𝑆1:

∫
𝑆

1

(𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)) 𝑑𝑥

= ∫
𝑆

1

(𝑢
1

(𝑥, 0) − 𝑢
2

(𝑥, 0)) 𝑑𝑥 + 𝐶 (𝑡) + 𝑀 (𝑡) ,

(61)
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where

𝑀(𝑡) = ∫

𝑡

0

∫
𝑆

1

𝜎 (𝑢 (𝑥, 𝑠))𝑊
1

(𝑑𝑥, 𝑑𝑠)

− ∫

𝑡

0

∫
𝑆

1

𝜎 (V (𝑥, 𝑠))

× (1 − |𝑢 (𝑥, 𝑠) − V (𝑥, 𝑠)| ∧ 1)1/2

× 𝑊̇
1

(𝑑𝑥, 𝑑𝑠)

− ∫

𝑡

0

∫
𝑆

1

𝜎 (V (𝑥, 𝑠)) (|𝑢 (𝑥, 𝑠) − V (𝑥, 𝑠)| ∧ 1)1/2

× 𝑊̇
2

(𝑑𝑥, 𝑑𝑠) ,

(62)

and𝐶(𝑡) is a continuous, adapted, and nonincreasing process.
In view of the reflection and singular terms, we will

construct approximating solutions of uniform convergence
limits. Consider the following approximating SPDEs:

𝜕𝑢
𝜀,𝛿

𝜕𝑡
=
𝜕
2

𝑢
𝜀,𝛿

𝜕𝑥2
+ 𝑓 (𝑢

𝜀,𝛿

) + 𝑓
𝜀,𝛿

(𝑢
𝜀,𝛿

) + 𝜎 (𝑢
𝜀,𝛿

) 𝑊̇
1

;

𝜕V𝑛,𝜀,𝛿

𝜕𝑡
=
𝜕
2V𝑛,𝜀,𝛿

𝜕𝑥2
+ 𝑓 (V𝑛,𝜀,𝛿) + 𝑓

𝜀,𝛿

(V𝑛,𝜀,𝛿)

+ 𝜎 (V𝑛,𝜀,𝛿)

× [𝑔
𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜀,𝛿

− V𝑛,𝜀,𝛿
󵄨󵄨󵄨󵄨󵄨
∧ 1) 𝑊̇

1

(𝑥, 𝑡)

+𝑓
𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜀,𝛿

− V𝑛,𝜀,𝛿
󵄨󵄨󵄨󵄨󵄨
∧ 1) 𝑊̇

2

(𝑥, 𝑡)] ;

𝑢
𝜀,𝛿

(𝑥, 0) = 𝑢
1

(𝑥, 0) , V𝑛,𝜀,𝛿 (𝑥, 0) = 𝑢2 (𝑥, 0) ,
(63)

where 𝑓
𝜀,𝛿

is the same as in (7).
When 𝑢1(𝑥, 0) ≥ 𝑢

2

(𝑥, 0), 𝑥 ∈ 𝑆
1, we have 𝑢𝜀,𝛿 ≥ V𝑛,𝜀,𝛿

which can be shown as Lemma 3.1 in [20]. Also, we will
assume that 𝑓(𝑢) is nonincreasing. Otherwise, consider 𝑢̃ :=
𝑒
−𝐿𝑡

𝑢 and Ṽ := 𝑒−𝐿𝑡V, where 𝐿 is the Lipschitz constant in (F1).
Then the new drift term 𝑒

−𝐿𝑡

𝑓(𝑒
𝐿𝑡

𝑥) − 𝐿𝑥 is nonincreasing.
Thus,

𝐶
𝑛,𝜀,𝛿

(𝑡) = ∫
𝑆

1

{𝑓 (𝑢
𝜀,𝛿

) − 𝑓 (V𝑛,𝜀,𝛿)

+ [𝑓
𝜀,𝛿

(𝑢
𝜀,𝛿

) − 𝑓
𝜀,𝛿

(V𝑛,𝜀,𝛿)]} 𝑑𝑥 ≤ 0.
(64)

Now we only need V𝑛,𝜀,𝛿(𝑥, 𝑡) → V𝑛(𝑥, 𝑡) as 𝜀, 𝛿 → 0

which will be shown in the lemma below. Letting 𝜀, 𝛿 → 0 in
the relation of∫

𝑆

1
(𝑢

𝜀,𝛿

(𝑥, 𝑡)−V𝑛,𝜀,𝛿(𝑥, 𝑡))𝑑𝑥 from (63) and then
sending 𝑛 to∞, we obtain (61). The proof is complete.

Lemma 8. V𝑛,𝜀,𝛿(𝑥, 𝑡) → V𝑛(𝑥, 𝑡) in probability on 𝑆1 × [0, 𝑇],
for any 𝑇 > 0, as 𝜀, 𝛿 → 0.

Proof. Consider the following SPDE:

𝜕Ṽ𝑛,𝜀,𝛿

𝜕𝑡
=
𝜕
2Ṽ𝑛,𝜀,𝛿

𝜕𝑥2
+ 𝑓 (Ṽ𝑛,𝜀,𝛿) + 𝑓

𝜀,𝛿

(Ṽ𝑛,𝜀,𝛿)

+ 𝜎 (Ṽ𝑛,𝜀,𝛿)

× [𝑔
𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢 − Ṽ𝑛,𝜀,𝛿

󵄨󵄨󵄨󵄨󵄨
∧ 1) 𝑊̇

1

(𝑥, 𝑡)

+𝑓
𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢 − Ṽ𝑛,𝜀,𝛿

󵄨󵄨󵄨󵄨󵄨
∧ 1) 𝑊̇

2

(𝑥, 𝑡)] ;

Ṽ𝑛,𝜀,𝛿 (𝑥, 0) = 𝑢2 (𝑥, 0) .

(65)

Denote the solution by Ṽ𝑛,𝜀,𝛿(𝑥, 𝑡). Let Ṽ𝑛,𝜀,𝛿 = 𝑧̃
𝑛,𝜀,𝛿

+ 𝑤
𝑛,𝜀,𝛿;

here 𝑤𝑛,𝜀,𝛿

(𝑥, 𝑡) and 𝑧̃𝑛,𝜀,𝛿(𝑥, 𝑡) satisfy, respectively,

𝜕𝑤
𝑛,𝜀,𝛿

𝜕𝑡
=
𝜕
2

𝑤
𝑛,𝜀,𝛿

𝜕𝑥2
+ 𝑓 (V𝑛,𝜀,𝛿) + 𝜎 (V𝑛,𝜀,𝛿)

× [𝑔
𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢 − Ṽ𝑛,𝜀,𝛿

󵄨󵄨󵄨󵄨󵄨
∧ 1) 𝑊̇

1

(𝑥, 𝑡)

+𝑓
𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢 − Ṽ𝑛,𝜀,𝛿

󵄨󵄨󵄨󵄨󵄨
∧ 1) 𝑊̇

2

(𝑥, 𝑡)] ;

𝑤
𝑛,𝜀,𝛿

(𝑥, 0) = 𝑢
2

(𝑥, 0) ,

𝜕𝑧̃
𝑛,𝜀,𝛿

𝜕𝑡
=
𝜕
2

𝑧̃
𝑛,𝜀,𝛿

𝜕𝑥2
+ 𝑓

𝜀,𝛿

(𝑧̃
𝑛,𝜀,𝛿

+ 𝑤
𝑛,𝜀,𝛿

) ;

𝑧̃
𝑛,𝜀,𝛿

(𝑥, 0) = 0.

(66)

Similarly, define 𝑤
𝑛,𝜀,𝛿

(𝑥, 𝑡) and 𝑧
𝑛,𝜀,𝛿

(𝑥, 𝑡) satisfy, respec-
tively,

𝜕𝑤
𝑛,𝜀,𝛿

𝜕𝑡
=
𝜕
2

𝑤
𝑛,𝜀,𝛿

𝜕𝑥2
+ 𝑓 (V𝑛,𝜀,𝛿) + 𝜎 (V𝑛,𝜀,𝛿)

× [𝑔
𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜀,𝛿

− V𝑛,𝜀,𝛿
󵄨󵄨󵄨󵄨󵄨
∧ 1) 𝑊̇

1

(𝑥, 𝑡)

+𝑓
𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜀,𝛿

− V𝑛,𝜀,𝛿
󵄨󵄨󵄨󵄨󵄨
∧ 1) 𝑊̇

2

(𝑥, 𝑡)] ;

𝑤
𝑛,𝜀,𝛿

(𝑥, 0) = 𝑢
2

(𝑥, 0) ,

𝜕𝑧
𝑛,𝜀,𝛿

𝜕𝑡
=
𝜕
2

𝑧
𝑛,𝜀,𝛿

𝜕𝑥2
+ 𝑓

𝜀,𝛿

(𝑧
𝑛,𝜀,𝛿

+ 𝑤
𝑛,𝜀,𝛿

) ;

𝑧
𝑛,𝜀,𝛿

(𝑥, 0) = 0.

(67)

Then V𝑛,𝜀,𝛿 = 𝑧𝑛,𝜀,𝛿 + 𝑤𝑛,𝜀,𝛿.
From similar proof in Proposition 3.1 in [11], one has

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛,𝜀,𝛿

− 𝑧̃
𝑛,𝜀,𝛿

󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑛,𝜀,𝛿

− 𝑤
𝑛,𝜀,𝛿

󵄩󵄩󵄩󵄩󵄩

𝑇

∞

. (68)

Thus,

󵄩󵄩󵄩󵄩󵄩
V𝑛,𝜀,𝛿 − Ṽ𝑛,𝜀,𝛿

󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑛,𝜀,𝛿

− 𝑤
𝑛,𝜀,𝛿

󵄩󵄩󵄩󵄩󵄩

𝑇

∞

. (69)

Now we will show that ‖V𝑛,𝜀,𝛿 − Ṽ𝑛,𝜀,𝛿‖
𝑇

∞

→ 0 in probability
as 𝜀, 𝛿 → 0.
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As the similar proof in Donati-Martin and Pardoux [2], it
can be shown that sup

𝜀,𝛿

E(‖V𝑛,𝜀,𝛿‖
𝑇

∞

)
𝑝

< ∞, for arbitrarily
large 𝑝 and any 𝑇 > 0. Set the stopping time 𝜏

𝑀

:=

inf{𝑡; sup
𝑥∈𝑆

1 |V𝑛,𝜀,𝛿(𝑥, 𝑡)| > 𝑀}. For fixed𝑀 > 0, we have

E(
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑛,𝜀,𝛿

(𝑡 ∧ 𝜏
𝑀

) − 𝑤
𝑛,𝜀,𝛿

(𝑡 ∧ 𝜏
𝑀

)
󵄩󵄩󵄩󵄩󵄩

𝑇

∞

)

2

≤ 𝐶
1

∫

𝑇

0

E(
󵄩󵄩󵄩󵄩󵄩
𝑓 (V𝑛,𝜀,𝛿) − 𝑓 (Ṽ𝑛,𝜀,𝛿)

󵄩󵄩󵄩󵄩󵄩

𝑡∧𝜏

𝑀

∞

)

2

𝑑𝑠

+ 𝐶
2

∫

𝑇

0

E (
󵄩󵄩󵄩󵄩󵄩
𝜎 (V𝑛,𝜀,𝛿) 𝑔

𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜀,𝛿

− V𝑛,𝜀,𝛿
󵄨󵄨󵄨󵄨󵄨
∧ 1)

− 𝜎 (Ṽ𝑛,𝜀,𝛿)

× 𝑔
𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢 − Ṽ𝑛,𝜀,𝛿

󵄨󵄨󵄨󵄨󵄨
∧ 1)

󵄩󵄩󵄩󵄩󵄩

𝑡∧𝜏

𝑀

∞

)

2

𝑑𝑠

+ 𝐶
2

∫

𝑇

0

E (
󵄩󵄩󵄩󵄩󵄩
𝜎 (V𝑛,𝜀,𝛿) 𝑓

𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜀,𝛿

− V𝑛,𝜀,𝛿
󵄨󵄨󵄨󵄨󵄨
∧ 1)

− 𝜎 (Ṽ𝑛,𝜀,𝛿)

×𝑓
𝑛

(
󵄨󵄨󵄨󵄨󵄨
𝑢 − Ṽ𝑛,𝜀,𝛿

󵄨󵄨󵄨󵄨󵄨
∧ 1)

󵄩󵄩󵄩󵄩󵄩

𝑡∧𝜏

𝑀

∞

)

2

𝑑𝑠

≤ 𝐶
1

∫

𝑇

0

E(
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑛,𝜀,𝛿

− 𝑤
𝑛,𝜀,𝛿

󵄩󵄩󵄩󵄩󵄩

𝑡∧𝜏

𝑀

∞

)

2

𝑑𝑠

+ 𝐶
2

∫

𝑇

0

E (
󵄩󵄩󵄩󵄩󵄩
𝜎 (V𝑛,𝜀,𝛿)

󵄩󵄩󵄩󵄩󵄩

𝑡∧𝜏

𝑀

∞

⋅ [
󵄩󵄩󵄩󵄩󵄩
𝑢
𝜀,𝛿

− 𝑢
󵄩󵄩󵄩󵄩󵄩

𝑡∧𝜏

𝑀

∞

+
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑛,𝜀,𝛿

− 𝑤
𝑛,𝜀,𝛿

󵄩󵄩󵄩󵄩󵄩

𝑡∧𝜏

𝑀

∞

])

2

𝑑𝑠

≤ 𝐶
1

𝜖 + 𝐶
2

∫

𝑇

0

E(
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑛,𝜀,𝛿

− 𝑤
𝑛,𝜀,𝛿

󵄩󵄩󵄩󵄩󵄩

𝑡∧𝜏

𝑀

∞

)

2

𝑑𝑠,

(70)

where the constants change in each line and 𝜖 → 0 as
𝜀, 𝛿 → 0 because of Lemma 2. By the Gronwall inequality,
we get E(‖𝑤𝑛,𝜀,𝛿

(𝑡 ∧ 𝜏
𝑀

) − 𝑤
𝑛,𝜀,𝛿

(𝑡 ∧ 𝜏
𝑀

)‖
𝑇

∞

)
2

→ 0 as 𝜀, 𝛿 →

0. Hence, E(‖V𝑛,𝜀,𝛿(𝑡 ∧ 𝜏
𝑀

) − Ṽ𝑛,𝜀,𝛿(𝑡 ∧ 𝜏
𝑀

)‖
𝑇

∞

)
2

→ 0. So
‖V𝑛,𝜀,𝛿 − Ṽ𝑛,𝜀,𝛿‖

𝑇

∞

→ 0 in probability. In fact, for every 𝜖
0

> 0,
set the event 𝐴𝑛,𝜀,𝛿

:= {‖V𝑛,𝜀,𝛿 − Ṽ𝑛,𝜀,𝛿‖
𝑇

∞

> 𝜖
0

},

𝑃 (𝐴
𝑛,𝜀,𝛿

) = 𝑃 (𝐴
𝑛,𝜀,𝛿

, 𝜏
𝑀

≤ 𝑇) + 𝑃 (𝐴
𝑛,𝜀,𝛿

, 𝜏
𝑀

> 𝑇)

≤ 𝑃 (𝜏
𝑀

≤ 𝑇)

+

E(
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑛,𝜀,𝛿

(𝑡 ∧ 𝜏
𝑀

) − 𝑤
𝑛,𝜀,𝛿

(𝑡 ∧ 𝜏
𝑀

)
󵄩󵄩󵄩󵄩󵄩

𝑇

∞

)

2

𝜖
0

2

≤

E(
󵄩󵄩󵄩󵄩󵄩
V𝑛,𝜀,𝛿

󵄩󵄩󵄩󵄩󵄩

𝑇

∞

)

2

𝑀2

+

E(
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑛,𝜀,𝛿

(𝑡 ∧ 𝜏
𝑀

) − 𝑤
𝑛,𝜀,𝛿

(𝑡 ∧ 𝜏
𝑀

)
󵄩󵄩󵄩󵄩󵄩

𝑇

∞

)

2

𝜖
0

2

󳨀→ 0, as 𝜀, 𝛿 󳨀→ 0, 𝑀 󳨀→ ∞.

(71)

Sincewe can apply Lemma 2 to conclude that 𝑢𝜀,𝛿(𝑥, 𝑡) →
𝑢(𝑥, 𝑡), Ṽ𝑛,𝜀,𝛿(𝑥, 𝑡) → V𝑛(𝑥, 𝑡) uniformly on 𝑆

1

× [0, 𝑇] as
𝜀, 𝛿 → 0. Therefore, V𝑛,𝜀,𝛿(𝑥, 𝑡) → V𝑛(𝑥, 𝑡) in probability on
𝑆
1

× [0, 𝑇] as 𝜀, 𝛿 → 0.

3. Strong Feller Property

In this section, we consider the strong Feller property of the
solution of (1). Let 𝐻 = 𝐿

2

(𝑆
1

). If 𝜑 ∈ 𝐵
𝑏

(𝐻) (the Banach
space of all real bounded Borel functions, endowed with the
sup norm), we define, for 𝑥 ∈ 𝑆

1, 0 ≤ 𝑡 ≤ 𝑇, and 𝑔 ∈ 𝐻,
𝑃
𝑡

𝜑(𝑔) = E𝜑(𝑢(𝑥, 𝑡, 𝑔)).

Theorem 9. Under the hypotheses (H1), (H2), and (F1)–(F3)
and the fact that 𝑝

1

≤ |𝜎(⋅)| ≤ 𝑝
2

, for some constants 𝑝
1

, 𝑝
2

>

0, for any 𝑇 > 0, there exists a constant 𝐶󸀠

𝑇

such that, for all
𝜑 ∈ 𝐵

𝑏

(𝐻) and 𝑡 ∈ (0, 𝑇],

󵄨󵄨󵄨󵄨󵄨
𝑃
𝑡

𝜑 (𝑢
1

0

) − 𝑃
𝑡

𝜑 (𝑢
2

0

)
󵄨󵄨󵄨󵄨󵄨
≤
𝐶
󸀠

𝑇

√𝑡

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩∞

󵄨󵄨󵄨󵄨󵄨
𝑢
1

0

− 𝑢
2

0

󵄨󵄨󵄨󵄨󵄨𝐻
, (72)

for 𝑢1
0

, 𝑢
2

0

∈ 𝐻 with ℎ1(𝑥) ≤ u1
0

(𝑥), 𝑢
2

0

(𝑥) ≤ ℎ
2

(𝑥), where
‖𝜑‖

∞

= sup
𝑢

0
∈𝐻

|𝜑(𝑢
0

)|. In particular, 𝑃
𝑡

, 𝑡 > 0 is strong Feller.

Proof. Choose a nonnegative function 𝜙 ∈ 𝐶
∞

0

(𝑅) with
∫
𝑅

𝜙(𝑥) = 1 and denote

𝑓
𝑛

(𝜁) := 𝑛∫
𝑅

𝜙 (𝑛 (𝜁 − 𝑦)) 𝑓 (𝑦) 𝑑𝑦,

𝜎
𝑛

(𝜁) := 𝑛∫
𝑅

𝜙 (𝑛 (𝜁 − 𝑦)) 𝜎 (𝑦) 𝑑𝑦,

(73)

𝑘
𝑛,𝜀,𝛿

(𝜁, 𝑥) := 𝑛∫
𝑅

𝜙 (𝑛 (𝜁 − 𝑦))

× [

[

1

[𝛿 + [(𝑦 − ℎ1 (𝑥)) ∨ 0]
2

]
𝛼/2

−
1

[𝜀 + [(ℎ2 (𝑥) − 𝑦) ∨ 0]
2

]
𝛼/2

]
]
]

]

𝑑𝑦,
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𝑙
𝑛,𝜀,𝛿

(𝜁, 𝑥) := 𝑘
𝑛,𝜀,𝛿

(𝜁, 𝑥)

+ (

arctan ([(𝜁 − ℎ1 (𝑥)) ∧ 0]
2

)

𝛿

−

arctan ([(ℎ2 (𝑥) − 𝜁) ∧ 0]
2

)

𝜀
) .

(74)

So 𝑓
𝑛

, 𝜎
𝑛

, 𝑙
𝑛,𝜀,𝛿

are smooth with respect to 𝜁 and 𝑓
𝑛

(𝜁) →

𝑓(𝜁), 𝜎
𝑛

(𝜁) → 𝜎(𝜁), and 𝑙
𝑛,𝜀,𝛿

(𝜁, 𝑥) → 𝑓
𝜀,𝛿

(𝜁) as 𝑛 → ∞.
Let

𝑢
𝜀,𝛿

𝑛

(𝑥, 𝑡, 𝑢
0

)

= ∫
𝑆

1

𝐺t (𝑥, 𝑦) 𝑢0 (𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝑓
𝑛

(𝑢
𝜀,𝛿

𝑛

(𝑦, 𝑠, 𝑢
0

)) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝜎
𝑛

(𝑢
𝜀,𝛿

𝑛

(𝑦, 𝑠, 𝑢
0

))𝑊 (𝑑𝑦, 𝑑𝑠)

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝑙
𝑛,𝜀,𝛿

(𝑢
𝜀,𝛿

𝑛

(𝑦, 𝑠, 𝑢
0

) , 𝑦) 𝑑𝑦 𝑑𝑠.

(75)

Using similar arguments as in [23], we can show that, for
any fixed 𝜀, 𝛿 and 𝑝 ≥ 1,

lim
𝑛→∞

sup
𝑡∈[0,𝑇]

E (
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜀,𝛿

𝑛

(𝑡, ⋅, 𝑢
0

) − 𝑢
𝜀,𝛿

(𝑡, ⋅, 𝑢
0

)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝐻

) = 0. (76)

Furthermore, in view of Lemma 7.1.5 in [6] and
Lemma 2, it is enough to prove that there exists a constant
𝐶
󸀠

𝑇

, independent of 𝜀, 𝛿 and 𝑛, such that

󵄨󵄨󵄨󵄨󵄨
𝑃
𝑛,𝜀,𝛿

𝑡

𝜑 (𝑢
1

0

) − 𝑃
𝑛,𝜀,𝛿

𝑡

𝜑 (𝑢
2

0

)
󵄨󵄨󵄨󵄨󵄨
≤
𝐶
󸀠

𝑇

√𝑡

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩∞

󵄨󵄨󵄨󵄨󵄨
𝑢
1

0

− 𝑢
2

0

󵄨󵄨󵄨󵄨󵄨𝐻
, (77)

where 𝑃𝑛,𝜀,𝛿

𝑡

𝜑(𝑢
0

) := E(𝜑(𝑢𝜀,𝛿
𝑛

(⋅, ⋅, 𝑢
0

))) and 𝑢1
0

, 𝑢
2

0

∈ 𝐻.
From Theorem 5.4.1 in [6], 𝑢𝜀,𝛿

𝑛

(⋅, ⋅, 𝑢
0

) is continuously
differentiable with respect to 𝑢

0

. Denote by 𝑋
𝜀,𝛿

𝑛

(𝑥, 𝑡) :=

(𝐷𝑢
𝜀,𝛿

𝑛

(⋅, ⋅, 𝑢
0

)(𝑢
0

))(𝑥, 𝑡) the directional derivative of
𝑢
𝜀,𝛿

𝑛

(⋅, ⋅, 𝑢
0

) at 𝑢
0

in the direction of 𝑢
0

and it satisfies
the mild form of a SPDE as follows:

𝑋
𝜀,𝛿

𝑛

(𝑥, 𝑡) = ∫
𝑆

1

𝐺
𝑡

(𝑥, 𝑦) 𝑢
0

(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝑓
󸀠

𝑛

(𝑢
𝜀,𝛿

𝑛

(𝑦, 𝑠, 𝑢
0

))

× 𝑋
𝜀,𝛿

𝑛

(𝑦, 𝑠) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝜎
󸀠

𝑛

(𝑢
𝜀,𝛿

𝑛

(𝑦, 𝑠, 𝑢
0

))

× 𝑋
𝜀,𝛿

𝑛

(𝑦, 𝑠)𝑊 (𝑑𝑦, 𝑑𝑠)

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦)
𝜕

𝜕𝜁
𝑙
𝑛,𝜀,𝛿

(𝑢
𝜀,𝛿

𝑛

(𝑦, 𝑠, 𝑢
0

) , 𝑦)

× 𝑋
𝜀,𝛿

𝑛

(𝑦, 𝑠) 𝑑𝑦 𝑑𝑠. (78)

Since (𝜕/𝜕𝜁)𝑙
𝑛,𝜀,𝛿

(𝑢
𝜀,𝛿

𝑛

(𝑦, 𝑠, 𝑢
0

), 𝑦) ≤ 0, we use similar argu-
ments as that in [23] to get

sup
𝜀,𝛿≥0,𝑡∈[0,𝑇]

E(∫
𝑆

1

(𝑋
𝜀,𝛿

𝑛

(𝑦, 𝑡))
2

𝑑𝑦) ≤ 𝐶
󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝐻

, (79)

where 𝐶 is a constant. By Elworthy-Li formula (Lemma 7.1.3
in [6]), we obtain

󵄨󵄨󵄨󵄨⟨𝐷𝑃𝑡𝜑 (𝑢0) , 𝑢0⟩
󵄨󵄨󵄨󵄨

2

≤
𝐶

𝑝
2

1

𝑡

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

∞

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝐻

. (80)

This implies inequality (77) which completes the proof.

4. Large Deviation Principle

We consider a small perturbation of the equation of (1); that
is,

𝜕𝑢
𝜖

𝜕𝑡
=
𝜕
2

𝑢
𝜖

𝜕𝑥2
+ 𝑓 (𝑢

𝜖

) +
𝑐
1

(𝑢𝜖 − ℎ1)
𝛼

−
𝑐
2

(ℎ2 − 𝑢𝜖)
𝛼

+ 𝜖𝜎 (𝑢) 𝑊̇ + 𝜂
𝜖

− 𝜉
𝜖

;

𝑢
𝜖

(𝑥, 0) = 𝑢
0

(𝑥) .

(81)

As a similar discussion in [11], for any 𝜖 > 0, there exists a
continuous solution 𝑢𝜖 satisfying

𝑢
𝜖

(𝑥, 𝑡) = ∫
𝑆

1

𝐺
𝑡

(𝑥, 𝑦) 𝑢
0

(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦)

× (𝑓 (𝑢
𝜖

(𝑦, 𝑠)) +
𝑐
1

(𝑢𝜖 (𝑦, 𝑠) − ℎ1 (𝑦))
𝛼

−
𝑐
2

(ℎ2 (𝑦) − 𝑢𝜖 (𝑦, 𝑠))
𝛼

)𝑑𝑦𝑑𝑠

+ 𝜖∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝜎 (𝑢
𝜖

(𝑦, 𝑠))𝑊 (𝑑𝑦, 𝑑𝑠)

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) (𝜂
𝜖

(𝑑𝑦 𝑑𝑠) − 𝜉
𝜖

(𝑑𝑦 𝑑𝑠)) .

(82)
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The Cameron-Martin space associated with the white noise
{𝑊(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑆

1

× [0, 𝑇]} is given by

H = {ℎ (𝑥, 𝑡) = ∫

𝑥

0

∫

𝑡

0

ℎ̇ (𝑦, 𝑠) 𝑑𝑦 𝑑𝑠;

∫
𝑆

1

∫

𝑇

0

(ℎ̇ (𝑦, 𝑠))
2

𝑑𝑦𝑑𝑠 < ∞} ,

(83)

endowed with norm ‖ℎ‖H = (∫
𝑆

1
∫
𝑇

0

(ℎ̇(𝑦, 𝑠))
2

𝑑𝑦𝑑𝑠)
1/2.

Consider the following PDE (the skeleton equation):

𝜕𝑢
ℎ

𝜕𝑡
=
𝜕
2

𝑢
ℎ

𝜕𝑥2
+ 𝑓 (𝑢

ℎ

) +
𝑐
1

(𝑢ℎ − ℎ1)
𝛼

−
𝑐
2

(ℎ2 − 𝑢ℎ)
𝛼

+ 𝜎 (𝑢
ℎ

) ℎ̇ + 𝜂
ℎ

− 𝜉
ℎ

;

𝑢
ℎ

(𝑥, 0) = 𝑢
0

(𝑥) ;

ℎ
1

(𝑥) ≤ 𝑢
ℎ

(𝑥, 𝑡) ≤ ℎ
2

(𝑥) .

(84)

As the analogous discussion in [11], for anyℎ ∈H, there exists
a continuous solution 𝑢ℎ satisfying

𝑢
ℎ

(𝑥, 𝑡) = ∫
𝑆

1

𝐺
𝑡

(𝑥, 𝑦) 𝑢
0

(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦)

× (𝑓 (𝑢
ℎ

(𝑦, 𝑠)) +
𝑐
1

(𝑢ℎ (𝑦, 𝑠) − ℎ1 (𝑦))
𝛼

−
𝑐
2

(ℎ2 (𝑦) − 𝑢ℎ (𝑦, 𝑠))
𝛼

)𝑑𝑦𝑑𝑠

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝜎 (𝑢
ℎ

(𝑦, 𝑠)) ℎ̇ (𝑦, 𝑠) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) (𝜂
ℎ

(𝑑𝑦 𝑑𝑠) − 𝜉
ℎ

(𝑑𝑦 𝑑𝑠)) .

(85)

We state our main result in this section.

Theorem10. The laws𝜇𝜖 of the {𝑢𝜖}
𝜖>0

satisfy a large deviation
principle on 𝐷 := {𝑢(𝑥, 𝑡) ∈ 𝐶(𝑆

1

× [0, 𝑇]); ℎ
1

(𝑥) ≤ 𝑢(𝑥, 𝑡) ≤

ℎ
2

(𝑥)} with the rate function

𝐼 (𝑓) = inf {1
2
‖ℎ‖

2

H; 𝑢
ℎ

= 𝑓} , (86)

with the convention inf{0} = ∞; that is,

(i) for any closed subset 𝐴 ⊂ 𝐷,

lim sup
𝜖→0

𝜖
2 log𝜇𝜖 (𝐴) ≤ −inf

𝑓∈𝐴

𝐼 (𝑓) ; (87)

(ii) for any open set 𝐵 ⊂ 𝐷,

lim inf
𝜖→0

𝜖
2 log 𝜇𝜖 (𝐵) ≥ −inf

𝑓∈𝐵

𝐼 (𝑓) . (88)

Proof. In order to proveTheorem 10, byTheorem 4.4 in [27],
it suffices to check the following.

(i) For any 𝑎 > 0, 𝑢
ℎ is a continuous mapping from {ℎ :

‖ℎ‖H ≤ 𝑎} into 𝐶(𝑆1 × [0, 𝑇]).

(ii) For a family {ℎ
𝜖

} ⊂ 𝐴
𝑁

, where 𝐴
𝑁

:= {ℎ ∈

H, ; ℎ(𝑥, 𝑡) 𝑖𝑠 F
𝑡

− 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒, ‖ℎ‖H ≤ 𝑁 𝑃 −

a.s.}, 0 < 𝑁 < ∞, that converges in distribution to ℎ,
𝑢
𝜖,ℎ

𝜖

converges in distribution to 𝑢ℎ, where 𝑢𝜖,ℎ
𝜖

solves
the following SPDE:

𝜕𝑢
𝜖,ℎ

𝜖

𝜕𝑡
=
𝜕
2

𝑢
𝜖,ℎ

𝜖

𝜕𝑥2
+ 𝑓 (𝑢

𝜖,ℎ

𝜖

) +
𝑐
1

(𝑢𝜖,ℎ
𝜖

− ℎ1)
𝛼

−
𝑐
2

(ℎ2 − 𝑢𝜖,ℎ
𝜖

)
𝛼

+ 𝜖𝜎 (𝑢
𝜖,ℎ

𝜖

) 𝑊̇

+ 𝜎 (𝑢
𝜖,ℎ

𝜖

) ℎ̇
𝜖

+ 𝜂
𝜖,ℎ

𝜖

− 𝜉
𝜖,ℎ

𝜖

;

𝑢
𝜖,ℎ

𝜖

(𝑥, 0) = 𝑢
0

(𝑥) .

(89)

Let

Vℎ𝑖 (𝑥, 𝑡) = ∫
𝑆

1

𝐺
𝑡

(𝑥, 𝑦) 𝑢
0

(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝑓 (𝑢
ℎ

𝑖 (𝑦, 𝑠)) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝜎 (𝑢
ℎ

𝑖 (𝑦, 𝑠)) ℎ̇i (𝑦, 𝑠) 𝑑𝑦 𝑑𝑠,

(90)

with 𝑖 = 1, 2. In terms of (36), we have

󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

1 − 𝑢
ℎ

2
󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤ 2
󵄩󵄩󵄩󵄩󵄩
Vℎ1 − Vℎ2

󵄩󵄩󵄩󵄩󵄩

𝑇

∞

. (91)

Proof of (i). We need to prove that, for fixed 𝑎 > 0, ℎ
1

, ℎ
2

∈

{ℎ ∈H : ‖ℎ‖H ≤ 𝑎},

󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

1 − 𝑢
ℎ

2
󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤ 𝐶
󵄩󵄩󵄩󵄩ℎ1 − ℎ2

󵄩󵄩󵄩󵄩H
, (92)

where 𝑢ℎ1 , 𝑢ℎ2 are the solution of (84) associated with ℎ
1

, ℎ
2

,
respectively. Let

Vℎ𝑖 (𝑥, 𝑡) = ∫
𝑆

1

𝐺
𝑡

(𝑥, 𝑦) 𝑢
0

(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝑓 (𝑢
ℎ

𝑖 (𝑦, 𝑠)) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦) 𝜎 (𝑢
ℎ

𝑖 (𝑦, 𝑠)) ℎ̇
𝑖

(𝑦, 𝑠) 𝑑𝑦 𝑑𝑠

(93)



12 Abstract and Applied Analysis

with 𝑖 = 1, 2. In terms of (36), we have
󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

1 − 𝑢
ℎ

2
󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤ 2
󵄩󵄩󵄩󵄩󵄩
Vℎ1 − Vℎ2

󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤ 2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦)

× (𝑓 (𝑢
ℎ

1 (𝑦, 𝑠))

−𝑓 (𝑢
ℎ

2 (𝑦, 𝑠))) 𝑑𝑦 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇

∞

+ 2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫
𝑆

1

𝐺
𝑡−𝑠

(𝑥, 𝑦)

× (𝜎 (𝑢
ℎ

1 (𝑦, 𝑠)) ℎ̇
1

(𝑦, 𝑠)

−𝜎 (𝑢
ℎ

2 (𝑦, 𝑠)) ℎ̇
2

(𝑦, 𝑠)) 𝑑𝑦 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇

∞

:= 𝐼
1

+ 𝐼
2

.

(94)

We know

𝐼
1

≤ 𝐶(∫

𝑇

0

(
󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

1 − 𝑢
ℎ

2
󵄩󵄩󵄩󵄩󵄩

𝑡

∞

)

2

𝑑𝑡)

1/2

,

𝐼
2

≤ 𝐶

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(∫

𝑡

0

∫
𝑆

1

󵄨󵄨󵄨󵄨𝐺𝑡−𝑠

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨

2

𝑑𝑦𝑑𝑠)

1/2

× (∫

𝑡

0

∫
𝑆

1

󵄨󵄨󵄨󵄨󵄨
𝜎 (𝑢

ℎ

1 (𝑦, 𝑠)) ℎ̇
1

(𝑦, 𝑠)

−𝜎 (𝑢
ℎ

2 (𝑦, 𝑠)) ℎ̇
2

(𝑦, 𝑠)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑦𝑑𝑠)

1/2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇

∞

.

≤ 𝐶
󵄩󵄩󵄩󵄩ℎ1 − ℎ2

󵄩󵄩󵄩󵄩H
.

(95)
Then using Gronwall’s inequality, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

1 − 𝑢
ℎ

2
󵄩󵄩󵄩󵄩󵄩

𝑇

∞

≤ 𝐶
󵄩󵄩󵄩󵄩ℎ1 − ℎ2

󵄩󵄩󵄩󵄩H
. (96)

Proof of (ii). It is similar to that in [26] with the help of
inequality (91).

Thus the proof of Theorem 10 is completed.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are grateful to the anonymous referees for their
valuable comments and suggestions. This work was sup-
ported by the Fundamental Research Funds for the Central
Universities, no. 2013RC0906, and byNSFC, nos. 11101419 and
11371362.

References

[1] D. Nualart and E. Pardoux, “White noise driven quasilinear
SPDEs with reflection,” Probability Theory and Related Fields,
vol. 93, no. 1, pp. 77–89, 1992.

[2] C. Donati-Martin and E. Pardoux, “White noise driven SPDEs
with reflection,” Probability Theory and Related Fields, vol. 95,
no. 1, pp. 1–24, 1993.

[3] T. Funaki and S. Olla, “Fluctuations for ∇
𝜑

interface model on
a wall,” Stochastic Processes and their Applications, vol. 94, no. 1,
pp. 1–27, 2001.

[4] J.-D. Deuschel and G. Giacomin, “Entropic repulsion for mass-
less fields,” Stochastic Processes and their Applications, vol. 89,
no. 2, pp. 333–354, 2000.

[5] J. L. Lebowitz and C.Maes, “The effect of an external field on an
interface, entropic repulsion,” Journal of Statistical Physics, vol.
46, no. 1-2, pp. 39–49, 1987.

[6] G. da Prato and J. Zabczyk, Stochastic Equations in Infinite
Dimensions, Encyclopedia ofMathematics and Its Applications,
Cambridge University Press, Cambridge, UK, 1992.

[7] A. Debussche and L. Zambotti, “Conservative stochastic Cahn-
Hilliard equation with reflection,”TheAnnals of Probability, vol.
35, no. 5, pp. 1706–1739, 2007.
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