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The Legendre multiwavelet Galerkin method is adopted to give the approximate solution for the nonlinear fractional partial
differential equations (NFPDEs). The Legendre multiwavelet properties are presented. The main characteristic of this approach
is using these properties together with the Galerkin method to reduce the NFPDEs to the solution of nonlinear system of algebraic
equations.We presented the numerical results and a comparison with the exact solution in the cases whenwe have an exact solution
to demonstrate the applicability and efficiency of the method. The fractional derivative is described in the Caputo sense.

1. Introduction

Nowadays, fractional differential equations have garnered
a great deal of attention and appreciation recently due to
its ability to provide an accurate description of different
nonlinear phenomena.Theprocess of development ofmodels
based on fractional order differential systems has lately
gained popularity in the investigation of dynamical systems.
The advantage of fractional order systems is that they allow
greater degrees of freedom in the model. The field of chaos
has also snatched the attention of the researchers and this
contributes to a large amount of the current research these
days.

In recent decades, fractional calculus has found diverse
applications in different scientific and technological fields [1–
5], such as thermal engineering, acoustics, electromagnetism,
control, robotics, viscoelasticity, diffusion, edge detection,
turbulence, signal processing, information sciences, commu-
nications, and many other physical processes and also in
medical sciences. Fractional differential equations (FDEs)
have also been applied in modeling many physical and
engineering problems and fractional differential equations

in nonlinear dynamic [6, 7]. The importance of getting
approximate and exact solutions of nonlinear fractional
differential equations in mathematics and physics remains an
important problem that requires to discover new methods
of approximate and exact solutions. However, finding exact
solutions to these nonlinear fractional differential equa-
tions are difficult to obtain it [8]. Therefore, the numerical
methods used to deal with these equations [9] and they
have largely been using some semianalytical techniques to
solve these equations such as, differential transform method
[10–17], Adomian decomposition method [18–21], Laplace
decomposition method [22–24], homotopy perturbation
method [25–29], and variational iteration method [30–32].
The majority of these methods have shortcomings inbuilt
such as calculating Adomian’s polynomials, the Lagrange
multiplier, mixed results, and the large computational
work.

The aim of this paper is to expand the application of Leg-
endre multiwavelet Galerkin method to provide approximate
solutions for initial value problems of fractional nonlinear
partial differential equations and to make comparison with
that obtained by other numerical methods.
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Figure 1: (a) Plot of 𝑢(𝑥, 𝑡) with respect to 𝑥 and 𝑡 at 𝛼 = 1/3. (b) Plot of 𝑢(𝑥, 𝑡) with respect to 𝑥 and 𝑡 at 𝛼 = 1/2. (c) Plot of 𝑢(𝑥, 𝑡) with
respect to 𝑥 and 𝑡 at 𝛼 = 2/3. (d) Plot of 𝑢(𝑥, 𝑡) with respect to 𝑥 and 𝑡 at 𝛼 = 1.

2. Preliminaries and Notations

In this section, we give the definition of the Riemann-
Liouville fractional derivative and fractional integral with
some basic properties.

Definition 1. The left sided Riemann-Liouville fractional
integral of order 𝜇 ≥ 0, [33–35] of a function 𝑓 ∈ 𝐶

𝛼
, 𝛼 ≥ −1,

is defined as

𝐼
𝜇

𝑓 (𝑡) =

{
{

{
{

{

1

Γ (𝜇)

∫

𝑡

0

𝑓 (𝜏)

(𝑡 − 𝜏)
1−𝜇

𝑑𝜏, 𝜇 > 0, 𝑡 > 0,

𝑓 (𝑡) 𝜇 = 0.

(1)

Definition 2. The (left sided) Caputo fractional derivative of
𝑓, 𝑓 ∈ 𝐶

𝑚

−1
, 𝑚 ∈ 𝐼𝑁 ∪ {0}, is defined as [33]

𝐷
𝜇

∗
𝑓 (𝑡) =

𝜕
𝜇

𝑓 (𝑡)

𝜕𝑡
𝜇

=

{
{
{

{
{
{

{

𝐼
𝑚−𝜇

[

𝜕
𝑚

𝑓 (𝑡)

𝜕𝑡
𝑚

] , 𝜇 > 0, 𝑡 > 0,

𝜕
𝑚

𝑓 (𝑡)

𝜕𝑡
𝑚

𝜇 = 𝑚.

(2)
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Figure 2: Plot of 𝑢(𝑥, 𝑡) for various values of 𝑡 and different values
of 𝛼, 𝑥 = 1.

Note that [33–35]

(i)

𝐼
𝜇

𝑡
𝑓 (𝑥, 𝑡) =

1

Γ (𝜇)

∫

𝑡

0

𝑓 (𝑥, 𝑠)

(𝑡 − 𝑠)
1−𝜋

𝑑𝜏, 𝜇 > 0, 𝑡 > 0, (3)

(ii)

𝐷
𝜇

∗
𝑓 (𝑥, 𝑡) = 𝐼

𝑚−𝜇

𝑡
[

𝜕
𝑚

𝑓 (𝑥, 𝑡)

𝜕𝑡
𝑚

] , 𝑚 − 1 < 𝜇 ≤ 𝑚, (4)

(iii)

𝐼
𝜇

𝑡
𝛾

=

Γ (𝛾 + 1)

Γ (𝛾 + 𝜇 + 1)

𝑡
𝛾+𝜇

, 𝜇 > 0, 𝛾 > −1, 𝑡 > 0. (5)

3. Properties of Legendre Multiwavelets

3.1. Wavelets [35, 36]. Wavelets constitute a family of func-
tions constructed from dilation and translation of a single
function called the mother wavelet. When the dilation
parameter 𝑎 and the translation parameter 𝑏 vary continu-
ously we have the following family of continuous wavelets:

𝜓
𝑎,𝑏

(𝑡) = |𝑎|
−1/2

𝜓(

𝑡 − 𝑏

𝑎

) , 𝑎, 𝑏 ∈ R, 𝑎 ̸= 0. (6)

If we restrict the parameters 𝑎 and 𝑏 to discrete values as 𝑎 =

𝑎
0

−𝑘, 𝑏 = 𝑛𝑏
0
𝑎
0

−𝑘, 𝑎
0
> 1, 𝑏

0
> 0, and 𝑛, 𝑘 ∈ N we have the

following family of discrete wavelets:

𝜓
𝑘,𝑛

(𝑡) = |𝑎|
𝑘/2

𝜓 (𝑎
0

𝑘

𝑡 − 𝑛𝑏
0
) , (7)

where 𝜓
𝑘,𝑛
(𝑡) form a wavelet basis for 𝐿2(𝑅). In particular,

when 𝑎
0
= 2 and 𝑏

0
= 1 then 𝜓

𝑘,𝑛
(𝑡) forms an orthonormal

basis [35].

3.2. Legendre Multiwavelets [36]. Legendre multiwavelets
𝜓
𝑛𝑚
(𝑡) = 𝜓(𝑘, 𝑛,𝑚, 𝑡) have four arguments; 𝑛, 𝑛 = 0, 1,

2, . . . , 2
𝑘

−1, 𝑘 can assume any positive integer;𝑚 is the order
for Legendre polynomials and 𝑡 is the normalized time. They
are defined on the interval [0, 1]

𝜓
𝑛𝑚

(𝑡)

=

{

{

{

√2𝑚 + 1 2
𝑘/2

𝑃
𝑚
(2
𝑘

𝑡 − 𝑛) , for 𝑛

2
𝑘

≤ 𝑡 ≤

𝑛 + 1

2
𝑘

0, otherwise,
(8)

where 𝑚 = 0, 1, . . . ,𝑀 − 1, 𝑛 = 0, 1, 2, . . . , 2
𝑘

− 1. The
coefficient√2𝑚 + 1 is for orthonormality; 𝑃

𝑚
(𝑡) are the well-

known shifted Legendre polynomials of order 𝑚 which are
defined on the interval [0, 1] and can be determined with the
aid of the following recurrence formula:

𝑃
0
(𝑡) = 1, 𝑃

1
(𝑡) = 2𝑡 − 1,

𝑃
𝑚+1

(𝑡) = (

2𝑚 + 1

𝑚 + 1

) (2𝑡 − 1) 𝑃
𝑚
(𝑡)

− (

𝑚

𝑚 + 1

)𝑃
𝑚−1

(𝑡) , 𝑚 = 1, 2, 3, . . . .

(9)

Also the two-dimensional Legendre multiwavelet is defined
as

𝜓
𝑛
1
𝑚
1
𝑛
2
𝑚
2
(𝑥, 𝑡)

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝐴𝑃
𝑚
1

(2
𝑘
1
𝑥 − 𝑛
1
) 𝑃
𝑚
2

(2
𝑘
2
𝑡 − 𝑛
2
) ,

for 𝑛
1

2
𝑘
1

≤ 𝑥 ≤

𝑛
1
+ 1

2
𝑘
1

𝑛
2

2
𝑘
2

≤ 𝑡 ≤

𝑛
2
+ 1

2
𝑘
2

0, otherwise,

(10)

where 𝐴 = √(2𝑚
1
+ 1)(2𝑚

2
+ 1) 2

(𝑘
1
+𝑘
2
)/2, 𝑛
1
and 𝑛

2
are

defined similarly to 𝑛, 𝑘
1
and 𝑘
2
can assume any positive inte-

ger, 𝑚
1
and 𝑚

2
are the order for the Legendre polynomials,

and 𝜓
𝑛
1
𝑚
1
𝑛
2
𝑚
2

(𝑥, 𝑡) forms a basis for 𝐿2([0, 1] × [0, 1]).

3.3. Function Approximation. A function𝑓(𝑥, 𝑡) defined over
[0, 1] × [0, 1] can expand as

𝑓 (𝑥, 𝑡) =

∞

∑

𝑛=1

∞

∑

𝑖=0

∞

∑

𝑙=1

∞

∑

𝑗=0

𝑐
𝑛,𝑖,𝑙,𝑗

𝜓
𝑛,𝑖
(𝑥) 𝜓
𝑙,𝑗
(𝑡) . (11)

If the infinite series in (11) is truncated, it can be written as

𝑓 (𝑥, 𝑡) =

2
𝑘1−1

∑

𝑛=1

𝑁

∑

𝑖=0

2
𝑘2−1

∑

𝑙=1

𝑀

∑

𝑗=0

𝑐
𝑛,𝑖,𝑙,𝑗

𝜓
𝑛,𝑖
(𝑥) 𝜓
𝑙,𝑗
(𝑡)

= Ψ
𝑇

(𝑥) 𝐹 Ψ (𝑡) ,

(12)
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Figure 3: (a) Plot of 𝑢(𝑥, 𝑡)with respect to 𝑥 and 𝑡 at 𝛼 = 1. (b) Plot of 𝑢(𝑥, 𝑡)with respect to 𝑥 and 𝑡 at 𝛼 = 1.5. (c) Plot of 𝑢(𝑥, 𝑡)with respect
to 𝑥 and 𝑡 at 𝛼 = 1.75. (d) Plot of 𝑢(𝑥, 𝑡) with respect to 𝑥 and 𝑡 at 𝛼 = 2.

where Ψ(𝑥) and Ψ(𝑡) are 2𝑘1(𝑀
1
+1)×1 and 2

𝑘
2
(𝑀
2
+1)×1

matrices, respectively, given by

Ψ (𝑥) = [𝜓
10
(𝑥) , . . . , 𝜓

1𝑀
1
(𝑥) , . . . , 𝜓

20
(𝑥) , . . . ,

𝜓
2𝑀
1
(𝑥) , . . . , 𝜓

(2
𝑘1
−1)0

(𝑥) , . . . , 𝜓
(2
𝑘1
−1)𝑀

1

(𝑥)] ,

Ψ (𝑡) = [𝜓
10
(𝑡) , . . . , 𝜓

1𝑀
1
(𝑡) , . . . , 𝜓

20
(𝑡) , . . . ,

𝜓
2𝑀
1
(𝑡) , . . . , 𝜓

(2
𝑘1
−1)0

(𝑡) , . . . , 𝜓
(2
𝑘1
−1)𝑀

1

(𝑡)] .

(13)

In addition, 𝐹 is a 2𝑘1(𝑀
1
+ 1) × 2

𝑘
2
(𝑀
2
+ 1) matrix whose

elements can be calculated from

∫∫

1

0

𝜓
𝑛𝑖
(𝑥) 𝜓
𝑙𝑗
(𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑡 𝑑𝑥,

(14)

with 𝑛 = 0, 1, . . . , 2
𝑘
1
− 1, 𝑖 = 0, . . . ,𝑀

1
, 𝑙 = 0, 1, . . . , 2

𝑘
2
− 1,

𝑗 = 0, . . . ,𝑀
2
.
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Table 1: Approximate solutions for Example 3.

𝑡 𝑥

𝛼 = 1/3 𝛼 = 1/2 𝛼 = 2/3 𝛼 = 1

𝑢HPM 𝑢LEG 𝑢HPM 𝑢LEG 𝑢HPM 𝑢LEG 𝑢HPM 𝑢LEG 𝑢EX

0.0

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.25

0.25 0.95546 0.93263 0.81419 0.78225 0.68960 0.66479 0.50 0.50 0.50
0.50 1.20546 1.18263 1.06419 1.03225 0.93960 0.91479 0.75 0.75 0.75
0.75 1.45546 1.43263 1.31419 1.28225 1.18960 1.16479 1.00 1.00 1.00
1.00 1.70546 1.68263 1.56419 1.53225 1.43960 1.41479 1.25 1.25 1.25

0.50

0.25 1.13882 1.30877 1.04788 1.13276 0.94783 0.98312 0.75 0.75 0.75
0.50 1.38882 1.55877 1.29788 1.38276 1.19783 1.23312 1.00 1.00 1.00
0.75 1.63882 1.80877 1.54788 1.63276 1.44783 1.48312 1.25 1.25 1.25
1.00 1.88882 2.05877 1.79788 1.88276 1.69783 1.73312 1.50 1.50 1.50

0.75

0.25 1.26745 1.37843 1.22721 1.30152 1.16441 1.20499 1.00 1.00 1.00
0.50 1.51745 1.62843 1.47721 1.55152 1.41441 1.45499 1.25 1.25 1.25
0.75 1.76745 1.87843 1.72721 1.80152 1.66441 1.70499 1.50 1.50 1.50
1.00 2.01745 2.12843 1.97721 2.05152 1.91441 1.95499 1.75 1.75 1.75

1.00

0.25 1.36985 1.14160 1.37838 1.28854 1.35773 1.33039 1.25 1.25 1.25
0.50 1.61985 1.39160 1.62838 1.53854 1.60773 1.58039 1.50 1.50 1.50
0.75 1.86985 1.64160 1.87838 1.78854 1.85773 1.83039 1.75 1.75 1.75
1.00 2.11985 1.89160 2.12838 2.03854 2.10773 2.08039 2.00 2.00 2.00

Table 2: Approximate solutions for Example 4.

𝑡 𝑥

𝛼 = 1 𝛼 = 1.5 1.75 𝛼 = 2

𝑢LEG 𝑢LEG 𝑢LEG 𝑢LEG

0.25

0.25 0.918665978 1.132388298 1.164570723 1.188858256
0.50 1.023903100 1.316468982 1.361000156 1.394880289
0.75 1.099331862 1.470741307 1.527621230 1.571093962
1.00 1.132379628 1.582632636 1.651861308 1.704926639

0.50

0.25 0.670529477 0.862842686 0.954935119 1.028617931
0.50 0.683586761 0.936088923 1.063084555 1.165329668
0.75 0.666835687 0.979526801 1.141425631 1.272233047
1.00 0.607703616 0.980583683 1.177385711 1.336755430

0.75

0.25 0.502994454 0.552019181 0.676793302 0.7897781568
0.50 0.458476525 0.501019780 0.671719555 0.8269013752
0.75 0.384150235 0.420212023 0.636837450 0.8342162344
1.00 0.267442949 0.297023267 0.559574347 0.799150097

1.00

0.25 0.416060911 0.313169842 0.388441429 0.4954341090
0.50 0.348572389 0.173995974 0.272945982 0.415723105
0.75 0.251275507 0.005013748 0.127642174 0.306203742
1.00 0.111597629 −0.206349475 −0.060042629 0.154303383

4. Solution of Nonlinear Fractional Partial
Differential Equations

Consider the nonlinear fractional partial differential equation

𝐷
𝛼

𝑡
𝑢 = 𝑁 (𝑢) + 𝑔 (𝑥, 𝑡) , 𝑚 < 𝛼 < 𝑚 + 1, 𝑚 ≥ 0, (15)

with initial condition 𝑢(𝑥, 0) = 𝑓(𝑥).

Let

𝐹 (𝑢) = 𝐷
𝛼

𝑡
𝑢 − 𝑁 (𝑢) − 𝑔 (𝑥, 𝑡) . (16)

A Galerkin approximation to (16) is constructed as
follows. The approximation 𝑢

𝑁𝑀
is sought in the form of the

truncated series
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Table 3: Numerical values when 𝛼 = 0.5.

𝑡 𝑥 𝑢GDTM 𝑢HPM 𝑢VIM 𝑢ADM 𝑢Leg

0.2

0.25 0.123635 0.104573 0.103750 0.112844 0.092812
0.50 0.247270 0.209146 0.207499 0.225688 0.185624
0.75 0.370905 0.313720 0.311249 0.311249 0.278436
1.00 0.494540 0.418293 0.414999 0.451375 0.371248

0.4

0.25 0.177148 0.177229 0.172012 0.164004 0.161241
0.50 0.354295 0.354458 0.344025 0.328008 0.322483
0.75 0.531443 0.531686 0.516037 0.492011 0.483725
1.00 0.708590 0.708915 0.688050 0.656015 0.644967

0.6

0.25 0.226965 0.230500 0.215641 0.243862 0.205288
0.50 0.453931 0.461000 0.431283 0.487721 0.410577
0.75 0.680896 0.691499 0.646924 0.731581 0.615866
1.00 0.907861 0.921999 0.862566 0.975441 0.821155

Table 4: Numerical values when 𝛼 = 0.75.

𝑡 𝑥 𝑢GDTM 𝑢HPM 𝑢VIM 𝑢ADM 𝑢Leg

0.2

0.25 0.080835 0.078306 0.077933 0.078787 0.070083
0.50 0.161671 0.156612 0.155865 0.157574 0.140166
0.75 0.242596 0.234919 0.233798 0.236361 0.210249
1.00 0.323342 0.313225 0.311730 0.315148 0.280332

0.4

0.25 0.135446 0.136806 0.134855 0.128941 0.129648
0.50 0.270892 0.273612 0.269710 0.257881 0.259297
0.75 0.406338 0.410418 0.404565 0.386821 0.388945
1.00 0.541784 0.547225 0.539420 0.515762 0.518594

0.6

0.25 0.185529 0.185146 0.179990 0.177238 0.178696
0.50 0.371057 0.370292 0.359979 0.354477 0.357393
0.75 0.556586 0.555437 0.539969 0.531715 0.536089
1.00 0.742114 0.740583 0.719958 0.7089541 0.714786

𝑢
𝑁𝑀

(𝑥, 𝑡)

=

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

2
𝑘1

∑

𝑛=1

𝑁

∑

𝑖=0

2
𝑘2

∑

𝑙=1

𝑀

∑

𝑗=0

𝑡𝑐
𝑛,𝑖,𝑙,𝑗

𝜓
𝑛,𝑖
(𝑥) 𝜓
𝑙,𝑗
(𝑡)

+𝑢 (𝑥, 0) , for 𝑚 = 0,

2
𝑘1

∑

𝑛=1

𝑁

∑

𝑖=0

2
𝑘2

∑

𝑙=1

𝑀

∑

𝑗=0

𝑡
2

𝑐
𝑛,𝑖,𝑙,𝑗

𝜓
𝑛,𝑖
(𝑥) 𝜓
𝑙,𝑗
(𝑡)

+𝑢 (𝑥, 0) + 𝑡𝑢
𝑡
(𝑥, 0) , for 𝑚 = 1,

(17)

where 𝜓
𝑖𝑗
are the Legendre multiwavelet basis.

The expansion coefficients 𝑐
𝑛,𝑖,𝑙,𝑗

are determined by
Galerkin equations:

⟨𝐹 (𝑢
𝑁𝑀

) , 𝜓
𝑛,𝑖
𝜓
𝑙,𝑗
⟩ = 0, (18)

where ⟨⋅⟩ denotes inner product defined as

⟨𝐹 (𝑢
𝑁𝑀

) , 𝜓
𝑛,𝑖
𝜓
𝑙,𝑗
⟩

= ∫∫

1

0

𝐹 (𝑢
𝑁𝑀

) (𝑥, 𝑡) 𝜓
𝑛𝑖
(𝑥) 𝜓
𝑙𝑗
(𝑡) 𝑑𝑡 𝑑𝑥.

(19)

Galerkin equations (18) give a system of 2𝑘1−1(𝑁 + 1) ×

2
𝑘
2
−1

(𝑀 + 1) equations that can be solved for the elements
of

𝑎
𝑛,𝑖,𝑙,𝑗

, 𝑖 = 0, 1, . . . , 𝑁, 𝑗 = 0, 1, . . . ,𝑀,

𝑛 = 1, 2, . . . , 2
𝑘
1
, 𝑙 = 1, 2, . . . , 2

𝑘
2
.

(20)

5. Illustrative Example

To demonstrate the effectiveness of the method, here we
consider some linear fractional partial differential equations.
The Legendre wavelets are defined only for 𝑡 ∈ [0, 1]; we take
𝑎 = 0, 𝑏 = 1. The computations associated with the examples
were performed using Mathematica and Maple.

Example 3. Consider the nonlinear time-fractional diffusion
equation in absence of both external force and reaction term
[37]

𝜕
𝛼

𝑢

𝜕𝑡
𝛼
−

𝜕𝑢

𝜕𝑥

(𝑢

𝜕𝑢

𝜕𝑥

) = 0, 0 < 𝛼 ≤ 1, 𝑡 > 0, (21)

with initial condition 𝑢(𝑥, 0) = 𝑥.



Journal of Applied Mathematics 7

Table 5: Numerical values when 𝛼 = 1.

𝑡 𝑥 𝑢GDTM 𝑢HPM 𝑢VIM 𝑢ADM 𝑢Leg 𝑢EX

0.2

0.25 0.05 0.049989 0.050309 0.050000 0.05 0.05
0.50 0.10 0.099978 0.100619 0.100000 0.10 0.10
0.75 0.15 0.149968 0.150928 0.150001 0.15 0.15
1.00 0.20 0.199957 0.201237 0.200001 0.20 0.20

0.4

0.25 0.10 0.099645 0.101894 0.100023 0.10 0.10
0.50 0.20 0.199290 0.203787 0.200046 0.20 0.20
0.75 0.30 0.298935 0.305681 0.300069 0.30 0.30
1.00 0.40 0.398580 0.407575 0.400092 0.40 0.40

0.6

0.25 0.15 0.147158 0.153094 0.150411 0.15 0.15
0.50 0.30 0.294317 0.306188 0.300823 0.30 0.30
0.75 0.45 0.441475 0.459282 0.451234 0.45 0.45
1.00 0.60 0.588634 0.612376 0.601646 0.60 0.60

Table 6: Numerical values when 𝛼 = {0.5, 0.75, 1}.

𝑡 𝑥

𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1

𝑢HPM 𝑢Leg 𝑢HPM 𝑢Leg 𝑢HPM 𝑢Leg 𝑢EX

0.2

0.25 0.243843 0.216416 0.153820 0.150051 0.09 0.09 0.09
0.50 0.351274 0.309228 0.232395 0.220134 0.14 0.14 0.14
0.75 0.458705 0.402040 0.310971 0.290218 0.19 0.19 0.19
1.00 0.566136 0.494853 0.389547 0.360301 0.24 0.24 0.24

0.4

0.25 0.534552 0.474657 0.388100 0.363967 0.26 0.26 0.26
0.50 0.667613 0.635899 0.514376 0.493616 0.36 0.36 0.36
0.75 0.800673 0.797140 0.640652 0.623264 0.46 0.46 0.46
1.00 0.933734 0.958382 0.766928 0.752913 0.56 0.56 0.56

0.6

0.25 0.934713 0.774722 0.726195 0.641747 0.51 0.51 0.51
0.50 1.083891 0.980011 0.890481 0.820443 0.66 0.66 0.66
0.75 1.233068 1.185300 1.054767 0.999140 0.81 0.81 0.81
1.00 1.382245 1.390589 1.219052 1.177837 0.96 0.96 0.96

1.5

1

1

0.5

0

0

0.2 0.4 0.6 0.8

t

𝛼
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u
(x
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Figure 4: Plot of 𝑢(𝑥, 𝑡) for various values of 𝑡 and different values
of 𝛼, 𝑥 = 1.

We applied the method presented in this paper for 𝑘
1
=

𝑘
2
= 0 and𝑀 = 𝑁 = 1; from (17) we have

𝑢
𝑁𝑀

(𝑥, 𝑡) =

1

∑

𝑖=1

1

∑

𝑗=0

𝑡𝑐
0,𝑖,0,𝑗

𝜓
0,𝑖
(𝑥) 𝜓
0,𝑗

(𝑡) + 𝑥. (22)

Substituting (22) into (21) and using (18) and (19) we
obtained the solution of (21) for different values of 𝛼 =

{1/3, 1/2, 2/3, 1}. Table 1 shows the approximate solutions
for (21) obtained for different values of 𝛼 using the Legen-
dre multiwavelet method and the Homotopy perturbation
method [37]. The values of 𝛼 = 1 are the only case for
which we know the exact solution 𝑢(𝑥, 𝑡) = 𝑥 + 𝑡 and our
approximate solution using Legendre multiwavelet method
coincides with the approximate solution obtained using the
Homotopy perturbation method [37]. It is noted that only
two bases of Legendre multiwavelet and fourth-order term
of Homotopy perturbation method were used in evaluating
the approximate solution of Table 1. Figure 1 shows a plot of
𝑢(𝑥, 𝑡) with respect to 𝑥 and 𝑡 for different values of 𝛼 =

{1/3, 1/2, 2/3, 1}. Figure 2 shows a plot of 𝑢(𝑥, 𝑡) for various
values of 𝑡 and different values of 𝛼 = {1/3, 1/2, 2/3, 1}, 𝑥 = 1.
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Figure 5: Plot of 𝑢(𝑥, 𝑡) with respect to 𝑥 and 𝑡 at (a) 𝛼 = 0.5, (b) 𝛼 = 0.75, and (c) 𝛼 = 1.

Example 4. Consider the fractional nonlinear Klein-Gordon
equation [38]

𝜕
𝛼

𝑢

𝜕𝑡
𝛼
−

𝜕

𝜕𝑥

(

𝜕𝑢

𝜕𝑥

) + 𝑢
2

= 0, 1 ≤ 𝛼 ≤ 2, 𝑡 > 0, (23)

with initial condition 𝑢(𝑥, 0) = 1 + sin𝑥, 𝑢
𝑡
(𝑥, 0) =

0.

We applied the method presented in this paper for 𝑘
1
=

𝑘
2
= 0 and𝑀 = 𝑁 = 1; from (17) we have

𝑢
𝑁𝑀

(𝑥, 𝑡) =

1

∑

𝑖=1

1

∑

𝑗=0

𝑡
2

𝑐
0,𝑖,0,𝑗

𝜓
0,𝑖
(𝑥) 𝜓
0,𝑗

(𝑡) + 1 + sin𝑥. (24)

Substituting (24) into (23) and using (17) we obtained the
solution of (23) for different values of 𝛼 = {1, 1.5, 1.75, 2}.
Table 2 shows the approximate solutions for (23) obtained
for different values of 𝛼 using the Legendre multiwavelet
method. We have given the solution simulations in Figure 3
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Figure 6: Plot of 𝑢(𝑥, 𝑡) for various values of 𝑡 and different values of 𝛼, 𝑥 = 1.

according to different values of 𝛼. Figure 4 shows a plot of
𝑢(𝑥, 𝑡) for various values of 𝑡 and different values of 𝛼, 𝑥 = 1.

Example 5. Consider the following nonlinear time-fractional
equation [28, 39, 40]:

𝜕
𝛼

𝑢

𝜕𝑡
𝛼
+ 𝑢

𝜕𝑢

𝜕𝑥

= 𝑥 + 𝑥𝑡
2

, 0 < 𝛼 ≤ 1, 𝑡 > 0, (25)

with initial condition 𝑢(𝑥, 0) = 0.
We applied the method presented in this paper for 𝑘

1
=

𝑘
2
= 0 and𝑀 = 𝑁 = 1; from (17) we have

𝑢
𝑁𝑀

(𝑥, 𝑡) =

1

∑

𝑖=1

1

∑

𝑗=0

𝑡
2

𝑐
0,𝑖,0,𝑗

𝜓
0,𝑖
(𝑥) 𝜓
0,𝑗

(𝑡) . (26)

Substituting (26) into (25) and using (17) we obtained the
solution of (25) for different values of 𝛼 = {0.5, 0.75, 1}.
We have given the solution simulations in Figure 5 according
to different values of 𝛼. Figure 6 shows a plot of 𝑢(𝑥, 𝑡) for
various values of 𝑡 and different values of 𝛼, 𝑥 = 1. Tables
3, 4, and 5 show the approximate solutions for (25) obtained
using the Legendre multiwavelet method, the decomposition
method [39], the variational iteration method [39], Homo-
topy perturbation method [28], and generalized differential
transform method (GDTM) [40] for different values of 𝛼 =

{0.5, 0.75, 1}. The values of 𝛼 = 1 are the only case for which
we know the exact solution 𝑢(𝑥, 𝑡) = 𝑥𝑡 and Table 4 provides
that our approximate solution using Legendre multiwavelet
is more accurate than the approximate solution obtained
using the decomposition method, Homotopy perturbation
method, and the variational iteration method. In addition to

that, our approximate solution using Legendre multiwavelet
as the approximate solution was obtained using GDTM and
exact solution.

Example 6. Consider the following time fractional advection
nonhomogeneous equation [41, 42]:

𝜕
𝛼

𝑢

𝜕𝑡
𝛼
+ 𝑢

𝜕𝑢

𝜕𝑥

= 2𝑡 + 𝑥 + 𝑡
3

+ 𝑥𝑡
2

, 0 < 𝛼 ≤ 1, 𝑡 > 0, (27)

with initial condition 𝑢(𝑥, 0) = 0.

We applied the method presented in this paper for 𝑘
1
=

𝑘
2
= 0 and𝑀 = 𝑁 = 1; from (17) we have

𝑢
𝑁𝑀

(𝑥, 𝑡) =

1

∑

𝑖=1

1

∑

𝑗=0

𝑡
2

𝑐
0,𝑖,0,𝑗

𝜓
0,𝑖
(𝑥) 𝜓
0,𝑗

(𝑡) . (28)

Substituting (28) into (27) and using (17) we obtained
the solution of (27) for different values of 𝛼 = {0.5, 0.75, 1}.
Table 6 shows the approximate solutions for (27) obtained
for different values of 𝛼 using the Legendre multiwavelet
method and the Homotopy perturbation method [41]. The
values of 𝛼 = 1 are the only case for which we know the exact
solution 𝑢(𝑥, 𝑡) = 𝑡

2

+ 𝑥𝑡 and our approximate solution using
Legendre multiwavelet method coincides with the approx-
imate solution obtained using the Homotopy perturbation
method [41, 42] and the approximate solution obtained using
Adomian decomposition method and variational iteration
method [43]. We have given the solution simulations in
Figure 7 according to different values of 𝛼 = {0.5, 0.75, 1}.
Figure 8 shows a plot of 𝑢(𝑥, 𝑡) for various values of 𝑡 and
𝛼 = {0.5, 0.75, 1}, 𝑥 = 1.
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Figure 7: Plot of 𝑢(𝑥, 𝑡) with respect to 𝑥 and 𝑡 at (a) 𝛼 = 0.5, (b) 𝛼 = 0.75, and (c) 𝛼 = 1.

6. Conclusion

In this study, it is shown how Legendre multiwavelet can
be applied to provide approximate solutions for initial value
problems of fractional nonlinear partial differential equa-
tions. The Legendre multiwavelet properties are presented.
The main characteristic of this approach is using these
properties together with the Galerkin method to reduce the

NFPDEs to the solution of nonlinear system of algebraic
equations. In addition, we compered our results with that
obtained by other numerical methods. The results show that
the Legendre multiwavelet is a powerful mathematical tool
for fractional nonlinear partial differential equations. We
used Mathematica and Maple programs for computations in
this paper.
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