
Research Article
Global Optimality Conditions for Nonlinear Programming
Problems with Linear Equality Constraints

Guoquan Li1 and Yan Wang2

1 School of Mathematics, Chongqing Normal University, Chongqing 401331, China
2 School of Liberal Arts, Chongqing Normal University, Chongqing 401331, China

Correspondence should be addressed to Yan Wang; gqli2@163.com

Received 14 March 2014; Accepted 2 April 2014; Published 22 April 2014

Academic Editor: Xian-Jun Long

Copyright © 2014 G. Li and Y. Wang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Some necessary global optimality conditions and sufficient global optimality conditions for nonconvex minimization problems
with a quadratic inequality constraint and a linear equality constraint are derived. In particular, global optimality conditions for
nonconvex minimization over a quadratic inequality constraint which extend some known global optimality conditions in the
existing literature are presented. Some numerical examples are also given to illustrate that a global minimizer satisfies the necessary
global optimality conditions but a local minimizer which is not global may fail to satisfy them.

1. Introduction

In this paper, we focus on the following nonconvexminimiza-
tion model problem:

min 𝑓 (𝑥)

(QLNP) s.t. 𝑔 (𝑥) =
1

2
𝑥𝑇𝐵𝑥 + 𝑥𝑇𝑏 + 𝑐 ≤ 0,

(1)

𝐻𝑥 = 𝑑, (2)

where 𝑓 : 𝑅𝑛 → 𝑅 is a twice continuously differentiable
function which is not necessarily a quadratic function, 𝑐 ∈ 𝑅,
𝑏 ∈ 𝑅𝑛, 𝐵 ∈ 𝑆𝑛, 𝑑 ∈ 𝑅𝑚, 𝑆𝑛 is the set of all symmetric 𝑛 × 𝑛
matrices, and 𝐻 is a 𝑚 × 𝑛 matrix. Model problems of the
form QLNP are widespread in real-world applications [1, 2].
When the objective function is quadratic, problem (QLNP)
is a general trust-region model problem with linear equality
constraint (see [3, 4]). In [5], Jeyakumar and Srisatkunarajah
presented some Lagrange multiplier necessary conditions
for global optimality for problem (QLNP) by employing S-
lemma and overestimators of the objective function, and
they also show that the obtained necessary global optimality
condition is not necessarily a sufficient condition for global
optimality by a numerical example. Some global optimality
conditions for nonconvex quadratic minimization problems

with quadratic and/or linear constraints were recently devel-
oped in [6–11].

A theorem of the alternative is a key tool for developing
local optimality conditions in continuous optimization. In
[5, 11], some global optimality conditions for nonconvex
minimization problemswere derived by employing quadratic
overestimators or underestimators of the object function that
allows for the applications of the S-lemma.

The purpose of this paper is to establish some neces-
sary and sufficient global optimality conditions for non-
linear programming problems with a quadratic inequality
and linear equality constraints by employing an alternative
theorem for systems of two quadratic inequalities given
in [11]. As a consequence, we also present some global
optimality conditions including necessary conditions and
sufficient conditions for nonlinear programming problems
over a quadratic inequality constraint extending several
known global optimality conditions in the existing literature.
Some global optimality conditions for problem (QLNP) in
the case where the objective function is quadratic are derived
at the same time.

The outline of this paper is as follows. In Section 2,
we present global optimality conditions for nonlinear pro-
gramming problems (QLNP) and extend the corresponding
results given in [5]. We also provide two numerical examples
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to illustrate the significance of our optimality conditions.
In Section 3, some global optimality conditions for general
smooth minimization problems over quadratic and linear
equality constraints are presented.

2. Global Optimality Conditions for
Problem (QCNP)

We begin this section by presenting basic definitions and
preliminary results that will be used throughout the paper.
The real line is denoted by𝑅 and the 𝑛-dimensional Euclidean
space is denoted by 𝑅𝑛. For vectors 𝑥, 𝑦 ∈ 𝑅𝑛, 𝑥 ≥ 𝑦 means
that 𝑥

𝑖
≥ 𝑦
𝑖
, for 𝑖 = 1, . . . , 𝑛. The notation 𝐴 ⪰ 𝐵 means that

𝐴 − 𝐵 is positive semidefinite and 𝐴 ⪯ 0means that −𝐴 ⪰ 0.
For problem (QLNP), let

𝐷 := {𝑥 ∈ 𝑅𝑛 | 𝑔 (𝑥) ≤ 0,𝐻𝑥 = 𝑑} . (3)

The following theoremof the alternative (given in [11]) for
systems of two quadratic inequalities plays an important role
in deriving our main results; see Theorem 2.

Lemma 1 (generalizer S-lemma). Let 𝑆
0
be a subspace, and let

𝑎
0
∈ 𝑅𝑛. Let 𝑔

1
: 𝑅𝑛 → 𝑅 be defined by 𝑔

1
(𝑥) = (1/2)𝑥𝑇𝐵

1
𝑥+

𝑥𝑇𝑏
1
+ 𝑐
1
, where 𝐵

1
∈ 𝑆𝑛, 𝑏

1
∈ 𝑅𝑛, and 𝑐

1
∈ 𝑅. Suppose that

there exists𝑥
0
∈ 𝑎
0
+𝑆
0
, such that𝑔(𝑥

0
) < 0.Then the following

statements are equivalent:

(i) 𝑔(𝑥) ≤ 0, 𝑥 ∈ 𝑎
0
+ 𝑆
0
⇒ 𝑔
1
(𝑥) ≥ 0;

(ii) (∃𝜆 ≥ 0)(∀𝑥 ∈ 𝑎
0
+ 𝑆
0
) 𝑔
1
(𝑥) + 𝜆𝑔(𝑥) ≥ 0, where 𝑔 is

defined by (1).

By employing a quadratic overestimator and Lemma 1,
we derive necessary global optimality conditions for problem
(QLNP).

Theorem 2 (necessary conditions). For the problem (QLNP),
let 𝑥 ∈ 𝐷 and let 𝐶 be a convex set containing 𝐷. Assume that
there exists 𝐴 ∈ 𝑆𝑛 such that ∇2𝑓(𝑥) − 𝐴 ⪯ 0, for each 𝑥 ∈ 𝐶,
and that there exists𝑥

0
∈ 𝑅𝑛, such that𝑔(𝑥

0
) < 0 and𝐻𝑥

0
= 𝑏.

If 𝑥 is a global minimizer of QLNP then there exist 𝜆 ≥ 0 and
𝜇 ∈ 𝑅𝑚, such that 𝜆𝑔(𝑥) = 0, ∇𝑓(𝑥) + 𝜆(𝐵𝑥 + 𝑏) + 𝐻𝑇𝜇 = 0,
and 𝑒𝑇(𝐴 + 𝜆𝐵)𝑒 ≥ 0, whenever𝐻𝑒 = 0.

Proof. Let 𝑙(𝑥) = (1/2)𝑥𝑇𝐴𝑥+ (∇𝑓(𝑥) −𝐴𝑥)𝑇𝑥, ∀𝑥 ∈ 𝑅𝑛, and
let 𝜑(𝑥) = 𝑓(𝑥) − 𝑙(𝑥), 𝑥 ∈ 𝐶; then

∇2𝜑 (𝑥) = ∇
2𝑓 (𝑥) − ∇

2𝑙 (𝑥) = ∇
2𝑓 (𝑥) − 𝐴 ⪯ 0,

∀𝑥 ∈ 𝐶.
(4)

So𝜑 is a concave function over𝐶.Moreover,∇𝜑(𝑥) = ∇𝑓(𝑥)−
∇𝑙(𝑥) = 0. Hence,

𝜑 (𝑥) ≤ 𝜑 (𝑥) , ∀𝑥 ∈ 𝐶. (5)

That is,

𝑙 (𝑥) − 𝑙 (𝑥) ≥ 𝑓 (𝑥) − 𝑓 (𝑥) , ∀𝑥 ∈ 𝐶. (6)

If 𝑥 is a global minimizer of QLNP, then

𝑙 (𝑥) − 𝑙 (𝑥) ≥ 0, ∀𝑥 ∈ 𝐷. (7)

Let 𝑆
0
= {𝑥 ∈ 𝑅𝑛 | 𝐻𝑥 = 0}. Then [𝑔(𝑥) ≤ 0, 𝑥 ∈ 𝑥 + 𝑆

0
⇒

𝑙(𝑥) − 𝑙(𝑥) ≥ 0]. So, by Lemma 1, there exists 𝜆 ≥ 0, such that

𝑙 (𝑥) − 𝑙 (𝑥) + 𝜆𝑔 (𝑥) ≥ 0, ∀𝑥 ∈ 𝑥 + 𝑆
0
. (8)

In particular,

𝜆𝑔 (𝑥) = 0. (9)

Hence, 𝑙+𝜆𝑔 attains its minimum at 𝑥 over𝐻𝑥 = 𝑑. Now,
by the necessary optimality conditions at 𝑥, there exists 𝜇 ∈
𝑅𝑚 such that

∇𝑓 (𝑥) + 𝜆 (𝐵𝑥 + 𝑏) + 𝐻
𝑇𝜇 = 0 (10)

and 𝑒𝑇(𝐴 + 𝜆𝐵)𝑒 ≥ 0 whenever𝐻𝑒 = 0.

Theorem 3 (sufficient conditions). For the problem (QLNP),
let 𝑥 ∈ 𝐷 and let 𝐶 be a convex set containing 𝐷. Assume that
there exists 𝐴 ∈ 𝑆𝑛 such that ∇2𝑓(𝑥) − 𝐴 ⪰ 0, for each 𝑥 ∈ 𝐶.
If there exist 𝜆 ≥ 0 and 𝜇 ∈ 𝑅𝑚, such that 𝜆𝑔(𝑥) = 0, ∇𝑓(𝑥) +
𝜆(𝐵𝑥 + 𝑏) +𝐻𝑇𝜇 = 0, and 𝑒𝑇(𝐴 + 𝜆𝐵)𝑒 ≥ 0 whenever𝐻𝑒 = 0,
then 𝑥 is a global minimizer of QLNP.

Proof. Let 𝑙(𝑥) = (1/2)𝑥𝑇𝐴𝑥+ (∇𝑓(𝑥) −𝐴𝑥)𝑇𝑥, ∀𝑥 ∈ 𝑅𝑛, and
let 𝜑(𝑥) = 𝑓(𝑥) − 𝑙(𝑥), 𝑥 ∈ 𝐶; then

∇2𝜑 (𝑥) = ∇
2𝑓 (𝑥) − ∇

2𝑙 (𝑥) = ∇
2𝑓 (𝑥) − 𝐴 ⪰ 0, ∀𝑥 ∈ 𝐶.

(11)

So 𝜑 is a convex function over𝐶. Moreover, ∇𝜑(𝑥) = ∇𝑓(𝑥)−
∇𝑙(𝑥) = 0. Hence,

𝜑 (𝑥) ≥ 𝜑 (𝑥) , ∀𝑥 ∈ 𝐶. (12)

That is,

𝑓 (𝑥) − 𝑓 (𝑥) ≥ 𝑙 (𝑥) − 𝑙 (𝑥) , ∀𝑥 ∈ 𝐶. (13)

To prove that 𝑥 is a global minimizer of QLNP, we just
need to show 𝑙(𝑥) − 𝑙(𝑥) ≥ 0, ∀𝑥 ∈ 𝐷. For any 𝑥 ∈ 𝐷, we have

(𝑙 + 𝜆𝑔) (𝑥) − (𝑙 + 𝜆𝑔) (𝑥)

= ∇ (𝑙 + 𝜆𝑔) (𝑥)
𝑇
(𝑥 − 𝑥)

+
1

2
(𝑥 − 𝑥)

𝑇
(𝐴 + 𝜆𝐵) (𝑥 − 𝑥) ≥ 0

(14)

since𝐻(𝑥 − 𝑥) = 0 and

∇ (𝑙 + 𝜆𝑔) (𝑥)𝑇 (𝑥 − 𝑥) = [∇𝑙 (𝑥) + ∇𝜆𝑔 (𝑥)]
𝑇
(𝑥 − 𝑥)

= [∇𝑓 (𝑥) + 𝜆 (𝐵𝑥 + 𝑏)]
𝑇
(𝑥 − 𝑥)

= −𝜇𝑇𝐻(𝑥 − 𝑥) = 0.

(15)

Hence, 𝑙(𝑥) − 𝑙(𝑥) ≥ 𝜆𝑔(𝑥) − 𝜆𝑔(𝑥) = −𝜆𝑔(𝑥) ≥ 0, ∀𝑥 ∈
𝐷.
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Remark 4. Note that matrix 𝐴 in Theorem 2 (the necessary
condition) satisfies∇2𝑓(𝑥)−𝐴 ⪯ 0, for each𝑥 ∈ 𝐶, butmatrix
𝐴 in Theorem 3 (the sufficient condition) satisfies ∇2𝑓(𝑥) −
𝐴 ⪰ 0, for each 𝑥 ∈ 𝐶.

We now present two examples to show that a global
minimizer satisfies our necessary condition, while a local
minimizer that is not global fails to satisfy the necessary
condition.

Example 5. Consider the following nonconvex minimization
problem:

min 𝑥2
1
+ 4𝑥
2
− 3𝑥2
2
− 𝑥4
2

(EXP1) s.t. 𝑥2
1
+ 𝑥2
2
− 2𝑥
2
− 12 ≤ 0,

𝑥
1
+ 𝑥
2
= 2.

(16)

Eliminating 𝑥
1
using the equality constraint, the problem

(EXP1) becomes

min 4 − 2𝑥2
2
− 𝑥4
2

s.t. 𝑥2
2
− 3𝑥
2
− 4 ≤ 0,

(17)

which has a local minimizer 𝑥
2
= −1 and a global minimizer

𝑥
2
= 4. Thus, (EXP1) has a local minimizer 𝑦 = (3, −1) and a

global minimizer 𝑥 = (−2, 4).
Let 𝐵 = ( 2 0

0 2
), 𝑏 = (0, −2)𝑇, 𝑐 = 12, 𝑓(𝑥) = 𝑥2

1
+ 4𝑥
2
−

3𝑥2
2
− 𝑥4
2
,𝐻 = (1, 1), and 𝑑 = 2; then ∇2𝑓(𝑥) = ( 2 0

0 −6−12𝑥
2

2

).
We take𝐴 = ( 2 0

0 −6
); thenwe have∇2𝑓(𝑥)−𝐴 = (

0 0

0 −12𝑥
2

2

) ⪯

0, for each 𝑥 ∈ 𝑅2. A direct calculation shows that 𝜆 = 27.2
and 𝜇 = 112.8 solve 𝜆 ≥ 0, 𝜆𝑔(𝑥) = 0, ∇𝑓(𝑥) + 𝜆(𝐵𝑥 + 𝑏) +
𝐻𝑇𝜇 = 0. And𝐴+𝜆𝐵 = ( 56.4 0

0 48.4
) ≻ 0. Hence, the necessary

condition holds at 𝑥.
Note that the necessary condition is not satisfied at

the local minimizer 𝑦 = (3, −1)𝑇. By solving directly the
following equations:

∇𝑓 (𝑦) + 𝜆 (𝐵𝑦 + 𝑏) + 𝐻𝑇𝜇 = 0, (18)

we obtain that 𝜆 = 4/5 and 𝜇 = −54/5. Then 𝐴 + 𝜆𝐵 =

(1/5) ( 18 0
0 −22

), and, for any 𝑒 = (𝑒
1
, 𝑒
2
) ∈ 𝑅2 satisfying

𝑒
1
+ 𝑒
2
= 0, 𝑒𝑇(𝐴 + 𝜆𝐵)𝑒 = −(4/5)𝑒2

2
; that is, if 𝑒

2
< 0, then

𝑒𝑇(𝐴 + 𝜆𝐵)𝑒 < 0. So the necessary condition does not hold at
the local minimizer 𝑦.

Example 6. Consider another nonconvex minimization
problem as follows:

min 𝑥2
1
− 3𝑥2
2
− 𝑥4
2

(EXP2) s.t. 2𝑥2
1
+ 𝑥2
2
− 2𝑥
2
− 3 ≤ 0,

𝑥
1
+ 𝑥
2
= 3.

(19)

For problem (EXP2), we let𝐷
2
= {𝑥 ∈ 𝑅2 : 2𝑥2

1
+𝑥2
2
−2𝑥
2
−3 ≤

0, 𝑥
1
+ 𝑥
2
= 3}, 𝐵 = ( 4 0

0 2
), 𝑏 = (0, −2)𝑇, 𝑐 = −3, 𝑓(𝑥) =

𝑥2
1
− 3𝑥2
2
− 𝑥4
2
, 𝐻 = (1, 1), 𝑑 = 3, and 𝑥 = (0, 3)𝑇. Taking

𝐶 = [0, 4/3] × [5/3, 3] ⊇ 𝐷
2
and 𝐴 = ( 2 0

0 −114
), then, for any

𝑥 ∈ 𝐶, ∇2𝑓(𝑥) − 𝐴 = (
0 0

0 108−12𝑥
2

2

) ⪰ 0. A direct calculation
shows that 𝜆 = 63/2 and 𝜇 = 0 solve

𝜆 ≥ 0, 𝜆𝑔 (𝑥) = 0, ∇𝑓 (𝑥) + 𝜆 (𝐵𝑥 + 𝑏) + 𝐻
𝑇𝜇 = 0.

(20)

Then 𝐴 + 𝜆𝐵 = ( 128 0
0 −51

). So for any 𝑒 = (𝑒
1
, 𝑒
2
)𝑇 satisfying

𝐻𝑒 = 0, that is, 𝑒
1
+ 𝑒
2
= 0, we have 𝑒𝑇(𝐴 + 𝜆𝐵)𝑒 =

128𝑒2
1
− 51𝑒2

2
= 77𝑒2

1
≥ 0. Hence the sufficient global

optimality condition holds at 𝑥 and 𝑥 is a global minimizer
of the problem (EXP2). It is easy to verify that the necessary
global optimality condition holds at 𝑥 by taking𝐴 = ( 2 0

0 −6
).

We now deduce fromTheorems 2 and 3 the correspond-
ing result of [11].

Corollary 7. For the problem (QLNP), let 𝑓(𝑥) =

(1/2)𝑥𝑇𝑄𝑥 + 𝑎𝑇𝑥 suppose that there exists 𝑥
0

∈ 𝑅𝑛,
such that 𝑔(𝑥

0
) < 0 and 𝐻𝑥

0
= 𝑑; then a feasible point 𝑥 is

a global minimizer of QLNP if and only if there exist 𝜆 ≥ 0

and 𝜇 ∈ 𝑅𝑚 such that 𝑄𝑥 + 𝑎 + 𝜆(𝐵𝑥 + 𝑏) + 𝐻𝑇𝜇 = 0, and
𝑒𝑇(𝑄 + 𝜆𝐵)𝑒 ≥ 0 whenever𝐻𝑒 = 0.

Proof. Take 𝐴 = 𝑄; then the conclusion follows from
Theorems 2 and 3.

Corollary 8 (sufficient condition). For the problem (QLNP),
let 𝑓(𝑥) be a twice continuously differentiable convex function
on 𝑅𝑛 and 𝑥 ∈ 𝐷. If there exist 𝜆 ≥ 0 and 𝜇 ∈ 𝑅𝑚, such that
𝜆𝑔(𝑥) = 0, ∇𝑓(𝑥) + 𝜆(𝐵𝑥 + 𝑏) + 𝐻𝑇𝜇 = 0 and 𝑒𝑇𝐵𝑒 ≥ 0
whenever𝐻𝑒 = 0, then 𝑥 is a global minimizer of QLNP.

Proof. Take 𝐴 = 0; then ∇2𝑓(𝑥) − 𝐴 = ∇2𝑓(𝑥) ⪰ 0, as 𝑓(𝑥) is
convex on 𝑅𝑛. Hence the conclusion follows fromTheorem 3.

Consider the following nonconvex minimization prob-
lem over a quadratic constraint:

(QP) min 𝑓 (𝑥)

s.t. 𝑔 (𝑥) =
1

2
𝑥𝑇𝐵𝑥 + 𝑥𝑇𝑏 + 𝑐 ≤ 0.

(21)

Corollary 9 (necessary conditions [5]). For the problem
(QP), let 𝑥 ∈ 𝐷 and let𝐶 be a convex set containing𝐷. Assume
that there exists 𝐴 ∈ 𝑆𝑛 such that ∇2𝑓(𝑥) − 𝐴 ⪯ 0, for each
𝑥 ∈ 𝐶, and that there exists 𝑥

0
∈ 𝑅𝑛, such that 𝑔(𝑥

0
) < 0. If 𝑥

is a global minimizer of (QP), then there exists 𝜆 ≥ 0, such that
𝜆𝑔(𝑥) = 0, ∇𝑓(𝑥) + 𝜆(𝐵𝑥 + 𝑏) = 0 and 𝐴 + 𝜆𝐵 ⪰ 0.

Proof. The conclusion easily follows from Theorem 2 by
taking𝐻 = 0 and 𝑑 = 0.

Corollary 10 (sufficient conditions). For the problem (QP),
let 𝑥 ∈ 𝐷 and let 𝐶 be a convex set containing 𝐷. Assume that
there exists𝐴 ∈ 𝑆𝑛 such that ∇2𝑓(𝑥)−𝐴 ⪰ 0, for each 𝑥 ∈ 𝐶. If
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there exist 𝜆 ≥ 0, such that 𝜆𝑔(𝑥) = 0, ∇𝑓(𝑥) + 𝜆(𝐵𝑥 + 𝑏) = 0
and 𝐴 + 𝜆𝐵 ⪰ 0, then 𝑥 is a global minimizer of (QP).

Proof. The global optimality at 𝑥 follows fromTheorem 3, by
taking𝐻 = 0 and 𝑑 = 0.

Corollary 11 (necessary conditions). For problem (QLNP),
let 𝑓(𝑥) = (1/2)𝑥𝑇𝑄𝑥 + 𝑥𝑇𝑎 − 𝑘(𝑥), where 𝑘(𝑥) is a twice
continuously differentiable convex function on𝑅𝑛. Assume that
there exists 𝑥

0
∈ 𝑅𝑛, such that 𝑔(𝑥

0
) < 0 and𝐻𝑥

0
= 𝑏. If 𝑥 is a

global minimizer of QLNP, then there exist 𝜆 ≥ 0 and 𝜇 ∈ 𝑅𝑚,
such that 𝜆𝑔(𝑥) = 0, 𝑄𝑥 + 𝑎 − ∇𝑘(𝑥) + 𝜆(𝐵𝑥 + 𝑏) + 𝐻𝑇𝜇 = 0
and 𝑒𝑇(𝑄 + 𝜆𝐵)𝑒 ≥ 0, whenever𝐻𝑒 = 0.

Proof. Take 𝑄 = 𝐴; then ∇2𝑓(𝑥) − 𝐴 = 𝑄 − ∇2𝑘(𝑥) − 𝑄 ⪯ 0,
for each 𝑥 ∈ 𝑅𝑛. Hence, the conclusion follows immediately
fromTheorem 2.

3. Global Optimality Conditions for
Smooth Nonconvex Minimization Problems

In this section we present global optimality conditions for
smooth nonconvex minimization problems over quadratic
and linear equality constraints. Nowwe show away of finding
a matrix𝐴 ∈ 𝑆𝑛 such that ∇2𝑓(𝑥) −𝐴 ⪯ 0 or ∇2𝑓(𝑥) −𝐴 ⪰ 0,
for each 𝑥 in a convex set 𝐶 containing the feasible set𝐷.

Let the Hessian of 𝑓 be denoted by ∇2𝑓(𝑥) = (𝑓
𝑖𝑗
(𝑥)) and

let 𝐶 be a convex and compact set containing𝐷. We define

𝛼
𝑖
= min

{
{
{

𝑓
𝑖𝑖
−
𝑛

∑
𝑗 ̸= 𝑖,𝑗=1

𝑓𝑖𝑗 (𝑥)
 : 𝑥 ∈ 𝐶

}
}
}

, (22)

𝛽
𝑖
= max

{
{
{

𝑓
𝑖𝑖
+
𝑛

∑
𝑗 ̸= 𝑖,𝑗=1

𝑓𝑖𝑗 (𝑥)
 : 𝑥 ∈ 𝐶

}
}
}

. (23)

Theorem 12 (sufficient conditions). For problem (QLNP), let
𝑥 ∈ 𝐷 and let 𝐴

𝛼
= diag(𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
). If there exist 𝜆 ≥ 0

and 𝜇 ∈ 𝑅𝑚, such that 𝜆𝑔(𝑥) = 0,∇𝑓(𝑥)+𝜆(𝐵𝑥+𝑏)+𝐻𝑇𝜇 = 0,
and 𝑒𝑇(𝐴

𝛼
+ 𝜆𝐵)𝑒 ≥ 0, whenever 𝐻𝑒 = 0, then 𝑥 is a global

minimizer of QLNP.

Proof. By (22), we know that 𝛼
𝑖
≤ 𝑓
𝑖𝑖
− ∑
𝑛

𝑗 ̸= 𝑖,𝑗=1
|𝑓
𝑖𝑗
(𝑥)|, ∀𝑥 ∈

𝐶. So

𝑓
𝑖𝑖
− 𝛼
𝑖
≥
𝑛

∑
𝑗 ̸= 𝑖,𝑗=1

𝑓𝑖𝑗 (𝑥)
 , ∀𝑥 ∈ 𝐶. (24)

Hence, ∇2𝑓(𝑥) − 𝐴
𝛼
is diagonally dominant for each 𝑥 in 𝐶;

therefore ∇2𝑓(𝑥) − 𝐴
𝛼
⪰ 0, ∀𝑥 ∈ 𝐶. Thus the conclusion

follows fromTheorem 3.

Theorem 13 (necessary conditions). For problem (QLNP), let
𝑥 ∈ 𝐷 and let 𝐴

𝛽
= diag(𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑛
). Suppose that there

exists 𝑥
0
∈ 𝑅𝑛, such that 𝑔(𝑥

0
) < 0 and 𝐻𝑥

0
= 𝑏. If 𝑥 is a

global minimizer of QLNP, then there exist 𝜆 ≥ 0 and 𝜇 ∈ 𝑅𝑚,
such that 𝜆𝑔(𝑥) = 0, ∇𝑓(𝑥) + 𝜆(𝐵𝑥 + 𝑏) + 𝐻𝑇𝜇 = 0 and
𝑒𝑇(𝐴
𝛽
+ 𝜆𝐵)𝑒 ≥ 0, whenever𝐻𝑒 = 0.

Proof. It is easy to verify that 𝐴
𝛽
− ∇2𝑓(𝑥) is diagonally

dominant for each 𝑥 in𝐶; therefore∇2𝑓(𝑥)−𝐴
𝛽
⪯ 0, ∀𝑥 ∈ 𝐶.

Hence the conclusion follows fromTheorem 2.

Example 14. Consider the following minimization problem:

min 𝑥2
1
−
1

3
𝑥
1
𝑥3
2
− 𝑥4
2

(EXP3) s.t. 2𝑥2
1
+ 𝑥2
2
− 2𝑥
2
− 3 ≤ 0,

𝑥
1
+ 𝑥
2
= 3.

(25)

For problem (EXP3), we let𝐷
3
= {𝑥 ∈ 𝑅2 : 2𝑥2

1
+𝑥2
2
−2𝑥
2
−3 ≤

0, 𝑥
1
+ 𝑥
2
= 3}, 𝐵 = ( 4 0

0 2
), 𝑏 = (0, −2)𝑇, 𝑐 = −3, 𝑓(𝑥) =

𝑥2
1
− (1/3)𝑥

1
𝑥3
2
− 𝑥4
2
, 𝐻 = (1, 1), 𝑑 = 3, and 𝑥 = (0, 3)𝑇.

Taking 𝐶 = [0, 2] × [1, 3] ⊇ 𝐷
3
, ∇𝑓(𝑥) = (−9, −108)𝑇, and

∇2𝑓(𝑥) = (
2 −𝑥

2

2

−𝑥
2

2
−2𝑥
1
𝑥
2
−12𝑥
2

2

), then 𝛼
1
= min

𝑥∈𝐶
{2−|−2𝑥2

2
|} =

−7, 𝛼
2
= min

𝑥∈𝐶
{−2𝑥
1
𝑥
2
− 12𝑥2

2
− | − 2𝑥2

2
|} = −129, and

𝐴
𝛼
= ( −7 0
0 −129

). A direct calculation shows that 𝜆 = 99/4
and 𝜇 = 9 solve

𝜆 ≥ 0, 𝜆𝑔 (𝑥) = 0, ∇𝑓 (𝑥) + 𝜆 (𝐵𝑥 + 𝑏) + 𝐻
𝑇𝜇 = 0.

(26)

Then 𝐴
𝛼
+ 𝜆𝐵 = ( 92 0

0 −155/2
). So, for any 𝑒 = (𝑒

1
, 𝑒
2
)𝑇

satisfying𝐻𝑒 = 0, that is, 𝑒
1
+𝑒
2
= 0, we have 𝑒𝑇(𝐴

𝛼
+𝜆𝐵)𝑒 =

92𝑒2
1
− (155/2)𝑒2

2
= −(29/2)𝑒2

1
≥ 0. Hence the sufficient global

optimality condition holds at 𝑥 and 𝑥 is a global minimizer of
the problem (EXP3).

For 𝑥, we have 𝛽
1
= max

𝑥∈𝐶
{2 + | − 2𝑥2

2
|} = 11 and 𝛽

2
=

max
𝑥∈𝐶

{−2𝑥
1
𝑥
2
−12𝑥2
2
+|−2𝑥2

2
|} = −11; then𝐴

𝛽
= ( 11 0
0 −11

).
Hence it is easy to verify that the necessary global optimality
condition holds at 𝑥 by taking 𝜆 = 99/4 and 𝜇 = 9.

Now, we can deduce some global optimality conditions
for problem (QP) fromTheorems 12 and 13.

Corollary 15 (sufficient conditions). For problem (QP), let
𝑥 ∈ 𝐷 and let 𝐴 = diag(𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
). If there exists 𝜆 ≥ 0,

such that 𝜆𝑔(𝑥) = 0, ∇𝑓(𝑥) + 𝜆(𝐵𝑥 + 𝑏) = 0 and 𝐴 + 𝜆𝐵 ⪰ 0,
then 𝑥 is a global minimizer of (QP).

Proof. The conclusion easily follows from Theorem 12 by
taking𝐻 = 0 and 𝑑 = 0.

Corollary 16 (necessary conditions [5]). For the problem
(QP), let 𝑥 ∈ 𝐷 and let 𝐴 = diag(𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑛
). Suppose

that there exists 𝑥
0
∈ 𝑅𝑛, such that 𝑔(𝑥

0
) < 0. If 𝑥 is a global

minimizer of (QP), then there exists 𝜆 ≥ 0, such that𝜆𝑔(𝑥) = 0,
∇𝑓(𝑥) + 𝜆(𝐵𝑥 + 𝑏) = 0 and 𝐴 + 𝜆𝐵 ⪰ 0.

Proof. The global optimality condition at 𝑥 follows from
Theorem 13 by taking𝐻 = 0 and 𝑑 = 0.
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