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The convergence analysis of a Morley type rectangular element for the fourth-order elliptic singular perturbation problem is
considered. A counterexample is provided to show that the element is not uniformly convergent with respect to the perturbation
parameter. A modified finite element approximation scheme is used to get convergent results; the corresponding error estimate is
presented under anisotropic meshes. Numerical experiments are also carried out to demonstrate the theoretical analysis.

1. Introduction

The elliptic perturbation problems, which are derived from
the stationary formation of parabolic perturbation problems,
such as the Cahn-Hilliard type equation, are very important
in both theoretical research and applications. The finite
element methods are always chosen to be the appropriate
way to solve the numerical solutions (cf. [1–5]). Here, we
consider the following two-dimensional linear stationary
Cahn-Hilliard type equation as our model problem:

𝜀
2
Δ
2
𝑢 − Δ𝑢 = 𝑓, in Ω,

𝑢 =

𝜕𝑢

𝜕𝑛

= 0, on 𝜕Ω,

(1)

where Δ is the standard Laplace operator, Ω is a bounded
polygonal domain in 𝑅

2, 𝜕Ω is the boundary of Ω, and
𝜀 is a real parameter such that 0 < 𝜀 ≤ 1. Let 𝜕𝑢/𝜕𝑛
denote the normal derivative of 𝑢 along the boundary 𝜕Ω.
Particularly, the differential equations (1) formally degenerate
to Poisson equations (a plate model degenerates towards an
elastic membrane problem) when 𝜀 tends to zero.

Semper considers its conforming finite element methods
in [5].The regularity of the solution is analyzed, quasioptimal
global error estimates are presented when 𝜀 > ℎ, and local

analysis is also done by using techniques of Nitsche and
Schatz [6] and Schatz and Wahlbin [7]. The author points
out that the method behaves poorly when the perturbation
parameter is much smaller than the mesh size by some
numerical experiments.

On the other hand, it is well known that when fourth-
order problems are discretized by a finite elementmethod, the
standard variational formulation will require the piecewise
smooth functions in 𝐶

1 space. However, it is very difficult
to construct such functions, and even if we can do that,
the element will be rather complicated. Hence a common
approach to solve this problem is to use nonconforming finite
elements which violate the𝐶1-continuity requirement. In this
case, two convergence criteria are generally employed: the
Patch-Test [8] is used widely in engineers, but it is neither
necessary nor sufficient; the Generalized Patch-Test [9] is
proved to be the sufficient and necessary condition, while
in practice it is often hard to be verified. To overcome the
difficulty, the F-E-M criteria were proposed in [10] to make
the test tractable.

Many successful nonconforming plate elements have
been constructed (e.g., see [2, 3, 9–17]), but not all of them
are convergent uniformly for (1) with respect to perturbation
parameter 𝜀.The very simple nonconformingMorley element
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(see [18]), which is convergent (cf. [19, 20]) and even has some
superconvergent properties under uniform meshes for plate
problems, see [21], however, is proved to be not uniformly
convergent for (1) in [3] when 𝜀 → 0, that is; it may diverge
for second order problem like Poisson equation (see also
[22]). It is considered that themain reason for this degeneracy
is the fact that the finite element space is not a subspace
of 𝐻1(Ω). Indeed, it is not of 𝐶0 type. A counterexample is
given in [3]. For more discussions on this element, we refer
to [3, 19, 22]. As an alternative, a new modified 𝐶0 element is
proposed in [3], which is robust with respect to the parameter
𝜀.

In [12], the convergence analysis of a nonconform-
ing incomplete biquadratic rectangular plate element with
the shape function space and the degrees of freedom
𝑃(𝐾) = span{1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, 𝑥2𝑦, 𝑥𝑦2} and Σ

𝐾
=

{V
𝑖
, (𝜕V/𝜕𝑛)(𝐵

𝑖
) (𝑖 = 1, 2, 3, 4)}, respectively, is studied, where

V
𝑖
is the function value at the vertex 𝑎

𝑖
of element 𝐾,

(𝜕V/𝜕𝑛)(𝐵
𝑖
) is the unit outer normal derivative value at the

middle point 𝐵
𝑖
of the edge 𝑙

𝑖
of 𝐾, and 𝑛 = (𝑛

𝑥
, 𝑛
𝑦
) is the

unit outer normal vector to 𝑙
𝑖
. This element, similar to the

famous triangular Morley element [3, 18, 19, 23], is also a non
𝐶
0 element, and its convergence order 𝑂(ℎ) was given based

on the Generalized Patch-Test. In [24], a modified element is
provided by replacing the degrees of freedom and the shape
function of [12] with Σ

𝐾
= {V
𝑖
, (1/|𝑙
𝑖
|) ∫
𝑙𝑖

(𝜕V/𝜕𝑛)𝑑𝑠 (𝑖 =

1, 2, 3, 4)} and 𝑃(𝐾) = span{1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, 𝑥3, 𝑦3}, respec-
tively. Recently, [2] applied the modified Morley element
of [24] to the fourth-order elliptic singular perturbation
problem and proved the convergence uniformly in the per-
turbation parameter. However, all the studies above are based
on the traditional regular triangulations.

In this paper we will present another improved element
by using the same degrees of freedom of [2] and the same
shape function space of [12]. Obviously, the above element is
convergent for fourth-order plate bending problems accord-
ing to FEM test in [10]. However, to our knowledge, there
is no literature considering the convergence of this element
for fourth-order singular perturbation problems. Here, we
will show that this element is not uniformly convergent for
fourth-order singular perturbation problems with respect to
the perturbation parameter 𝜀 with a counterexample pre-
sented. Moreover, the convergence results are presented even
under anisotropic meshes when the modified approximation
formulation in [3] is employed.

The paper is organized as follows. The next section lists
some preliminaries and the construction of the element.
In Section 3, a counterexample is presented. In Section 4,
the convergence results under the quasiuniform assumption
and anisotropicmeshes are provided.Numerical experiments
are carried out in last section to confirm the theoretical
analysis.

2. Premilinaries

Denote the inner product on 𝐿2(Ω) by (⋅, ⋅), the usual Sobolev
space, norm, and seminorm by 𝐻

𝑚
(Ω), ‖ ⋅ ‖

𝑚
, and | ⋅ |

𝑚
,

respectively. The space 𝐻
𝑚

0
(Ω) is the closure in 𝐻

𝑚
(Ω) of

𝐶
∞

0
(Ω). Equivalently, we have

𝐻
1

0
(Ω) = {V ∈ 𝐻

1
(Ω) ; V|𝜕Ω = 0} ,

𝐻
2

0
(Ω) = {V ∈ 𝐻

2
(Ω) ; V|𝜕Ω =

𝜕V
𝜕𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜕Ω

= 0} .

(2)

Let𝐷𝑢 be the gradient of𝑢 and let𝐷2𝑢 = (𝜕
2
𝑢/𝜕𝑥
𝑖
𝜕𝑥
𝑗
)
2×2

be the 2×2 tensor of the second order partial derivatives (𝑥 =

𝑥
1
, 𝑦 = 𝑥

2
). Define

𝑎 (𝑢, V) = ∫

Ω

𝐷
2
𝑢 : 𝐷
2V𝑑𝑥 𝑑𝑦, ∀𝑢, V ∈ 𝐻

2
(Ω) ,

𝑏 (𝑢, V) = ∫

Ω

𝐷𝑢 ⋅ 𝐷V𝑑𝑥 𝑑𝑦, ∀𝑢, V ∈ 𝐻
1
(Ω) .

(3)

Then the weak form of (1) reads: find 𝑢 ∈ 𝐻
2

0
(Ω), such that

𝜀
2
𝑎 (𝑢, V) + 𝑏 (𝑢, V) = (𝑓, V) , ∀V ∈ 𝐻

2

0
(Ω) . (4)

By Green’s formula, it is easy to get

∫

Ω

𝐷
2
𝑢 : 𝐷
2V𝑑𝑥 𝑑𝑦 = ∫

Ω

Δ𝑢ΔV𝑑𝑥𝑑𝑦, ∀𝑢, V ∈ 𝐻
2

0
(Ω) .

(5)

However, it does not hold on nonconforming finite element
spaces.

Without loss of generality, we assume that the edges of
Ω are parallel to the 𝑥, 𝑦 axis. For mesh size ℎ, a rectangular
triangulation T

ℎ
of Ω is then formed by lines also parallel

to 𝑥, 𝑦 axis. Let 𝐾 ∈ T
ℎ
be a rectangle with the central

point (0, 0), 2ℎ
𝑥
and 2ℎ

𝑦
the lengths of edges parallel to 𝑥

axis and 𝑦 axis, respectively, ℎ
𝐾
= max{ℎ

𝑥
, ℎ
𝑦
}, 𝑎
1
(−ℎ
𝑥
, −ℎ
𝑦
),

𝑎
2
(ℎ
𝑥
, −ℎ
𝑦
), 𝑎
3
(ℎ
𝑥
, ℎ
𝑦
), and 𝑎

4
(−ℎ
𝑥
, ℎ
𝑦
) the four vertices, 𝑙

𝑖
=

󳨀󳨀󳨀󳨀→
𝑎
𝑖
𝑎
𝑖+1

(𝑖 = 1, 2, 3, 4, mod (4)). Let 𝐾̂ be a reference element in
(𝜉, 𝜂) plane with central point (0,0), four vertices 𝑎

1
(−1, −1),

𝑎
2
(1, −1), 𝑎

3
(1, 1), and 𝑎

4
(−1, 1), and four edgeŝ𝑙

𝑖
=

󳨀󳨀󳨀󳨀→

𝑎
𝑖
𝑎
𝑖+1

,
(𝑖 = 1, 2, 3, 4, mod(4)). Then there exists a reversible map-
ping 𝐹

𝐾
: 𝐾̂ → 𝐾:

𝑥 = ℎ
𝑥
𝜉,

𝑦 = ℎ
𝑦
𝜂.

(6)

On 𝐾 we define the finite element (𝐾, 𝑃(𝐾), Σ
𝐾
) as:

𝑃 (𝐾) = 𝑃
2
(𝐾) ∪ {𝑥

2
𝑦, 𝑥𝑦
2
} ,

Σ
𝐾
= {V
𝑖
,

1

󵄨
󵄨
󵄨
󵄨
𝑙
𝑖

󵄨
󵄨
󵄨
󵄨

∫

𝑙𝑖

𝜕V
𝜕𝑛

𝑑𝑠, (𝑖 = 1, 2, 3, 4)} ,

(7)

where 𝑃
2
(𝐾) denotes the set of quadratic polynomials on

element𝐾. Then it is easy to check that 𝑃(𝐾) can be uniquely
determined by the degrees of freedom Σ

𝐾
. The degrees of

freedom are plotted in Figure 1.
For every V ∈ 𝐻

3
(Ω), we define the interpolation operator

Π
ℎ
as Π
ℎ
V|
𝐾
= Π
𝐾
V, and Π

𝐾
satisfies

V ∈ 𝐻
3
(𝐾) 󳨀→ Π

𝐾
V ∈ 𝑃 (𝐾) , (8)
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Figure 1: The degrees-of-freedom of incomplete biquadratic ele-
ment.

such that

Π
𝐾
V (𝑎
𝑖
) = V (𝑎

𝑖
) ,

1

󵄨
󵄨
󵄨
󵄨
𝑙
𝑖

󵄨
󵄨
󵄨
󵄨

∫

𝑙𝑖

𝜕Π
𝐾
V

𝜕𝑛

𝑑𝑠 =

1

󵄨
󵄨
󵄨
󵄨
𝑙
𝑖

󵄨
󵄨
󵄨
󵄨

∫

𝑙𝑖

𝜕V
𝜕𝑛

𝑑𝑠, (𝑖 = 1, 2, 3, 4) .

(9)

It can be checked that

Π
𝐾
V = V, ∀V ∈ 𝑃

2
(𝐾) . (10)

Let 𝑉
ℎ
be the associated finite element space defined by

𝑉
ℎ
= {V; V|𝐾 ∈ 𝑃 (𝐾) , ∀𝐾 ∈ T

ℎ
, V (𝑎) = 0,

∫

𝑙

[

𝜕V
𝜕𝑛

] 𝑑𝑠 = 0, ∀node 𝑎 ∈ 𝜕Ω, ∀𝑙 ⊂ 𝜕𝐾} ,

(11)

where [𝜕V/𝜕𝑛] is the jump value of 𝜕V/𝜕𝑛 on 𝑙 ⊂ 𝜕𝐾 and
[𝜕V/𝜕𝑛] = 𝜕V/𝜕𝑛 if 𝑙 ⊂ 𝜕Ω.

Then the corresponding finite element approximation of
(4) is as follows: find 𝑢

ℎ
∈ 𝑉
ℎ
, such that

𝜀
2
𝑎
ℎ
(𝑢
ℎ
, V
ℎ
) + 𝑏
ℎ
(𝑢
ℎ
, V
ℎ
) = (𝑓, V

ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
, (12)

where for all 𝑢
ℎ
, V
ℎ
∈ 𝑉
ℎ
,

𝑎
ℎ
(𝑢
ℎ
, V
ℎ
) = ∑

𝑇∈Tℎ

∫

𝑇

𝐷
2
𝑢
ℎ
: 𝐷
2V
ℎ
𝑑𝑥 𝑑𝑦,

𝑏
ℎ
(𝑢
ℎ
, V
ℎ
) = ∑

𝑇∈Tℎ

∫

𝑇

𝐷𝑢
ℎ
⋅ 𝐷V
ℎ
𝑑𝑥 𝑑𝑦.

(13)

Next, we will present the modified discretization form of
problem (4) in [2].

LetΠ1
ℎ
be the interpolation operator of the Lagrange bilin-

ear rectangular element corresponding to the triangulation
T
ℎ
. The modified finite element method of (4) reads as: find

𝑢
ℎ
∈ 𝑉
ℎ
, such that

𝜀
2
𝑎
ℎ
(𝑢
ℎ
, V
ℎ
) + 𝑏
ℎ
(Π
1

ℎ
𝑢
ℎ
, Π
1

ℎ
V
ℎ
) = (𝑓,Π

1

ℎ
V
ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
.

(14)

Note that the problem has a unique solution when 𝜀 > 0, but
when 𝜀 = 0, the problem degenerates to

𝑏
ℎ
(Π
1

ℎ
𝑢
ℎ
, Π
1

ℎ
V
ℎ
) = (𝑓,Π

1

ℎ
V
ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
, (15)

in this case,Π1
ℎ
𝑢
ℎ
is uniquely determined, though the solution

𝑢
ℎ
is not unique.
We introduce the samemesh dependent norm ‖ ⋅ ‖

𝑚,ℎ
and

semi–norm | ⋅ |
𝑚,ℎ

on space 𝑉
ℎ
+ 𝐻
𝑚:

‖⋅‖𝑚,ℎ
= ( ∑

𝐾∈Tℎ

‖⋅‖
2

𝑚,𝐾
)

1/2

, |⋅|𝑚,ℎ
= ( ∑

𝐾∈Tℎ

|⋅|
2

𝑚,𝐾
)

1/2

,

𝑚 = 0, 1, 2, 3.

(16)

The energy norm is defined by
󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
V
ℎ

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩𝜀,ℎ

= 𝜀
2
𝑎
ℎ
(V
ℎ
, V
ℎ
) + 𝑏
ℎ
(Π
1

ℎ
V
ℎ
, Π
1

ℎ
V
ℎ
) . (17)

3. A Counterexample

In this section, we construct a counterexample to show
that the element presented in Section 2 is not convergent
uniformly with respect to the perturbation parameter 𝜀. That
means if the element is applied to a nearly second order
problem with the form of (1) when 𝜀 → 0, the convergence
rate of the method will deteriorate. In fact, like the Morley
element, when it is applied to a second order equation like
Poisson’s equation, the method will diverge.

As in [3], we consider the slightly modified reduced
problem

−Δ𝑢 = 𝑓, in Ω,

𝑢 = 0, on Γ
𝐷
,

𝜕𝑢

𝜕𝑛

= 𝑔, on Γ
𝑁
,

(18)

to simplify some calculations. Assume 𝜕Ω = Γ
𝐷
∪ Γ
𝑁
, where

Γ
𝑁
and Γ
𝐷
are disjoint subsets of 𝜕Ω.This problem is a second

order problem with mixed boundary conditions, which can
be regarded as the formal limit of the fourth-order problems

𝜀
2
Δ
2
𝑢 − Δ𝑢 = 𝑓, in Ω,

𝑢 = 0, on Γ
𝐷
,

𝜕

𝜕𝑛

(𝑢 − 𝜀
2
Δ𝑢) = 𝑔, on Γ

𝑁
,

Δ𝑢 = 0, on 𝜕Ω.

(19)

Let T
ℎ
be a triangulation of Ω, and let 𝑉̃

ℎ
be the

finite element space of incomplete biquadratic plate element
corresponding to the boundary conditions of (18) here; see
Figure 2. Then the approximation problem to (18) reads as:
find 𝑢

ℎ
∈ 𝑉̃
ℎ
, such that

𝑏
ℎ
(𝑢
ℎ
, V
ℎ
) = (𝑓, V

ℎ
) + ⟨𝑔, V

ℎ
⟩, ∀V

ℎ
∈ 𝑉̃
ℎ
, (20)



4 Abstract and Applied Analysis

ΓN

ΓNΓD

ΓD

x

y

1

1O

h

Figure 2: The triangulation of Ω.

where ⟨𝑔, V
ℎ
⟩ = ∫
Γ𝑁

𝑔V
ℎ
𝑑𝑠, 𝑑𝑠 denotes the arc length along Γ

𝑁
.

Moreover, the exact solution 𝑢 of (18) satisfies

𝑏
ℎ
(𝑢, V
ℎ
) = (𝑓, V

ℎ
) + ⟨𝑔, V

ℎ
⟩ + 𝐸
ℎ
(𝑢, V
ℎ
) , ∀V

ℎ
∈ 𝑉̃
ℎ
, (21)

where

𝐸
ℎ
(𝑢, V
ℎ
) = 𝑏
ℎ
(𝑢, V
ℎ
) − (𝑓, V

ℎ
) − ⟨𝑔, V

ℎ
⟩. (22)

Let ‖| ⋅ |‖
ℎ
be the corresponding energy normof problem (18),

that is, ‖| ⋅ |‖
ℎ
= 𝑏
ℎ
(⋅, ⋅). Then, employing Cauchy-Schwarz

inequality (we refer to [3]), we have

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑢
ℎ

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩ℎ

≥ sup
Vℎ∈𝑉̃ℎ

󵄨
󵄨
󵄨
󵄨
𝐸
ℎ
(𝑢, V
ℎ
)
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
V
ℎ

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩ℎ

. (23)

In the following, we will choose a suitable exact solution 𝑢 to
prove the divergence of the method by virtue of (23).

The domainΩ is taken as the unit square. To simplify the
analytic process, the uniform triangulationwith themesh size
1/𝑛 is employed. Assume Γ

𝐷
to be the intersection of 𝜕Ωwith

the coordinate axis, while Γ
𝑁
to be the part of 𝜕Ω on 𝑥 = 1

and 𝑦 = 1. Hence, the functions in finite element space 𝑉̃
ℎ
are

zeros at the vertices on the coordinate axis.
We assume that the exact solution of (18) is given by 𝑢 =

𝑥𝑦. Thus, 𝑔 = 𝑥 on 𝑦 = 1 and 𝑔 = 𝑦 on 𝑥 = 1. Obviously, 𝑢 is
harmonic, which means 𝑓 = 0. Therefore:

𝐸
ℎ
(𝑢, V
ℎ
) = 𝑏
ℎ
(𝑢, V
ℎ
) − ⟨𝑔, V

ℎ
⟩ . (24)

Note that 𝑢 ∈ 𝑉̃
ℎ
, thus Π

ℎ
𝑢 = 𝑢 and here Π

ℎ
is the finite

element interpolation on 𝑉̃
ℎ
. Similar to the discussion in [3],

it is easy to derive that finite element space 𝑉̃
ℎ
can be naturally

decomposed into two spaces:

𝑉̃
ℎ
= 𝑉̃

V
ℎ
+ 𝑉̃
𝑒

ℎ
, (25)

where 𝑉̃V
ℎ
and 𝑉̃𝑒
ℎ
correspond to the vertex values and the edge

values, respectively. In fact, the two spaces can be expressed
as

𝑉̃
V
ℎ
= {V
ℎ
∈ 𝑉̃
ℎ
: ∫

𝑒

𝜕V
ℎ

𝜕𝑛

𝑑𝑠 = 0, ∀𝑒 ∈ E
ℎ
} ,

𝑉̃
𝑒

ℎ
= {V
ℎ
∈ 𝑉̃
ℎ
: V
ℎ
(𝑥) = 0, ∀𝑥 ∈ X

ℎ
} ,

(26)

whereE
ℎ
andX

ℎ
represent the sets of the edges and vertices

corresponding to the triangulationT
ℎ
, respectively. Let 𝑢V

ℎ
be

the interpolant of 𝑢 onto 𝑉̃V
ℎ
, then, according to its definition,

we can get

𝑢
V
ℎ
(𝑥) = 𝑢 (𝑥) , ∀𝑥 ∈ X

ℎ
,

∫

𝑒

𝜕𝑢
V
ℎ

𝜕𝑛

𝑑𝑠 = 0, ∀𝑒 ∈ E
ℎ
.

(27)

We begin to prove that the limit lim
ℎ→0

(|𝐸
ℎ
(𝑢, V
ℎ
)|/

‖|V
ℎ
|‖
ℎ
) is strictly positive, so we can show from (23) that the

method is divergent.
In [3], the authors proved for Morley element, the

decomposition of space 𝑉̃
ℎ
is orthogonal, while it does not

hold any more for this incomplete biquadratic plate element.
However, in the mesh fashion chosen before, for any element
𝐾 ∈ T

ℎ
, the length of each edge is 2ℎ = 1/𝑛. Let the center

point of 𝐾 be (𝑥
0
, 𝑦
0
), then by the definition of the space 𝑉̃V

ℎ
,

direct calculation implies the expression of 𝑢V
ℎ
on element𝐾:

𝑢
V
ℎ
= 𝑥
0
𝑦
0
+

1

2

𝜂 (3𝜉
2
− 1) 𝑥

0
ℎ +

1

2

𝜉 (3𝜂
2
− 1) 𝑦

0
ℎ + 𝜉𝜂ℎ

2
,

(28)

where

𝜉 =

(𝑥 − 𝑥
0
)

ℎ

, 𝜂 =

(𝑦 − 𝑦
0
)

ℎ

. (29)

We denote the element [−1, 1] × [−1, 1] on (𝜉, 𝜂) plane by the
reference element 𝐾̂. Apparently, the mapping from 𝐾̂ to𝐾 is
affine, hence we have

𝜕𝑢
V
ℎ

𝜕𝑥

= 3𝜉𝜂𝑥
0
+

1

2

(3𝜂
2
− 1) 𝑦

0
+ 𝜂ℎ,

𝜕𝑢
V
ℎ

𝜕𝑦

= 3𝜉𝜂𝑦
0
+

1

2

(3𝜉
2
− 1) 𝑥

0
+ 𝜉ℎ,

(30)

moreover, 𝜕𝑢/𝜕𝑥 = 𝑦, 𝜕𝑢/𝜕𝑦 = 𝑥, and then

∫

𝐾

𝐷𝑢 ⋅ 𝐷𝑢
V
ℎ
𝑑𝑥 𝑑𝑦

= ∫

𝐾

𝜕𝑢

𝜕𝑥

𝜕𝑢
V
ℎ

𝜕𝑥

+

𝜕𝑢

𝜕𝑦

𝜕𝑢
V
ℎ

𝜕𝑦

𝑑𝑥 𝑑𝑦

= ℎ
2
∫

𝐾̂

(ℎ𝜂 + 𝑦
0
) (3𝜉𝜂𝑥

0
+

1

2

(3𝜂
2
− 1) 𝑦

0
+ 𝜂ℎ)

+ (ℎ𝜉 + 𝑥
0
) (3𝜉𝜂𝑦

0
+

1

2

(3𝜉
2
− 1) 𝑥

0
+ 𝜉ℎ) 𝑑𝜉 𝑑𝜂

= ℎ
2
∫

1

−1

∫

1

−1

(ℎ
2
𝜂
2
+ ℎ
2
𝜉
2
) 𝑑𝜉 𝑑𝜂

=

4

3

ℎ
4
,

(31)

thus

lim
ℎ→0

𝑏
ℎ
(𝑢, 𝑢

V
ℎ
) = lim
ℎ→0

∑

𝐾∈Tℎ

4

3

ℎ
4
= lim
ℎ→0

𝑛
2 4

3

ℎ
4
= lim
ℎ→0

1

3

ℎ
2
= 0.

(32)
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On the other hand, denoting the edges of Ω on 𝑦 = 1 and
𝑥 = 1 by Γ

𝑁1
and Γ
𝑁2
, respectively, we have

⟨𝑔, 𝑢
V
ℎ
⟩ = ∫

Γ𝑁

𝑔𝑢
V
ℎ
𝑑𝑠 = ∫

Γ𝑁1

𝑔𝑢
V
ℎ
𝑑𝑠 + ∫

Γ𝑁2

𝑔𝑢
V
ℎ
𝑑𝑠. (33)

We first consider the first term, let those components of E
ℎ

lying on Γ
𝑁1

be 𝑙
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, and let the corresponding

element be 𝐾
𝑖
, the center point of 𝐾

𝑖
be (𝑥
𝑖
, 𝑦
∗
), where 𝑥

𝑖
=

(2𝑖 − 1)/2𝑛 = ℎ(2𝑖 − 1), 𝑦
∗
= (2𝑛 − 1)/2𝑛 = 1 − ℎ. Then

∫

𝑙𝑖

𝑔𝑢
V
ℎ
𝑑𝑠

= ℎ∫

𝑙̂𝑖

(ℎ𝜉 + 𝑥
𝑖
) (𝑥
𝑖
𝑦
∗
+

1

2

𝜂 (3𝜉
2
− 1) 𝑥

𝑖
ℎ

+

1

2

𝜉 (3𝜂
2
− 1) 𝑦

∗
ℎ + 𝜉𝜂ℎ

2
)𝑑𝑠

= ℎ∫

1

−1

(ℎ𝜉 + 𝑥
𝑖
)

× (𝑥
𝑖
𝑦
∗
+

1

2

𝜂 (3𝜉
2
− 1) 𝑥

𝑖
ℎ + 𝜉𝑦

∗
ℎ + 𝜉ℎ

2
)𝑑𝜉

= 2ℎ (

1

3

𝑦
∗
ℎ
2
+

1

3

ℎ
3
+ 𝑥
2

𝑖
𝑦
∗
) ,

(34)

thus

∫

Γ𝑁1

𝑔𝑢
V
ℎ
𝑑𝑠 =

𝑛

∑

𝑖=1

2ℎ(

1

3

(1 − ℎ) ℎ
2
+

1

3

ℎ
3

+(

2𝑖 − 1

2𝑛

)

2

(1 − ℎ))

=

𝑛

∑

𝑖=1

2ℎ (

1

3

(1 − ℎ) ℎ
2
+

1

3

ℎ
3

+ℎ
2
(2𝑖 − 1)

2
(1 − ℎ) )

=

1

3

ℎ
2
+ 2ℎ
3
(1 − ℎ)

× (

(2ℎ + 1) (ℎ + 1)

6ℎ
3

−

2ℎ + 1

2ℎ
2

+

1

2ℎ

) .

(35)

Therefore, by a limit process, we can obtain

lim
ℎ→0

∫

Γ𝑁1

𝑔𝑢
V
ℎ
𝑑𝑠 =

1

3

. (36)

Similarly, for ∫
Γ𝑁2

𝑔𝑢
V
ℎ
𝑑𝑠, we have

∫

Γ𝑁2

𝑔𝑢
V
ℎ
𝑑𝑠

=

𝑛

∑

𝑖=1

2ℎ(

1

3

(1 − ℎ) ℎ
2
+

1

3

ℎ
3
+ (

2𝑖 − 1

2𝑛

)

2

(1 − ℎ))

= ∫

Γ𝑁1

𝑔𝑢
V
ℎ
𝑑𝑠,

(37)

this immediately leads to

lim
ℎ→0

∫

Γ𝑁2

𝑔𝑢
V
ℎ
𝑑𝑠 =

1

3

. (38)

Finally, since ‖|𝑢
V
ℎ
|‖
2

ℎ
= 𝑏

ℎ
(𝑢

V
ℎ
, 𝑢

V
ℎ
) =

∑
𝐾∈Tℎ

∫
𝐾
|𝐷𝑢

V
ℎ
|
2
𝑑𝑥 𝑑𝑦, and

∫

𝐾

󵄨
󵄨
󵄨
󵄨
𝐷𝑢

V
ℎ

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑦 = ∫

𝐾

(

𝜕𝑢
V
ℎ

𝜕𝑥

)

2

+ (

𝜕𝑢
V
ℎ

𝜕𝑦

)

2

𝑑𝑥 𝑑𝑦

= ℎ
2
∫

𝐾̂

(3𝜉𝜂𝑥
0
+

1

2

(3𝜂
2
− 1) 𝑦

0
+ 𝜂ℎ)

2

+ (3𝜉𝜂𝑦
0
+

1

2

(3𝜉
2
− 1) 𝑥

0
+ 𝜉ℎ)

2

𝑑𝜉 𝑑𝜂

=

24

5

ℎ
2
(𝑥
2

0
+ 𝑦
2

0
) +

8

3

ℎ
4
,

(39)

we can verify that

𝑏
ℎ
(𝑢

V
ℎ
, 𝑢

V
ℎ
) = ∑

𝐾∈Tℎ

(

24

5

ℎ
2
(𝑥
2

0
+ 𝑦
2

0
) +

8

3

ℎ
4
)

=

24

5

ℎ
4
2𝑛

𝑛

∑

𝑖=1

(2𝑖 − 1)
2
+

2

3

ℎ
2

=

4

5

(1 + 2ℎ
2
) +

2

3

ℎ
2
.

(40)

From this expression we obtain that

lim
ℎ→0

𝑏
ℎ
(𝑢

V
ℎ
, 𝑢

V
ℎ
) =

4

5

. (41)

This together with (32), (36), and (38) implies

lim
ℎ→0

󵄨
󵄨
󵄨
󵄨
𝐸
ℎ
(𝑢, 𝑢

V
ℎ
)
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝑢
V
ℎ

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩ℎ

= lim
ℎ→0

󵄨
󵄨
󵄨
󵄨
𝑏
ℎ
(𝑢, 𝑢

V
ℎ
) − ⟨𝑔, 𝑢

V
ℎ
⟩
󵄨
󵄨
󵄨
󵄨

𝑏
ℎ
(𝑢

V
ℎ
, 𝑢

V
ℎ
)
1/2

=

2/3

√4/5

=

√5

3

.

(42)

The divergence of the method is therefore a consequence of
the basic lower bound (23).

4. Convergence Analysis in a Modified
Discretization Form

In the last section, we provide a counterexample to show that
the incomplete biquadratic plate element may diverge for a
second order problem like Poisson equation, and hence, in
the standard finite element approximation, the convergence
can not be insured for problem (1). In [2], a new modified
approximation form is presented for Morley element and
another Morley type rectangular element. In this section,
we will show that the incomplete biquadratic plate element
is convergent for problem (1) uniformly with respect to the
parameter 𝜀 under anisotropic meshes.

To begin with, we introduce the following error estimate
regarding the operator Π1

ℎ
on anisotropic meshes, as to its

proof, we refer to [25].
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Lemma 1. For the bilinear interpolation operator Π1
ℎ
, for all

𝑢 ∈ 𝐻
2
(Ω), there holds

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − Π

1

ℎ
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩0,Ω

+ ℎ

󵄩
󵄩
󵄩
󵄩
󵄩
∇(𝑢 − Π

1

ℎ
𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩0,Ω

≤ 𝐶ℎ
2
|𝑢|2,Ω

, (43)

where 𝐶 is a constant independent of triangulation.

Denote the quadratic part of the interpolant function Π̂V̂
by Π̂V̂ and the corresponding part of the functionΠ

𝐾
V on the

element𝐾 by Π
𝐾
V, then we can get the following lemma.

Lemma 2. For any 𝐾 ∈ T
ℎ
, for all V ∈ 𝐻

2
(𝐾), without

the regular or quasiuniform assumption, we have the following
estimate:

󵄨
󵄨
󵄨
󵄨
󵄨
V − Π
1

𝐾
Π
𝐾
V
󵄨
󵄨
󵄨
󵄨
󵄨1,𝐾

≤ 𝐶ℎ|V|2,𝐾, ∀V ∈ 𝐻
2
(𝐾) . (44)

Proof. Apparently, Π1
𝐾
Π
𝐾
V can be considered as an inter-

polant of V on 𝑄
1
(𝐾). For simplicity, we denote it by Π̃V. We

first show that on the reference element 𝐾̂, for multi-index
|𝛼| = 1,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐷
𝛼
(V̂ − ̂

Π̃V̂)
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩0,𝐾̂

≤ 𝐶

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
𝛼V̂
󵄨
󵄨
󵄨
󵄨
󵄨1,𝐾̂

. (45)

For the convenience of notations, we denote degrees-of-
freedomby V(𝑎

𝑖
) = V
𝑖
, (1/|𝑙
𝑖
|) ∫
𝑙𝑖

(𝜕V/𝜕𝑛)𝑑𝑠 = V
𝑖+4

, 𝑖 = 1, 2, 3, 4.
Correspondingly, V̂(𝑎

𝑖
) = V̂

𝑖
, (1/|̂𝑙

𝑖
|) ∫
𝑙̂𝑖

(𝜕V̂/𝜕𝑛)𝑑𝑠 = V̂
𝑖+4

,
𝑖 = 1, 2, 3, 4. Hence, for all V̂ ∈ 𝐻

1
(𝐾̂), direct computation

provides the expression of ̂Π̃V̂:

̂
Π̃V̂ = 𝛽

0
+ 𝛽
1
𝜉 + 𝛽
2
𝜂 + 𝛽
3
𝜉𝜂, (46)

where

𝛽
0
=

1

4

(V̂
1
+ V̂
2
+ V̂
3
+ V̂
4
) ,

𝛽
1
=

1

8

(V̂
1
− V̂
2
− V̂
3
+ V̂
4
) +

3

4

(V̂
6
− V̂
8
) ,

𝛽
2
=

1

8

(V̂
1
+ V̂
2
− V̂
3
+ V̂
4
) −

3

4

(V̂
5
− V̂
7
) ,

𝛽
3
=

1

4

(V̂
1
− V̂
2
+ V̂
3
− V̂
4
) ,

(47)

thus, when 𝛼 = (1, 0), we have

𝐷
𝛼
(
̂
Π̃V̂) = 𝛽

1
+ 𝛽
3
𝜂. (48)

Obviously, {1, 𝜂} is a basis of𝐷𝛼𝑄
1
. Moreover, let 𝑤 = 𝜕V̂/𝜕𝜉,

we can get

𝛽
1
=

1

8

(V̂
1
− V̂
2
− V̂
3
+ V̂
4
) +

3

4

(V̂
6
− V̂
8
)

= −

1

8

∫

1

−1

(

𝜕V̂
𝜕𝜉

(𝜉, −1) +

𝜕V̂
𝜕𝜉

(𝜉, 1)) 𝑑𝜉

+

3

8

∫

1

−1

(

𝜕V̂
𝜕𝜉

(1, 𝜂) +

𝜕V̂
𝜕𝜉

(−1, 𝜂)) 𝑑𝜂

= −

1

8

∫

1

−1

∫

1

−1

𝜕

𝜕𝜂

(𝜂

𝜕V̂
𝜕𝜉

) 𝑑𝜉 𝑑𝜂

+

3

8

∫

1

−1

∫

1

−1

𝜕

𝜕𝜉

(𝜉

𝜕V̂
𝜕𝜉

) 𝑑𝜉 𝑑𝜂

=: 𝐹
1
(𝑤) ,

𝛽
3
=

1

4

(V̂
1
− V̂
2
+ V̂
3
− V̂
4
)

=

1

4

∫

1

−1

(

𝜕V̂
𝜕𝜉

(𝜉, 1) −

𝜕V̂
𝜕𝜉

(𝜉, −1)) 𝑑𝜉

=

1

4

∫

1

−1

∫

1

−1

𝜕
2V̂

𝜕𝜉𝜕𝜂

𝑑𝜉 𝑑𝜂

=: 𝐹
2
(𝑤) .

(49)

By Hölder’s inequality, 𝐹
𝑗
(𝑤) (𝑗 = 1, 2) is a bounded linear

functional on𝐻1(𝐾̂).Therefore, by the basic theorem in [26],
(45) holds. Then,

󵄩
󵄩
󵄩
󵄩
󵄩
(V − Π̃V)

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝐾
= ℎ
−2

𝑥
ℎ
𝑥
ℎ
𝑦

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(V̂ − ̂
Π̃V̂)
𝜉

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝐾̂

≤ 𝐶ℎ
−2

𝑥
ℎ
𝑥
ℎ
𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
V̂
𝜉

󵄨
󵄨
󵄨
󵄨
󵄨

2

1,𝐾̂

= 𝐶ℎ
−2

𝑥
ℎ
𝑥
ℎ
𝑦
(

󵄨
󵄨
󵄨
󵄨
󵄨
V̂
𝜉𝜉

󵄨
󵄨
󵄨
󵄨
󵄨

2

0,𝐾̂
+

󵄨
󵄨
󵄨
󵄨
󵄨
V̂
𝜉𝜂

󵄨
󵄨
󵄨
󵄨
󵄨

2

0,𝐾̂
)

= 𝐶ℎ
−2

𝑥
(ℎ
4

𝑥

󵄨
󵄨
󵄨
󵄨
V
𝑥𝑥

󵄨
󵄨
󵄨
󵄨

2

0,𝐾
+ ℎ
2

𝑥
ℎ
2

𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
V
𝑥𝑦

󵄨
󵄨
󵄨
󵄨
󵄨

2

0,𝐾
)

≤ 𝐶ℎ
2
|V|2
2,𝐾

.

(50)

The conclusion when 𝛼 = (0, 1) can be derived similarly, that
is,

󵄩
󵄩
󵄩
󵄩
󵄩
(V − Π̃V)

𝑦

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝐾
≤ 𝐶ℎ
2
|V|2
2,𝐾

. (51)

Equations (50) and (51) immediately imply the desired result.

The following error estimates can be found in [27].

Lemma 3. For all 𝑢 ∈ 𝐻
3
(Ω), without the regular or

quasiuniform assumption, the following estimates hold:
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − Π

ℎ
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ

≤

4ℎ

𝜋

|𝑢|
3
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝐾∈Tℎ

∫

𝜕𝐾

(Δ𝑢 −

𝜕
2
𝑢

𝜕𝑠
2
)

𝜕V
ℎ

𝜕𝑛

𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶ℎ|𝑢|
3

󵄨
󵄨
󵄨
󵄨
V
ℎ

󵄨
󵄨
󵄨
󵄨2,ℎ

, ∀V
ℎ
∈ 𝑉
ℎ
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝐾∈Tℎ

∫

𝜕𝐾

𝜕
2
𝑢

𝜕𝑠𝜕𝑛

𝜕V
ℎ

𝜕𝑠

𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶ℎ|𝑢|3

󵄨
󵄨
󵄨
󵄨
V
ℎ

󵄨
󵄨
󵄨
󵄨2,ℎ

, ∀V
ℎ
∈ 𝑉
ℎ
.

(52)

The following theorem shows that for any fixed 𝜀 ∈ (0, 1]

the new incomplete biquadratic element method converges
linearly with respect to ℎ.
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Theorem 4. Suppose 𝑢 and 𝑢
ℎ
are the solutions of (1) and

(14), respectively, 𝑢 ∈ 𝐻
3
(Ω), then without the quasiuniform

assumption and regular condition, there exists a constant 𝐶
independent of ℎ and 𝜀, such that

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑢
ℎ

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩𝜀,ℎ

≤ 𝐶ℎ (𝜀|𝑢|3,Ω
+ |𝑢|2,Ω

) . (53)

Proof. The second Strang lemma implies

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑢
ℎ

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩𝜀,ℎ

≤ 𝐶( inf
Vℎ∈𝑉ℎ

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑢
ℎ

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩𝜀,ℎ

+ sup
𝑤ℎ∈𝑉ℎ

󵄨
󵄨
󵄨
󵄨
𝐸
𝜀,ℎ
(𝑢, 𝑤
ℎ
)
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝑤
ℎ

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩𝜀,ℎ

) ,

(54)

where 𝐸
𝜀,ℎ
(𝑢, 𝑤
ℎ
) is the consistency error given by

𝐸
𝜀,ℎ
(𝑢, 𝑤
ℎ
) = 𝜀
2
𝑎
ℎ
(𝑢, 𝑤
ℎ
) + 𝑏 (Π

1

ℎ
𝑢,Π
1

ℎ
𝑤
ℎ
) − 𝑓 (Π

1

ℎ
𝑤
ℎ
) .

(55)

Furthermore, from Lemmas 1 and 2,

inf
Vℎ∈𝑉ℎ

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑢
ℎ

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩𝜀,ℎ

≤

󵄩
󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢 − Π

ℎ
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
󵄩𝜀,ℎ

= (𝜀
2󵄨󵄨
󵄨
󵄨
󵄨
𝑢 − Π

ℎ
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

2,ℎ
+

󵄨
󵄨
󵄨
󵄨
󵄨
Π
1

ℎ
𝑢 − Π

1

ℎ
Π
ℎ
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

1,ℎ
)

1/2

≤ 𝐶ℎ (𝜀|𝑢|3
+ |𝑢|2

) .

(56)

Hence, it suffices to estimate the consistency error𝐸
𝜀,ℎ
(𝑢, 𝑤
ℎ
).

Since 𝑢 ∈ 𝐻
3 and Π

1

ℎ
𝑤
ℎ
are continuous, it follows from

(1) that

(𝑓,Π
1

ℎ
𝑤
ℎ
) = ∫

𝜔

(−𝜀
2
𝐷 (Δ𝑢) + 𝐷𝑢)

⋅ 𝐷 (Π
1

ℎ
𝑤
ℎ
) 𝑑𝑥 𝑑𝑦, ∀𝑤

ℎ
∈ 𝑉
ℎ
.

(57)

By using the approximation formulation, the consistency
error can therefore be expressed as

𝐸
𝜀,ℎ
(𝑢, 𝑤
ℎ
)

= 𝜀
2
∑

𝐾∈Tℎ

∫

𝐾

(𝐷
2
𝑢 : 𝐷
2
𝑤
ℎ
+ 𝐷 (Δ𝑢) ⋅ 𝐷Π

1

ℎ
𝑤
ℎ
) 𝑑𝑥 𝑑𝑦

+ ∑

𝐾∈Tℎ

∫

𝐾

(𝐷Π
1

ℎ
𝑢 − 𝐷𝑢) ⋅ 𝐷Π

1

ℎ
𝑤
ℎ
𝑑𝑥 𝑑𝑦.

(58)

On the other hand,

𝐷
2
𝑢 : 𝐷
2
𝑤
ℎ
= Δ𝑢Δ𝑤

ℎ
+ (2𝑢

𝑥𝑦
V
𝑥𝑦
− 𝑢
𝑥𝑥
V
𝑦𝑦
− 𝑢
𝑦𝑦
V
𝑥𝑥
) ,

(59)

and by Green’s formula, 𝐸
𝜀,ℎ
(𝑢, 𝑤
ℎ
) can be rewritten as

𝐸
𝜀,ℎ
(𝑢, 𝑤
ℎ
) = 𝜀
2
∑

𝐾∈Tℎ

∫

𝐾

𝐷 (Δ𝑢) ⋅ 𝐷 (Π
1

ℎ
𝑤
ℎ
− 𝑤
ℎ
) 𝑑𝑥 𝑑𝑦

+ ∑

𝐾∈Tℎ

∫

𝐾

𝐷(Π
1

ℎ
𝑢 − 𝑢) ⋅ 𝐷Π

1

ℎ
𝑤
ℎ
𝑑𝑥 𝑑𝑦

+ 𝜀
2
∑

𝐾∈Tℎ

∫

𝜕𝐾

(Δ𝑢 −

𝜕
2
𝑢

𝜕𝑠
2
)

𝜕V
ℎ

𝜕𝑛

𝑑𝑠

+ 𝜀
2
∑

𝐾∈Tℎ

∫

𝜕𝐾

𝜕
2
𝑢

𝜕𝑠𝜕𝑛

𝜕V
ℎ

𝜕𝑠

𝑑𝑠.

(60)

It follows from Hölder’s inequality and Lemma 1 that

∑

𝐾∈Tℎ

∫

𝐾

𝐷 (Δ𝑢) ⋅ 𝐷 (Π
1

ℎ
𝑤
ℎ
− 𝑤
ℎ
) 𝑑𝑥 𝑑𝑦 ≤ 𝐶ℎ|𝑢|3

󵄨
󵄨
󵄨
󵄨
𝑤
ℎ

󵄨
󵄨
󵄨
󵄨2,ℎ

,

∑

𝐾∈Tℎ

∫

𝐾

𝐷(Π
1

ℎ
𝑢 − 𝑢) ⋅ 𝐷Π

1

ℎ
𝑤
ℎ
𝑑𝑥 𝑑𝑦 ≤ 𝐶ℎ|𝑢|3

󵄨
󵄨
󵄨
󵄨
󵄨
Π
1

ℎ
𝑤
ℎ

󵄨
󵄨
󵄨
󵄨
󵄨1,ℎ

.

(61)

Together with Lemma 3, we can immediately get the desired
estimate.

Remark 5. By Lemma 1 and the estimates above, we can
derive the same convergence result as in [2]:

𝜀
󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑢
ℎ

󵄨
󵄨
󵄨
󵄨2,ℎ

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢 − Π

1

ℎ
𝑢
ℎ

󵄨
󵄨
󵄨
󵄨
󵄨1,ℎ

≤ 𝐶ℎ (𝜀|𝑢|3,Ω
+ |𝑢|2,Ω

) . (62)

We should mention that the result here does not need the
quasiuniform assumptions. Moreover, similar discussions
can also lead to the following estimate when the meshes
satisfy the quasiuniform assumption

𝜀
󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑢
ℎ

󵄨
󵄨
󵄨
󵄨2,ℎ

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢 − Π

1

ℎ
𝑢
ℎ

󵄨
󵄨
󵄨
󵄨
󵄨1,ℎ

≤ 𝐶ℎ
1/2󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩0,Ω

. (63)

Remark 6. In the last section, a counterexample is presented
to show the possible divergence of incomplete biquadratic
plate element when applied to second order problem, but
the theorem above implicates that, when the approximation
formulation (14) is employed, the uniform convergence result
can be ensured even without the regular condition or quasi-
uniform assumption.

5. Numerical Experiments

In this section, numerical experiments are carried out to con-
firm our theoretical analysis of the incomplete biquadratic
element. We calculate several numerical examples for prob-
lem (1) in different approximation schemes. We consider
problem (1) with Ω = [0, 1]

2
⊂ 𝑅
2 and 𝑓 = 𝜀

2
Δ
2
𝑢 − Δ𝑢,

where 𝑢 = (sin𝜋𝑥 sin𝜋𝑦)2. The domainΩ is divided into the
following two fashions.

Mesh 1: square mesh. The mesh obtained in this way
for 𝑛 = 16 is illustrated in Figure 3(a).
Mesh 2: each edge of Ω is divided into 𝑛 segments
with 𝑛 + 1 points sin(𝜋𝑖/𝑛)/2, 𝑖 = 0, 1, . . . , 𝑛/2, 1 −

sin(𝜋𝑖/𝑛)/2, 𝑖 = 𝑛/2 + 1, . . . , 𝑛. The mesh obtained in
this way for 𝑛 = 16 is illustrated in Figure 3(b).

We first compute the relative errors in the energy norm
‖|𝑢 − 𝑢

ℎ
|‖
𝜀,ℎ
/‖|𝑢|‖

𝜀,ℎ
under mesh 1 when we use the standard



8 Abstract and Applied Analysis

(a) (b)

Figure 3: Mesh fashions: mesh 1 (a) and mesh 2 (b).
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101
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𝜀 = 2−8

𝜀 = 2−10

Poisson
Biharmonic

10−4

10−5

|u
−
u
h
| 0

󳰀 h

(b)

Figure 4: The errors ‖|𝑢 − 𝑢
ℎ
|‖
𝜀,ℎ
/‖|𝑢|‖

𝜀,ℎ
and ‖𝑢 − 𝑢

ℎ
‖
0
under mesh 1 in the formulation (12).

Table 1: The errors |‖𝑢 − 𝑢
ℎ
‖|
𝜀,ℎ
/|‖𝑢‖|

𝜀,ℎ
employing approximation form (12) under mesh 1.

𝜀 \ 𝑚 × 𝑛 8 × 8 16 × 16 32 × 32 64 × 64

2
0

3.5080𝑒 − 001 1.8514𝑒 − 001 9.3821𝑒 − 002 4.7068𝑒 − 002

2
−2

3.3197𝑒 − 001 1.7650𝑒 − 001 8.9611𝑒 − 002 4.4977𝑒 − 002

2
−4

3.9897𝑒 − 001 2.3228𝑒 − 001 1.2090𝑒 − 001 6.1071𝑒 − 002

2
−6

5.7470𝑒 − 001 5.3768𝑒 − 001 3.6322𝑒 − 001 2.0029𝑒 − 001

2
−8

5.4334𝑒 − 001 5.7884𝑒 − 001 6.0446𝑒 − 001 5.4125𝑒 − 001

2
−10

5.3774𝑒 − 001 5.5800𝑒 − 001 5.6811𝑒 − 001 5.8575𝑒 − 001

Poisson 5.3734𝑒 − 001 5.5616𝑒 − 001 5.6087𝑒 − 001 5.6205𝑒 − 001

Biharmonic 4.5852𝑒 − 002 2.4188𝑒 − 002 1.2255𝑒 − 002 6.1481𝑒 − 003
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‖|
u
−
u
h
|‖
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h
/‖
|u
|‖
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Figure 5: The errors ‖|𝑢 − 𝑢
ℎ
|‖
𝜀,ℎ
/‖|𝑢|‖

𝜀,ℎ
under mesh 1 (a) and mesh 2 (b).
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Figure 6: The error |𝑢 − 𝑢
ℎ
|
1
under mesh 1 (a) and mesh 2 (b).

finite element approximation, for different 𝜀 and ℎ. For a
comparison, we also consider the case when 𝜀 = 0, that is, the
Poisson equation with Dirichlet boundary conditions, and
the biharmonic problem

Δ
2
𝑢 = 𝑓, in Ω,

𝑢 =

𝜕𝑢

𝜕𝑛

= 0, on 𝜕Ω,
(64)

for this case, the corresponding relative error is presented by
|𝑢 − 𝑢

ℎ
|
2,ℎ
/|𝑢|
3
. From Table 1 we can see that if the standard

approximation scheme is applied, the method is divergent
when 𝜀 → 0.

We first present the relative errors in the energy norm
‖|𝑢 − 𝑢

ℎ
|‖
𝜀,ℎ
/‖|𝑢|‖

𝜀,ℎ
under mesh 1 when we use the standard

finite element approximation.
To see the numerical effectmore clearly, we plot the errors

‖|𝑢 − 𝑢
ℎ
|‖
𝜀,ℎ
/‖|𝑢|‖

𝜀,ℎ
and ‖𝑢 − 𝑢

ℎ
‖
0
under different meshes in
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Figure 7: The error |𝑢 − 𝑢
ℎ
|
0
under mesh 1 (a) and mesh 2 (b).

Table 2: The errors |‖𝑢 − 𝑢
ℎ
‖|
𝜀,ℎ
/|‖𝑢‖|

𝜀,ℎ
employing approximation form (14) under mesh 1.

𝜀 \ 𝑚 × 𝑛 8 × 8 16 × 16 32 × 32 64 × 64

2
0

3.6561𝑒 − 001 1.8595𝑒 − 001 9.3374𝑒 − 002 4.6737𝑒 − 002

2
−2

3.1147𝑒 − 001 1.5806𝑒 − 001 7.9321𝑒 − 002 3.9697𝑒 − 002

2
−4

1.4057𝑒 − 001 7.1356𝑒 − 002 3.5816𝑒 − 002 1.7925𝑒 − 002

2
−6

8.5681𝑒 − 002 4.4048𝑒 − 002 2.2146𝑒 − 002 1.1088𝑒 − 002

2
−8

8.1275𝑒 − 002 4.2229𝑒 − 002 2.1271𝑒 − 002 1.0642𝑒 − 002

2
−10

8.1006𝑒 − 002 4.2163𝑒 − 002 2.1281𝑒 − 002 1.0662𝑒 − 002

Poisson 8.0988𝑒 − 002 4.2159𝑒 − 002 2.1284𝑒 − 002 1.0667𝑒 − 002

Biharmonic 4.8120𝑒 − 002 2.4478𝑒 − 002 1.2292𝑒 − 002 6.1526𝑒 − 003

Table 3: The errors |‖𝑢 − 𝑢
ℎ
‖|
𝜀,ℎ
/|‖𝑢‖|

𝜀,ℎ
employing approximation form (14) under mesh 2.

𝜀 \ 𝑚 × 𝑛 8 × 8 16 × 16 32 × 32 64 × 64

2
0

3.9326𝑒 − 001 2.0520𝑒 − 001 1.0374𝑒 − 001 5.2017𝑒 − 002

2
−2

3.4184𝑒 − 001 1.7775𝑒 − 001 8.9771𝑒 − 002 4.4999𝑒 − 002

2
−4

1.6659𝑒 − 001 8.3029𝑒 − 002 4.1538𝑒 − 002 2.0775𝑒 − 002

2
−6

7.9112𝑒 − 002 4.4059𝑒 − 002 2.2540𝑒 − 002 1.1326𝑒 − 002

2
−8

7.2810𝑒 − 002 4.3249𝑒 − 002 2.2399𝑒 − 002 1.1253𝑒 − 002

2
−10

7.2776𝑒 − 002 4.3471𝑒 − 002 2.2618𝑒 − 002 1.1408𝑒 − 002

Poisson 7.2784𝑒 − 002 4.3503𝑒 − 002 2.2652𝑒 − 002 1.1438𝑒 − 002

Biharmonic 5.1683𝑒 − 002 2.6973𝑒 − 002 1.3637𝑒 − 002 6.8377𝑒 − 003

a logarithm scale in Figure 4. Obviously the slope of the curve
represents the convergence rate. We immediately get from
the figures that when 𝜀 < 2

−8, the errors are no longer
descending, which means that the method is divergent. We
should point out that, for biharmonic equation, the method
is very efficient.

In Tables 2 and 3, we list the relative errors ‖|𝑢 − 𝑢
ℎ
|‖
𝜀,ℎ
/

‖|𝑢|‖
𝜀,ℎ

and the 𝐿
2 errors ‖𝑢 − 𝑢

ℎ
‖
0
for the approximation

scheme (14) under different meshes. In this case, for bihar-
monic problem, 𝑢

ℎ
∈ 𝑉
ℎ
is the solution of problem

𝑎
ℎ
(𝑢
ℎ
, V
ℎ
) = (𝑓,Π

1

ℎ
V
ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
. (65)
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When the formulation (14) is employed, the result shows
that the method is uniformly convergent with respect to the
parameter 𝜀. Moreover, we can get that

lim
𝜀→0

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝑢 − 𝑢
ℎ

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩𝜀,ℎ

‖|𝑢|‖𝜀,ℎ
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At the same time, we plot the logarithm figures of the errors
under different meshes in Figure 5. The results consist with
our analysis.

From Figures 5, 6, and 7, we can also see that, with the
numerical results derived under mesh 1 and mesh 2 differ
slightly, the method under mesh 2 is still very efficient when
the approximation scheme (14) is employed.Thismatches our
theoretical analysis.
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