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We discuss the Laplace transform of the Caputo fractional difference and the fractional discrete Mittag-Leffer functions. On these
bases, linear and nonlinear fractional initial value problems are solved by the Laplace transform method.

1. Introduction

The study of continuous fractional calculus and equations has
seen tremendous growth over the past few decades involving
many aspects [1–4], such as initial value problem (IVP),
boundary value problems (BVP), and stability of fractional
equations. Compared with the continuous fractional calculus
and fractional order differential equations, we can see that the
research about the discrete fractional calculus and fractional
difference equations has seen slower progress, but in recent
years, a number of papers have appeared, and the study
of the discrete fractional calculus and fractional difference
equations has been arising. For example, Podlubny et al. [5],
Holm [6], and Abdeljawad [7] have explored the definitions
of fractional sumanddifference operators and obtainedmany
of their properties. Also, Atici and Eloe considered discrete
fractional IVPs in paper [8]; moreover, discrete fractional
BVPs were discussed in papers by Goodrich [9–11].

We know that the Laplace transform method has played
an important role in solving basic problems of differential
equations. Holm [6] developed properties of the Laplace
transform in a discrete and applied the Laplace transform
to solve a fractional initial value problem, which can be
described as

Δ
]
𝑎+]−𝑁𝑦 (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ 𝑁

𝑎
,

Δ
𝑖

𝑦 (𝑎 + ] − 𝑁) = 𝐴
𝑖
, 𝑖 = {0, 1, 2 . . . , 𝑁 − 1} ; 𝐴

𝑖
∈ 𝑅.

(1)

In this paper, we will discuss the Laplace transform of
the Caputo fractional difference and the fractional discrete
Mittag-Leffler functions and use the Laplace transform
method to solve another kind of discrete fractional IVPs.

2. Preliminaries

Let us start with some definitions and preliminaries.

Definition 1 (see [8]). The generalized falling function is
defined by

𝑡
(𝜇)

=
Γ (𝑡 + 1)

Γ (𝑡 + 1 − 𝜇)
, for 𝑡, 𝜇 ∈ 𝑅, (2)

where Γ denotes the special gamma function and 𝑡
(𝜇)

= 0

whenever 𝑡 + 1 − 𝜇 ∈ (−𝑁
0
).

Here are some of the properties of the above fractional
function:

(i) Δ𝑡(𝜇) = 𝜇𝑡(𝜇−1);

(ii) (𝑡 − 𝜇)𝑡(𝜇) = 𝜇𝑡(𝜇+1);

(iii) 𝑡(𝜇+𝛼) = (𝑡 − 𝛼)(𝜇)𝑡(𝛼);

(iv) 𝜇(𝜇) = Γ(𝜇 + 1).
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Definition 2 (see [4]). The 𝛼th fractional sum of a function𝑓,
for 𝛼 > 0, is defined by

Δ
−𝛼

𝑓 (𝑡) =
1

Γ (𝛼)

𝑡−𝛼

∑

𝑠=𝑎

(𝑡 − 𝑠 − 1)
(𝛼−1)

𝑓 (𝑠) , (3)

for 𝑡 ∈ 𝑎 + 𝛼, 𝑎 + 𝛼 + 1, . . . =: 𝑁
𝑎+𝛼

.

Definition 3 (see [7]). The 𝛼-order Caputo left fractional
difference is defined by

Δ
𝛼

𝐶
𝑓 (𝑡) = Δ

−(𝑛−𝛼)

Δ
𝑛

𝑓 (𝑠)

=
1

Γ (𝑛 − 𝛼)

𝑡−(𝑛−𝛼)

∑

𝑠=𝑎

(𝑡 − 𝑠 − 1)
(𝑛−𝛼−1)

Δ
𝑛

𝑓 (𝑠) ,

(4)

where 𝑛 = [𝛼] + 1, 𝑡 ∈ 𝑁
𝑎+𝑛−𝛼

. If 𝛼 = 𝑛 ∈ 𝑁, then Δ𝛼
𝐶
𝑓(𝑡) =

Δ
𝑛

𝐶
𝑓(𝑡).

In this paper, we will mainly discuss the problems
involving the Caputo left fractional difference.

Definition 4 (see [6]). The Laplace transform of the function
𝑓 on the time scale

𝑁
𝑎
:= 𝑁
0
+ 𝑎 = {𝑎, 𝑎 + 1, 𝑎 + 2, . . .} (𝑎 ∈ 𝑅 fixed) , (5)

is represented by

𝐿
𝑎
{𝑓} (𝑠) =

∞

∑

𝑘=0

𝑓 (𝑘 + 𝑎)

(𝑠 + 1)
𝑘+1

. (6)

Definition 5 (see [6]). One says that a function 𝑓 : 𝑁
𝑎
→ 𝑅

is of exponential order 𝑟 > 0, if there exists a constant 𝐴 > 0

such that
𝑓 (𝑡)

 ≤ 𝐴𝑟
𝑡

, for sufficiently large 𝑡 ∈ 𝑁
𝑎
. (7)

Via a geometric series, it is straightforward to show that if
𝑓 : 𝑁
𝑎
→ 𝑅 is of exponential order 𝑟 > 0, then

𝐿 {𝑓} (𝑠) exist for all 𝑠 ∈ 𝐶 \ 𝐵
−1
(𝑟). (8)

Let 𝑚 ∈ 𝑁
0
be given and suppose 𝑓 : 𝑁

𝑎−𝑚
→ 𝑅 and

𝑔 : 𝑁
𝑎
→ 𝑅 are of exponential order 𝑟 > 0. Then for 𝑠 ∈

𝐶 \ 𝐵
−1
(𝑟),

𝐿
𝑎−𝑚

{𝑓} (𝑠) =
1

(𝑠 + 1)
𝑚
𝐿
𝑎
{𝑓} (𝑠) +

𝑚−1

∑

𝑘=0

𝑓 (𝑘 + 𝑎 − 𝑚)

(𝑠 + 1)
𝑘+1

,

(9)

𝐿
𝑎+𝑚

{𝑓} (𝑠) = (𝑠 + 1)
𝑚

𝐿
𝑎
{𝑓} (𝑠)

−

𝑚−1

∑

𝑘=0

(𝑠 + 1)
𝑚−1−𝑘

𝑔 (𝑘 + 𝑎) .

(10)

Definition 6 (see [6]). For 𝑓, 𝑔 : 𝑁
𝑎

→ 𝑅, define the
convolution of 𝑓 and 𝑔 by

(𝑓 ∗ 𝑔) (𝑡) =

𝑡−1

∑

𝑟=0

𝑓 (𝑟) 𝑔 (𝑡 − 1 − 𝑟 + 𝑎) , for 𝑡 ∈ 𝑁
𝑎
. (11)

By a standard convolution on sums, it is understood that (𝑓∗
𝑔)(𝑎) = 0.

3. The Laplace Transform of
Caputo Fractional Difference

Lemma 7 (see [6]). Suppose 𝑓 : 𝑁
𝑎
→ 𝑅 is of exponential

order 𝑟 ≥ 1 and let 𝛼 > 0 be given with 𝑁 − 1 < 𝛼 ≤ 𝑁.
Then both 𝐿

𝑎+𝛼−𝑁
{Δ
−𝛼

𝑓}(𝑠) and 𝐿
𝑎−𝛼+𝑁

{Δ
𝛼

𝑓}(𝑠) converge for
all 𝑠 ∈ 𝐶 \ 𝐵

−1
(𝑟), and

𝐿
𝑎+𝛼−𝑁

{Δ
−𝛼

𝑓} (𝑠) =
(𝑠 + 1)

𝛼−𝑁

𝑠𝛼
𝐿
𝑎
{𝑓} (𝑠) ,

𝐿
𝑎+𝑁−𝛼

{Δ
𝛼

𝑓} (𝑠) = (𝑠 + 1)
𝑁−𝛼

𝑠
𝛼

−

𝑁−1

∑

𝑗=0

𝑠
𝑗

Δ
𝛼−1−𝑗

𝑎
𝑓 (𝑎 + 𝑁 − 𝛼) .

(12)

Theorem 8. Suppose 𝑓 : 𝑁
𝑎
→ 𝑅 is of exponential order

𝑟 ≥ 1 and let 𝛼 > 0 be given. Then for each fixed 𝜖 > 0, Δ𝛼
𝐶
𝑓

is of exponential order 𝑟 + 𝜖 and 𝐿
𝑎+𝑁−𝛼

{Δ
𝛼

𝐶
𝑓}(𝑠) converge for

all 𝑠 ∈ 𝐶 \ 𝐵
−1
(𝑟).

Proof. Consider the relationship between Caputo fractional
difference and Riemann-Liouville difference

Δ
𝛼

𝐶
𝑓 (𝑡) = Δ

𝛼

𝑓 (𝑡) −

𝑁−1

∑

𝑘=0

(𝑡 − 𝑎)
(𝑘−𝛼)

Γ (𝑘 − 𝛼 + 1)
Δ
𝑘

𝑓 (𝑎) , (13)

and in Lemma 7 we have
Δ
𝛼

𝐶
𝑓 (𝑡)



=



Δ
𝛼

𝑓 (𝑡) −

𝑁−1

∑

𝑘=0

(𝑡 − 𝑎)
(𝑘−𝛼)

Γ (𝑘 − 𝛼 + 1)
Δ
𝑘

𝑓 (𝑎)



≤
Δ
𝛼

𝑓 (𝑡)
 +



𝑁−1

∑

𝑘=0

(𝑡 − 𝑎)
(𝑘−𝛼)

Γ (𝑘 − 𝛼 + 1)
Δ
𝑘

𝑓 (𝑎)



≤
Δ
𝛼

𝑓 (𝑡)
 +



𝑁−1

∑

𝑘=0

Δ
𝑘

𝑓 (𝑎)

Γ (𝑘 − 𝛼 + 1) (𝑡 − 𝑎)
(𝑘−𝛼)



≤

𝑁

∑

𝑘=0

(−1)
𝑘

(
𝑁

𝑘
) (𝑟 + 𝜖)

𝑁−𝑘

(𝑟 + 𝜖)
𝑡

+



𝑁−1

∑

𝑘=0

Δ
𝑘

𝑓 (𝑎)

Γ (𝑘 − 𝛼 + 1)



(𝑡 − 𝑎)
𝑁−1−𝛼

,

(14)

since for sufficiently large 𝑇
2
when 𝑡 > 𝑇

2
, (𝑟 + 𝜖)

𝑡 will
eventually grow larger than the function (𝑡 − 𝑎)𝑁−1−𝛼. So we
get

Δ
𝛼

𝐶
𝑓 (𝑡)



<



𝑁

∑

𝑘=0

(−1)
𝑘

(
𝑁

𝑘
) (𝑟 + 𝜖)

𝑁−𝑘

+

𝑁−1

∑

𝑘=0

Δ
𝑘

𝑓 (𝑎)

Γ (𝑘 − 𝛼 + 1)



(𝑟 + 𝜖)
𝑡

= 𝐴(𝑟 + 𝜖)
𝑡

.

(15)
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Choose 𝑠
0
∈ 𝐶 \ 𝐵

−1
(𝑟); there exists an 𝜖

0
> 0 small enough

so that 𝑠
0
∈ 𝐶\𝐵

−1
(𝑟 + 𝜖
0
), and Lemma 7 tells us that Δ𝛼

𝐶
𝑓(𝑡)

is of exponential order 𝑟 + 𝜖
0
, so it follows from (7) that

𝐿
𝑎+𝑁−𝛼

{Δ
𝛼

𝐶
𝑓}(𝑠) is well defined.

Theorem 9. Suppose 𝑓 : 𝑁
𝑎
→ 𝑅 is of exponential order

𝑟 ≥ 1 and let 𝛼 > 0 be given with 𝑁 − 1 < 𝛼 ≤ 𝑁. Then for
𝑠 ∈ 𝐶 \ 𝐵

−1
(𝑟)

𝐿
𝑎+𝑁−𝛼

{Δ
𝛼

𝐶
𝑓} (𝑠) = (𝑠 + 1)

𝑁−𝛼

𝑠
𝛼

𝐿
𝑎
{𝑓} (𝑠)

−

𝑁−1

∑

𝑗=0

𝑠
𝑗+𝛼−𝑁

(𝑠 + 1)
𝛼−𝑁

Δ
𝑁−1−𝑗

𝑓 (𝑎) .
(16)

Proof. Since Δ𝛼
𝐶
𝑓(𝑡) = Δ

−(𝑁−𝛼)

Δ
𝑁

𝑓(𝑡), then

𝐿
𝑎+𝑁−𝛼

{Δ
𝛼

𝐶
𝑓} (𝑠) = 𝐿

𝑎+𝑁−𝛼
{Δ
−(𝑁−𝛼)

(Δ
𝑁

𝑓)} (𝑠) . (17)

Because 𝐿
𝑎+𝑁−𝛼

Δ
−(𝑁−𝛼)

{𝑔}(𝑠) = ((𝑠 + 1)
𝑁−𝛼

/𝑠
𝑁−𝛼

)𝐿
𝑎
{𝑔}(𝑠)

and

𝐿
𝑎
{Δ
𝑁

𝑓} (𝑠) = 𝑠
𝑁

𝐿
𝑎
{𝑓} (𝑠) −

𝑁−1

∑

𝑗=0

𝑠
𝑗

Δ
𝑁−1−𝑗

𝑓 (𝑎) , (18)

we get

𝐿
𝑎+𝑁−𝛼

{Δ
𝛼

𝐶
𝑓} (𝑠)

=
(𝑠 + 1)

𝑁−𝛼

𝑠𝑁−𝛼
𝐿
𝑎
{Δ
𝑁

𝑓} (𝑠)

=
(𝑠 + 1)

𝑁−𝛼

𝑠𝑁−𝛼
(𝑠
𝑁

𝐿
𝑎
{Δ
𝑁

𝑓} (𝑠) −

𝑁−1

∑

𝑗=0

𝑠
𝑗

Δ
𝑁−1−𝑗

𝑓 (𝑎))

= (𝑠 + 1)
𝑁−𝛼

𝑠
𝛼

𝐿
𝑎
{𝑓} (𝑠) −

𝑁−1

∑

𝑗=0

𝑠
𝑗+𝛼−𝑁

(𝑠 + 1)
𝛼−𝑁

Δ
𝑁−1−𝑗

𝑓 (𝑎) .

(19)

4. The Laplace Transform of Discrete
Mittag-Leffler Function

In paper [8], the discrete Mittag-Leffler function is intro-
duced as the following form.

Definition 10. For any constant 𝜆 ∈ 𝑅 and 𝛼, 𝛽, 𝑡 ∈ 𝐶 with
Re(𝛼) > 0, the discrete Mittag-Leffler functions are defined
by

𝐸
𝛼,𝛽

(𝜆, 𝑡)

=

∞

∑

𝑘=0

𝜆
𝑘 (𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

(𝑡 + 𝑘 (𝛼 − 1))
(𝛽−1)

Γ (𝑘𝛼 + 𝛽)
.

(20)

For 𝛽 = 1, it is written that

𝐸
𝛼,1
(𝜆, 𝑡) =

∞

∑

𝑘=0

𝜆
𝑘 (𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

Γ (𝑘𝛼 + 1)
. (21)

Theorem 11. We assume 𝛼 > 0 and 𝑁 − 1 < 𝛼 ≤ 𝑁 in (20);
then for any fixed 𝑟 > 1

𝐸𝛼,1 (𝜆, 𝑡)
 ≤ 𝐴𝑟

𝑡 for sufficient large 𝑡 ∈ 𝑁
𝑎
, 𝐴 > 0.

(22)

And so 𝐿
𝑎
{𝐸
𝛼,1
(𝜆, 𝑡)}𝑠 exists for 𝑠 ∈ 𝐶 \ 𝐵

−1
(𝑟).

Proof. For𝑁 − 1 < 𝛼 < 𝑁, we have

(𝑡 + (𝑘 − 1) (𝛼 − 1))
(𝑘𝛼)

Γ (𝑘𝛼 + 𝛽)
<
(𝑡 + (𝑘 − 1) (𝑁 − 1))

(𝐾𝑁)

Γ (𝑘𝑁 + 1)
. (23)

Moreover, for sufficiently large 𝑡 ∈ 𝑁
𝑎
we get

(𝑡 + (𝑘 − 1) (𝑁 − 1))
(𝑘𝑁)

Γ (𝑘𝑁 + 1)

=
(𝑡 − 𝑘 − 𝑁 + 1) ⋅ ⋅ ⋅ ((𝑡 + (𝑘 − 1) (𝑁 − 1)))

Γ (𝑘𝑁 + 1)

<
(𝑡 − 𝑁 + 1) ⋅ ⋅ ⋅ (𝑡 − 𝑁 + 1 + 𝐾𝑁)

Γ (𝑘𝑁 + 1)

<
(𝑡 − 𝑁 + 1) ⋅ ⋅ ⋅ (𝑡 − 𝑁 + 1 + 𝐾𝑁)

Γ (𝑘𝑁 + 1)
;

(24)

then,
𝐸𝛼,1 (𝜆, 𝑡)



=



∞

∑

𝑘=0

𝜆
𝑘 (𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

Γ (𝑘𝛼 + 1)



<



∞

∑

𝑘=0

𝜆
𝑘 (𝑡 − 𝑁 + 1) ⋅ ⋅ ⋅ (𝑡 − 𝑁 + 1 + 𝐾𝑁 − 1)

Γ (𝑘𝑁 + 1)



.

(25)

We know that

(1 − 𝜆
−1

)
−(𝑡−𝑁+1)

= 1 +

∞

∑

𝑘=1

(𝑡 − 𝑁 + 1) (𝑡 − 𝑁 + 2) ⋅ ⋅ ⋅ (𝑡 − 𝑁 + 𝑘)

𝑘!
𝜆
𝑘

= 1 +

∞

∑

𝑘=1

𝑁(𝑡 − 𝑁 + 1)𝑁 (𝑡 − 𝑁 + 1) ⋅ ⋅ ⋅ 𝑁 (𝑡 − 𝑁 + 𝑘)

(𝑘𝑁)!
𝜆
𝑘

> 1

+

∞

∑

𝑘=1

(𝑡 − 𝑁 + 1) (𝑡 − 𝑁 + 1 + 𝑁) ⋅ ⋅ ⋅ 𝑁 (𝑡 − 𝑁 + 1 + 𝑘𝑁)

(𝑘𝑁)!

× 𝜆
𝑘

.

(26)

Now, it is easy to see that |𝐸
𝛼,1
(𝜆, 𝑡)| ≤ 𝐴𝑟

𝑡 for sufficiently
large 𝑡 ∈ 𝑁

𝑎
, where 𝐴 > 1 is a constant and 𝑟 > |𝜆/(𝜆 − 1)|,

so the function𝐸
𝛼
(𝜆, 𝑡) converges and 𝐿

𝑎
{𝐸
𝛼,1
}(𝜆, 𝑠) exists for

𝑠 ∈ 𝐶 \ 𝐵
−1
(𝑟).

We will discuss the Laplace transform of the discrete
Mittag-Leffler function 𝐸

𝛼,1
(𝜆, 𝑡).
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Theorem 12. Let 𝛼 > 0, 𝑎 = 𝛼 − 1; then one gets

𝐿
𝑎
{𝐸
𝛼
(𝜆, 𝑡)} (𝑠) =

𝑠
𝛼−1

𝑠𝛼 − 𝜆(𝑠 + 1)
𝛼−1

,

𝜆(𝑠 + 1)

𝛼−1

<
𝑠
𝛼 .

(27)

Proof. When 𝑎 = 𝛼 − 1, we have

𝐿
𝑎
{𝐸
𝛼
(𝜆, 𝑡)} (𝑠)

= 𝐿
𝛼−1

{

∞

∑

𝑘=0

𝜆
𝑘 (𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

Γ (𝑘𝛼 + 1)
} (𝑠)

=

∞

∑

𝑘=0

𝐿
𝛼−1

{𝜆
𝑘 (𝑡 + (𝑘 − 1)) (𝛼 − 1)

(𝑘𝛼)

Γ (𝑘𝛼 + 1)
} (𝑠) .

(28)

From Lemma 7 we get

𝐿
𝑘+𝛼−1

{𝜆
𝑘 (𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

Γ (𝑘𝛼 + 1)
} (𝑠) =

(𝑠 + 1)
𝑘𝛼

𝑠𝑘𝛼+1
;

(29)

by (10), we conclude that

𝐿
𝑘+𝛼−1

{
(𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

Γ (𝑘𝛼 + 1)
} (𝑠)

= (𝑠 + 1)
𝑘

𝐿
𝛼−1

{
(𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

Γ (𝑘𝛼 + 1)
} (𝑠)

−

𝑘−1

∑

𝑙=0

(𝑠 + 1)
𝑘−1−𝑙 (𝑙 + 𝑘 (𝛼 − 1))

(𝑘𝛼)

Γ (𝑘𝛼 + 1)
.

(30)

For 0 ≤ 𝑙 ≤ 𝑘 − 1 Definition 1 implies that

(𝑙 + 𝑘 (𝛼 − 1))
(𝑘𝛼)

Γ (𝑘𝛼 + 1)
=

Γ (𝑙 + 𝑘 (𝛼 − 1) + 1)

Γ (𝑙 + 1 − 𝑘𝛼) Γ (𝑘𝛼 + 1)
= 0. (31)

So, we get

𝐿
𝑘+𝛼−1

{
(𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

Γ (𝑘𝛼 + 1)
} (𝑠)

= (𝑠 + 1)
𝑘

𝐿
𝛼−1

{
(𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

Γ (𝑘𝛼 + 1)
} (𝑠) .

(32)

Recalling (28), we have

𝐿
𝛼−1

{
(𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

Γ (𝑘𝛼 + 1)
} (𝑠) =

(𝑠 + 1)
𝑘(𝛼−1)

𝑠𝑘𝛼+1
. (33)

Using (33), (27) can be rewritten as

𝐿
𝑎
{𝐸
𝛼,1
(𝜆, 𝑡)} (𝑠)

=

∞

∑

𝑘=0

𝜆
𝑘

𝐿
𝛼−1

{
(𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

Γ (𝑘𝛼 + 1)
} (𝑠)

=

∞

∑

𝑘=0

𝜆
𝑘 (𝑠 + 1)

𝑘(𝛼−1)

𝑠𝑘𝛼+1

=
𝑠
𝛼−1

𝑠𝛼 − 𝜆(𝑠 + 1)
𝛼−1

.

(34)

When 𝛼 = 1, the result is 𝐿
0
{𝐸
1,1
(𝜆, 𝑡)}(𝑠) = 1/(𝑠 − 𝜆), which

coincided with integer order.
With this in mind, let us discuss the Laplace transform of

the Mittag-Leffler function 𝐸
𝛼,𝛼
(𝜆, 𝑡); we will use this result

in the following section.

Theorem 13. Letting 𝛼 > 0, 𝑎 = 𝛼 − 1, then one has

𝐿
𝑎
{𝐸
𝛼,𝛼

(𝜆, 𝑡)} (𝑠) =
1

(𝑠 + 1)
1−𝛼

𝑠𝛼 − 𝜆
. (35)

Proof. We recall that

𝐸
𝛼,𝛼

(𝜆, 𝑡)

=

∞

∑

𝑘=0

𝜆
𝑘 (𝑡 + (𝑘 − 1) (𝛼 − 1))

(𝑘𝛼)

(𝑡 + 𝑘 (𝛼 − 1))
(𝛼−1)

Γ (𝑘𝛼 + 𝛼)
.

(36)

By property (iii) of the generalized falling function, we get

𝐸
𝛼,𝛼

(𝜆, 𝑡) =

∞

∑

𝑘=0

𝜆
𝑘 (𝑡 + 𝑘 (𝛼 − 1))

(𝑘𝛼+𝛼−1)

Γ ((𝑘 + 1) 𝛼)
. (37)

Then

𝐿
𝑎
{𝐸
𝛼,𝛼

(𝜆, 𝑡)} (𝑠) =

∞

∑

𝑘=0

𝜆
𝑘

𝐿
𝛼−1

{
(𝑡 + 𝑘 (𝛼 − 1))

(𝑘𝛼+𝛼−1)

Γ ((𝑘 + 1) 𝛼)
} (𝑠)

=

∞

∑

𝑘=0

𝜆
𝑘 (𝑠 + 1)

𝑘(𝛼−1)+𝛼−1

𝑠𝑘𝛼+𝛼

=
(𝑠 + 1)

𝛼−1

𝑠𝛼

∞

∑

𝑘=0

𝜆
𝑘 (𝑠 + 1)

𝑘(𝛼−1)

𝑠𝑘𝛼

=
1

(𝑠 + 1)
1−𝛼

𝑠𝛼 − 𝜆
.

(38)

5. Laplace Transform Method for Solving
Fractional Difference Equation with Caputo
Fractional Difference

In this section, we first consider the following Caputo
fractional difference equations:

Δ
𝛼

𝐶
𝑦 (𝑡) = 𝜆𝑦 (𝑡 + 𝛼 − 1) , 𝑦 (𝑎) = 𝑎

0
, 𝑡 ∈ 𝑁

0
, (39)

where 𝜆 ∈ 𝑅, 0 < 𝛼 ≤ 1, and 𝑎 = 𝛼 − 1.
The solution of (39) is given by Atici and Eloe in [8]

using the method of successive approximation; we will give
the solution of (39) by the method of Laplace transform.

Theorem 14. Equation (39) has its solution given by

𝑦 (𝑡) = 𝑎
0
𝐸
𝛼,1
(𝜆, 𝑡) , 𝑡 ∈ 𝑁

0
. (40)

Proof. Both sides of (39) carried out Laplace transform; we
get

𝐿
𝑎+𝑁−𝛼

{Δ
𝛼

𝐶
𝑦} (𝑠) = 𝜆𝐿

𝑎+𝑁−𝛼
{𝑦 (𝑡 + 𝛼 − 1)} (𝑠) . (41)
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Equations (6) and (9) andTheorem 9 imply that

(𝑠 + 1)
1−𝛼

𝑠
𝛼

𝐿
𝑎
{𝑦} (𝑠) −

𝑠
𝛼−1

(𝑠 + 1)
𝛼−1

𝑎
0
= 𝜆𝐿
𝑎
{𝑦} (𝑠) . (42)

Then

𝐿
𝑎
{𝑦} (𝑠) =

𝑠
𝛼−1

𝑠𝛼 − 𝜆(𝑠 + 1)
𝛼−1

𝑎
0
. (43)

Since Theorem 11, we have the solution of (39):

𝑦 (𝑡) = 𝑎
0
𝐸
𝛼,1
(𝜆, 𝑡) , 𝑡 ∈ 𝑁

0
. (44)

This result coincides with the result of paper [7], which
obtains the solution of (40) using the method of successive
approximation.

Next, we consider the solution of Caputo nonhomoge-
neous difference equation

Δ
𝛼

𝐶
𝑦 (𝑡) = 𝜆𝑦 (𝑡 + 𝛼 − 1) + 𝑓 (𝑡) , 𝑦 (𝑎) = 𝑎

0
, 𝑡 ∈ 𝑁

0
,

(45)

where 𝑓 : 𝑁
0
→ 𝑅, 0 < 𝛼 ≤ 1, 𝑎 = 𝛼 − 1.

The following standard rule for composing the Laplace
transform with the convolution is necessary for solving the
fractional initial value problems (45).

Lemma 15 (see [6]). Let 𝑓, 𝑔 : 𝑁
𝑎
→ 𝑅 be of exponential

order 𝑟 > 0. Then

𝐿
𝑎
{(𝑓 ∗ 𝑔)} (𝑠) = 𝐿

𝑎
{𝑓} (𝑠) 𝐿

𝑎
{𝑔} (𝑠) ,

𝑓𝑜𝑟 𝑠 ∈ 𝐶 \ (𝐵
−1
(𝑟)) .

(46)

Theorem 16. Let 𝑓(𝑡) : 𝑁
𝑎
→ 𝑅 of be exponential order 𝑟 >

0; then (45) has its solution given by

𝑦 (𝑡) = 𝑎
0
𝐸
𝛼,1
(𝜆, 𝑡) +

𝑡−𝛼

∑

𝑠=0

𝐸
𝛼,𝛼

(𝜆, 𝑡 − 1 − 𝑠) 𝑓 (𝑠) . (47)

Proof. Using Laplace transform on both sides of (45), we
obtain

𝐿
𝑎+𝑁−𝛼

{Δ
𝛼

𝐶
𝑦} (𝑠)

= 𝜆𝐿
𝑎+𝑁−𝛼

{𝑦 (𝑡 + 𝛼 − 1)} (𝑠) + 𝐿
𝑎+𝑁−𝛼

{𝑓} (𝑠) ,

(48)

because 0 < 𝛼 ≤ 1; that is, 𝑁 = 1; similar to the above
discussion, it is easy to obtain the following:

(𝑠 + 1)
1−𝛼

𝑠
𝛼

𝐿
𝑎
{𝑦} (𝑠) −

𝑠
𝛼−1

(𝑠 + 1)
𝛼−1

𝑎
0

= 𝜆𝐿
𝑎
{𝑦} (𝑠) + 𝐿

𝑎
{𝑓 (𝑡 + 1 − 𝛼)} (𝑠) .

(49)

Then we obtain

𝐿
𝑎
{𝑦} (𝑠) =

𝑠
𝛼−1

𝑠𝛼 − 𝜆(𝑠 + 1)
𝛼−1

𝑎
0

+
1

(𝑠 + 1)
1−𝛼

𝑠𝛼 − 𝜆
𝐿
𝑎
{𝑓 (𝑡 + 1 − 𝛼)} (𝑠) .

(50)

Carrying out Laplace inverse transform of both sides of (45),
according to (10), (28), (33), and (35), we have

𝑦 (𝑡) = 𝑎
0
𝐸
𝛼,1
(𝜆, 𝑡)

+

𝑡−1

∑

𝑟=𝑎

𝐸
𝛼,𝛼

(𝜆, 𝑡 − 1 − 𝑟 + 𝑎) 𝑓 (𝑟 + 1 − 𝛼) .

(51)

Letting 𝑠 = 𝑟 − 𝑎 = 𝑟 − 𝛼 + 1, formula (45) yields

𝑦 (𝑡) = 𝑎
0
𝐸
𝛼,1
(𝜆, 𝑡) +

𝑡−𝛼

∑

𝑠=0

𝐸
𝛼,𝛼

(𝜆, 𝑡 − 1 − 𝑠) 𝑓 (𝑠) , (52)

which is the expression of the Caputo nonhomogeneous
difference equation (45).

In our future research work, we will consider the solution
of fractional difference equations (39) and (45) in general
situation:𝑁 − 1 < 𝛼 ≤ 𝑁,𝑁 > 1.
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