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This paper presents a computational approach for solving a class of nonlinear Volterra integro-differential equations of fractional
order which is based on the Bernoulli polynomials approximation. Our method consists of reducing the main problems to the
solution of algebraic equations systems by expanding the required approximate solutions as the linear combination of the Bernoulli
polynomials. Several examples are given and the numerical results are shown to demonstrate the efficiency of the proposedmethod.

1. Introduction

In real world, for modeling and analysing a huge size of
problems we need fractional calculus. Fractional calculus
finds its application in many fields of sciences and engineer-
ing, including fluid flow, electrical networks, fractals theory,
control theory, electromagnetic theory, probability, statistics,
optics, potential theory, biology, chemistry, diffusion, and
viscoelasticity [1–4].

In recent years, fractional differential equations (FDEs)
and fractional integro-differential equations (FIDEs) have
become the focus of interest for many researchers in different
disciplines of science and technology because of the fact
that a realistic modeling of a physical phenomenon having
dependence not only on the time instant but also on the pre-
vious time history that can be successfully achieved by using
fractional calculus. However, besides modeling, the solution
techniques and their reliabilities are most important to catch
critical points at which a sudden divergence, convergence,
or bifurcation starts. Therefore, high accuracy solutions are
always needed. For this purpose several techniques were
proposed to solve the fractional order differential equations

(or integro-differential equations).Themost commonly used
ideas are Adomian decomposition method (ADM) [5], vari-
ational iteration method (VIM) [6], fractional differential
transformmethod (FDTM) [7], fractional difference method
(FDM) [8], and power series method [9].

On the other hand, since the beginning of 1994, Laguerre,
Legendre, Taylor, Fourier, Hermite, and Bessel (matrix and
collocation) methods have been used in the works [10–15]
to solve linear differential, integral, and integro-differential-
difference equations and their systems. Also, the Bernoulli
(matrix and collocation) methods have been used to find the
approximate solutions of differential and integro-differential
equations [16–18]. To the best of our knowledge these poly-
nomials have had no results for solving FIDEs. Moreover,
according to the discussions in [18], Bernoulli polynomials
have some certain properties that encourage us to use them
for solving any applied mathematics problem.These subjects
motivate us to present a new numerical scheme for solving
FIDEs.

In this paper, by using the Bernoulli polynomials as the
test functions and collocating the following FIDE (subject
to sufficient initial or boundary conditions) at the Legendre
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Gauss collocation points and also approximating the existing
integrals by the Gauss quadrature rule, we find the numerical
solution of the following FIDE:

𝐷
𝛼

𝑦 (𝑥) = 𝐹(𝑥, 𝑦 (𝑥) , ∫

𝑥

0

𝐾(𝑡, 𝑦 (𝑡)) 𝑑𝑡) ,

0 < 𝑥 < 1, 𝛼 > 0.

(1)

The rest of this paper is organized as follows. Some
preliminaries about the fractional calculus and also the
Bernoulli polynomials together with the Gauss quadrature
rule are provided in the next Section. Section 3 contains
the basic idea of the paper. In Section 4, several numerical
examples are given to show the robustness of the proposed
idea. The provided numerical examples show the efficiency
of the proposed idea with regard to some methods in the
literature. In the last section, we provide the conclusions.

2. Preliminaries

In this section, we deal with several basic definitions and
properties of fractional calculus theory and also some useful
information about the Bernoulli polynomials together with
the Legendre Gauss quadrature rule which are further used
hereafter.

Definition 1. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in the
space 𝐶

𝜇
, 𝜇 ∈ R, if there exists a real number 𝑝, 𝑝 > 𝜇, such

that 𝑓(𝑥) = 𝑥𝑝𝑓
1
(𝑥), where 𝑓

1
(𝑥) ∈ 𝐶[0,∞), and it is said to

be in the space 𝐶𝑛
𝜇
if and only if 𝑓(𝑛) ∈ 𝐶

𝜇
, 𝑛 ∈ N

0
= N ∪ {0}.

Clearly, 𝐶
𝜇
is a vector space and the set of spaces 𝐶

𝜇
is

ordered by inclusion according to

𝐶
𝜇
⊂ 𝐶] ⇐⇒ 𝜇 ≥ ]. (2)

Definition 2. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 for a function in 𝐶

𝜇
, where 𝜇 ≥ −1, is defined

as

𝐽
𝛼

𝑓 (𝑥) =
1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0,

𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) .

(3)

Definition 3. The fractional derivative of 𝑓(𝑥) in the Caputo
sense is defined as

𝐷
𝛼

𝑓 (𝑥) = 𝐽
𝑛−𝛼

𝑓
(𝑛)

(𝑥) , (4)

for 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N, 𝑥 > 0 and 𝑓 ∈ 𝐶𝑛
−1
.

It should be mentioned that, for 𝛼 ∈ N, the Caputo
differential operator coincides with the classical differential

operator of integer order. Some properties of the Caputo
fractional derivative, which are needed here, are as follows:

𝐷
𝛼

𝐶 = 0, (𝐶 is a constant)

𝐷
𝛼

𝑥
𝛽

=

{{{{{{

{{{{{{

{

0,

for 𝛽 ∈ N
0
, 𝛽 < ⌈𝛼⌉ ,

Γ (𝛽 + 1)

Γ (𝛽 + 1 − 𝛼)
𝑥
𝛽−𝛼

,

for 𝛽 ∈ N
0
, 𝛽 ≥ ⌈𝛼⌉ or 𝛽 ∉ N, 𝛽 > ⌊𝛼⌋ ,

(5)

where the ceiling function ⌈𝛼⌉ denotes the smallest integer
greater than or equal to 𝛼 and the floor function ⌊𝛼⌋ denotes
the largest integer less than or equal to 𝛼.

Similar to the integer order differentiation, the Caputo
fractional differential operator is a linear operation; in other
words

𝐷
𝛼

(𝜃𝑓 (𝑥) + 𝜆𝑔 (𝑥)) = 𝜃𝐷
𝛼

𝑓 (𝑥) + 𝜆𝐷
𝛼

𝑔 (𝑥) ,

𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑓, 𝑔 ∈ 𝐶
𝑛

−1
,

(6)

where 𝜃 and 𝜆 are constants.

Definition 4. The Bernoulli polynomials play an important
role in different areas of mathematics, including number
theory and the theory of finite differences. The classical
Bernoulli polynomials 𝐵

𝑛
(𝑥) are usually defined by means of

the following relations:

𝑑𝐵
𝑛
(𝑥)

𝑑𝑥
= 𝑛𝐵
𝑛−1
(𝑥) , (𝑛 ≥ 1) ,

∫

1

0

𝐵
𝑛
(𝑥) 𝑑𝑥 = 0, (𝑛 ≥ 1) ,

𝐵
0
(𝑥) = 1.

(7)

Also the Bernoulli polynomials can be represented in the
form

𝐵
𝑛
(𝑥) =

𝑁

∑

𝑟=0

(
𝑛

𝑟
)𝐵
𝑛−𝑟
(0) 𝑥
𝑟

. (8)

Definition 5. The Legendre Gauss quadrature rule can be
defined as follows [11]:

∫

1

0

ℎ (𝑠) 𝑑𝑠 =
1

2
∫

1

−1

ℎ (
1

2
(𝑡 + 1)) 𝑑𝑡

≈
1

2

𝑁

∑

𝑖=0

𝑤
𝑖
ℎ (
1

2
(𝑡
𝑖
+ 1)) ,

(9)

where 𝑡
𝑖
for 𝑖 = 0, 1, . . . , 𝑁 are the roots of the (𝑁 + 1)th

Legendre polynomial 𝑃
𝑁+1
(𝑡) and 𝑤

𝑖
= 2/(1 − 𝑡

2

𝑖
)𝑃


𝑁+1
(𝑡
𝑖
).

3. Basic Idea

In this section, we consider the basic equation (1) with some
appropriate initial or boundary conditions. Our aim is to
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approximate the solution 𝑦(𝑥) by the truncated Bernoulli
series 𝑦

𝑁
(𝑥) = ∑

𝑁

𝑛=0
𝑐
𝑛
𝐵
𝑛
(𝑥). Moreover, we use Legendre

Gauss collocation nodes and also the LegendreGauss quadra-
ture rule for approximating the existing integrals. Then, the
basic equation (1) will be transformed to a nonlinear system
of algebraic equations. The solutions of this algebraic system
are 𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑁
. Therefore, an approximate solution of (1)

will be obtained in the form 𝑦
𝑁
(𝑥) = ∑

𝑁

𝑛=0
𝑐
𝑛
𝐵
𝑛
(𝑥). Before

presenting our main idea, we provide the Caputo fractional
derivative representation of 𝑦

𝑁
(𝑥) in the following lemma.

Lemma 6. Let 𝑦(𝑥) be approximated by the Bernoulli polyno-
mials as 𝑦

𝑁
(𝑥) = ∑

𝑁

𝑛=0
𝑐
𝑛
𝐵
𝑛
(𝑥) and also suppose that 𝛼 > 0;

then

𝐷
𝛼

𝑦
𝑁
(𝑥) =

𝑁

∑

𝑛=⌈𝛼⌉

𝑛

∑

𝑟=⌈𝛼⌉

𝑐
𝑛
𝑏
(𝛼)

𝑛,𝑟
𝑥
𝑟−𝛼

, (10)

where 𝑏(𝛼)
𝑛,𝑟

is given by

𝑏
(𝛼)

𝑛,𝑟
=

𝑛!

(𝑛 − 𝑟)!Γ (𝑟 + 1 − 𝛼)
𝐵
𝑛−𝑟
(0) . (11)

Proof. Because of the linearity of the Caputo fractional
differential operator we have

𝐷
𝛼

𝑦
𝑁
(𝑥) =

𝑁

∑

𝑛=0

𝑐
𝑛
𝐷
𝛼

𝐵
𝑛
(𝑥) . (12)

According to (5) and the structure of the Bernoulli polyno-
mials,

𝐷
𝛼

𝐵
𝑛
(𝑥) = 0, 𝑛 = 0, 1, . . . , ⌈𝛼⌉ − 1, 𝛼 > 0. (13)

Also for 𝑛 = ⌈𝛼⌉, . . . , 𝑁 and using (5) we reach the
following result:

𝐷
𝛼

𝐵
𝑛
(𝑥) =

𝑛

∑

𝑟=0

(
𝑛

𝑟
)𝐵
𝑛−𝑟
(0)𝐷
𝛼

𝑥
𝑟

=

𝑛

∑

𝑟=⌈𝛼⌉

𝑛!

(𝑛 − 𝑟)!Γ (𝑟 + 1 − 𝛼)
𝐵
𝑛−𝑟
(0) 𝑥
𝑟−𝛼

.

(14)

A combination of (12) and (14) leads to the desired result.

In this part, we turn to approximate the solution of
problem (1). For this purpose, substituting approximations
𝑦
𝑁
(𝑥) and𝐷𝛼𝑦

𝑁
(𝑥) in (1) yields

𝑁

∑

𝑛=⌈𝛼⌉

𝑛

∑

𝑟=⌈𝛼⌉

𝑐
𝑛
𝑏
(𝛼)

𝑛,𝑟
𝑥
𝑟−𝛼

= 𝐹(𝑥,

𝑁

∑

𝑛=0

𝑐
𝑛
𝐵
𝑛
(𝑥) , ∫

𝑥

0

𝐾(𝑡,

𝑁

∑

𝑛=0

𝑐
𝑛
𝐵
𝑛
(𝑡)) 𝑑𝑡) ,

0 < 𝑥 < 1, 𝛼 > 0.

(15)

By collocating the above equation at (𝑁 + 1 − ⌈𝛼⌉) points
𝑥
𝑝
we have

𝑁

∑

𝑛=⌈𝛼⌉

𝑛

∑

𝑟=⌈𝛼⌉

𝑐
𝑛
𝑏
(𝛼)

𝑛,𝑟
𝑥
𝑟−𝛼

𝑝

= 𝐹(𝑥
𝑝
,

𝑁

∑

𝑛=0

𝑐
𝑛
𝐵
𝑛
(𝑥
𝑝
) , ∫

𝑥𝑝

0

𝐾(𝑡,

𝑁

∑

𝑛=0

𝑐
𝑛
𝐵
𝑛
(𝑡)) 𝑑𝑡) ,

𝑝 = 0, 1, . . . , 𝑁 − ⌈𝛼⌉ ,

(16)

where 𝑥
𝑝
for 𝑝 = 0, 1, . . . , 𝑁 − ⌈𝛼⌉ denote the roots of

the shifted Legendre polynomial 𝑃
𝑁+1−⌈𝛼⌉

(𝑥) in the interval
[0, 1]. Also, in order to use the Legendre Gauss quadrature
for approximating the abovementioned involved integrals, we
should transfer 𝑡-interval [0, 𝑥

𝑝
] into 𝜏-interval [−1, 1] by the

following change of variable:

𝜏 =
2

𝑥
𝑝

𝑡 − 1. (17)

For each value of 𝑝 = 0, 1, . . . , 𝑁 − ⌈𝛼⌉ the abovemen-
tioned equation may be restated as follows:

𝑁

∑

𝑛=⌈𝛼⌉

𝑛

∑

𝑟=⌈𝛼⌉

𝑐
𝑛
𝑏
(𝛼)

𝑛,𝑟
𝑥
𝑟−𝛼

𝑝

= 𝐹(𝑥
𝑝
,

𝑁

∑

𝑛=0

𝑐
𝑛
𝐵
𝑛
(𝑥
𝑝
) ,

𝑥
𝑝

2
∫

1

−1

𝐾(

𝑥
𝑝

2
(𝜏+1) ,

𝑁

∑

𝑛=0

𝑐
𝑛
𝐵
𝑛
(

𝑥
𝑝

2
(𝜏+1)))𝑑𝜏) .

(18)

Therefore, applying Gaussian integration formula yields

𝑁

∑

𝑛=⌈𝛼⌉

𝑛

∑

𝑟=⌈𝛼⌉

𝑐
𝑛
𝑏
(𝛼)

𝑛,𝑟
𝑥
𝑟−𝛼

𝑝

≃ 𝐹(𝑥
𝑝
,

𝑁

∑

𝑛=0

𝑐
𝑛
𝐵
𝑛
(𝑥
𝑝
) ,

𝑥
𝑝

2

𝑁

∑

𝑞=0

𝑤
𝑞
𝐾(

𝑥
𝑝

2
(𝜏
𝑞
+1) ,

𝑁

∑

𝑛=0

𝑐
𝑛
𝐵
𝑛
(

𝑥
𝑝

2
(𝜏
𝑞
+1)))) ,

(19)

where all of the 𝜏
𝑞
’s are the𝑁+ 1 zeros of the Legendre poly-

nomial 𝐿
𝑁+1
(𝜏) and the 𝑤

𝑞
’s are the corresponding weights.

Together with ⌈𝛼⌉ equations of supplementary conditions,
we get (𝑁 + 1) nonlinear algebraic equations which can be
solved for the unknown 𝑐

𝑛
, 𝑛 = 0, 1, . . . , 𝑁, by using any

appropriate iterative method. Consequently 𝑦
𝑁
(𝑥) may be

obtained. In the next section, we will show the applicability
of the proposed method by examining several numerical
examples.
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4. Numerical Examples

In this section, several numerical examples are given to
illustrate the accuracy and effectiveness of the proposed
method, and all of them are performed on a computer using
some programs written in MAPLE 13. In this regard, we have
reported in the tables the values of the exact solution𝑦(𝑥) and
the polynomial approximate solution 𝑦

𝑁
(𝑥) at any selected

points of the given interval [0, 1]. It should be noted that, in
the first example, we provide an interesting example in which
our method reaches the exact solution in the polynomial
form. Moreover, in the second and third examples our
method reaches the same results of [19] by using lower values
of approximation. Also in the last numerical example, our
results are superior with respect to the CAS wavelet method
[20]. Before presenting our numerical examples, we should
recall that the MAPLE software for solving nonlinear system
of algebraic equations suggests the 𝑓𝑠𝑜𝑙V𝑒 command. As
per our experience for solving such nonlinear systems, this
command is very efficient and easy to handle.

Example 1 (see [19]). As in the first example, we consider the
following initial value problem of FIDE:

𝐷
0.75

𝑦 (𝑥) = − (
𝑒
𝑥

𝑥
2

5
)𝑦 (𝑥) +

6𝑥
2.25

Γ (3.25)
+ ∫

𝑥

0

𝑒
𝑥

𝑡𝑦 (𝑡) 𝑑𝑡,

𝑦 (0) = 0.

(20)

For solving this example, we apply our proposed method
for𝑁 = 3. In other words,

𝑦 (𝑥) ≈ 𝑦
3
(𝑥) =

3

∑

𝑛=0

𝑐
𝑛
𝐵
𝑛
(𝑥) . (21)

By using (19), we have

3

∑

𝑛=1

𝑛

∑

𝑟=1

𝑐
𝑛
𝑏
(0.75)

𝑛,𝑟
𝑥
𝑟−0.75

𝑝

≃ −(

𝑒
𝑥𝑝𝑥
2

𝑝

5
)

3

∑

𝑛=0

𝑐
𝑛
𝐵
𝑛
(𝑥
𝑝
) +

6𝑥
2.25

𝑝

Γ (3.25)

+

𝑥
𝑝

2
𝑒
𝑥𝑝

3

∑

𝑞=0

𝑤
𝑞
(

𝑥
𝑝

2
(𝜏
𝑞
+ 1)

3

∑

𝑛=0

𝑐
𝑛
𝐵
𝑛
(

𝑥
𝑝

2
(𝜏
𝑞
+ 1))) ,

𝑝 = 0, 1, 2.

(22)

Initial condition yields the following equation:

𝑐
0
−
1

2
𝑐
1
+
1

6
𝑐
2
= 0. (23)

Now, by solving the system which contains (22) and (23) we
reach the following solution:

𝑐
0
=
1

4
, 𝑐

1
= 1, 𝑐

2
=
3

2
, 𝑐

3
= 1. (24)

Therefore,

𝑦
3
(𝑥) =

1

4
(1) + 1 (𝑥 −

1

2
) +

3

2
(𝑥
2

− 𝑥 +
1

6
)

+ 1 (𝑥
3

−
3

2
𝑥
2

+
1

2
𝑥) = 𝑥

3

,

(25)

which is the exact solution.

Example 2 (see [19]). As in the second example, we consider
the following fractional integro-differential equation:

𝐷
𝛼

𝑦 (𝑥) = 𝑥 (1 + 𝑒
𝑥

) + 3𝑒
𝑥

+ 𝑦 (𝑥) − ∫

𝑥

0

𝑦 (𝑡) 𝑑𝑡,

0 < 𝑥 < 1, 3 < 𝛼 ≤ 4,

(26)

with the following boundary conditions:

𝑦 (0) = 1, 𝑦


(0) = 2, 𝑦 (1) = 1 + 𝑒,

𝑦


(1) = 3𝑒.

(27)

The exact solution of this FIDE is 𝑦(𝑥) = 1 + 𝑥𝑒
𝑥,

when 𝛼 = 4. For solving this problem, we apply our
method for different values of 𝑁. In Table 1, we provide the
numerical results 𝑦

𝑁
(𝑥
𝑖
), where 𝑥

𝑖
= 𝑖/10 (𝑖 = 0, 1, . . . , 10)

for 𝑁 = 8, of our presented method (PM) together with
numerical results 𝑦

𝑁
(𝑥
𝑖
), where 𝑥

𝑖
= 𝑖/10 for 𝑁 = 10, of

the Legendre collocation method (LCM) [19]. It is obvious
that our method reaches the same results of [19] with lower
degree of approximation.Moreover, ourmethod has superior
results with regard to the Adomian decomposition method
(ADM) [5] as shown in [19]. In addition, the numerical results
associated with our presentedmethod, LCM, and generalized
differential transform method (GDTM) [7] for 𝑁 = 10 and
𝛼 = 3.75 are given in Table 2. As shown in Table 2 of
[19], the ADM has very weak approximations with regard to
GDTM and LCM. Therefore, we do not consider ADM in
Table 2. From this table, one can find that our results are the
same as those of LCM, but GDTM results are away from our
proposed technique and LCM results.These facts confirm the
effectiveness of our idea. For showing the reliability of our
approach, we provide Figure 1. In this figure, we depict the
numerical solution𝑦

10
(𝑥) for different kinds of𝛼 such as 3.25,

3.50, 3.75, and 4.

Example 3 (see [19]). As in the third example, we consider the
following nonlinear fractional integro-differential equation:

𝐷
𝛼

𝑦 (𝑥) = 1 + ∫

𝑥

0

𝑒
−𝑡

𝑦
2

(𝑡) 𝑑𝑡, 0 < 𝑥 < 1, 3 < 𝛼 ≤ 4,

(28)

subject to the boundary conditions

𝑦 (0) = 1, 𝑦


(0) = 1, 𝑦 (1) = 𝑒,

𝑦


(1) = 𝑒.

(29)
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Numerical solution y10(x) for different values of 𝛼

Figure 1: Numerical solution history of Example 2 for 𝛼 = 3.25,
3.50, 3.75, and 4.

Table 1: Numerical results of Example 2 for 𝛼 = 4.

𝑥
𝑖

𝛼 = 4

LCM for𝑁 = 10 PM for𝑁 = 8 Exact solution
0.0 1.00000000 1.00000000 1.00000000
0.1 1.11051709 1.11051709 1.11051709
0.2 1.24428055 1.24428055 1.24428055
0.3 1.40495764 1.40495765 1.40495764
0.4 1.59672988 1.59672989 1.59672988
0.5 1.82436064 1.82436063 1.82436064
0.6 2.09327128 2.09327126 2.09327128
0.7 2.40962690 2.40962687 2.40962690
0.8 2.78043274 2.78043273 2.78043274
0.9 3.21364280 3.21364280 3.21364280
1.0 3.71828183 3.71828183 3.71828183

Table 2: Numerical results of Example 2 for 𝛼 = 3.75.

𝑥
𝑖

𝛼 = 3.75

LCM for𝑁 = 10 PM for𝑁 = 10 GDTM for𝑁 = 10
0.0 1.00000000 1.00000000 1.00000000
0.1 1.11580022 1.11580022 1.11576401
0.2 1.25417406 1.25417406 1.25411023
0.3 1.41835392 1.41835392 1.41826880
0.4 1.61225031 1.61225031 1.61215425
0.5 1.84049469 1.84049469 1.84039953
0.6 2.10850149 2.10850149 2.10841524
0.7 2.42253768 2.42253768 2.42246558
0.8 2.78981125 2.78981125 2.78975920
0.9 3.21858158 3.21858158 3.21855471
1.0 3.71828183 3.71828183 3.71828183

The exact solution of this problem for 𝛼 = 4, that is,
the classical boundary value problem, is 𝑦(𝑥) = 𝑒𝑥. Similar
to the previous example, for solving this example, we apply
our presented technique for different values of𝑁. In Table 3,
we provide the numerical results 𝑦

𝑁
(𝑥
𝑖
), where 𝑥

𝑖
= 𝑖/10

Table 3: Numerical results of Example 3 for 𝛼 = 4 and 𝛼 = 3.75.

𝑥
𝑖

𝛼 = 3.75

LCM for𝑁 = 13 PM for𝑁 = 10 GDTM for𝑁 = 13
0.0 1.00000000 1.00000000 1.00000000
0.1 1.10618147 1.10618610 1.10617705
0.2 1.22328484 1.22329275 1.22327680
0.3 1.35238877 1.35239964 1.35237837
0.4 1.49473312 1.49474546 1.49472145
0.5 1.65172131 1.65173324 1.65170946
0.6 1.82492929 1.82494001 1.82491846
0.7 2.01611828 2.01612731 2.01610929
0.8 2.22724889 2.22725546 2.22714245
0.9 2.46049864 2.46050202 2.46049530
1.0 2.71828183 2.71828183 2.71828183

𝑥
𝑖

𝛼 = 4

LCM for𝑁 = 13 PM for𝑁 = 9 Exact solution
0.0 1.00000000 1.00000000 1.00000000
0.1 1.10517092 1.10517092 1.10517092
0.2 1.22140276 1.22140276 1.22140276
0.3 1.34985881 1.34985881 1.34985881
0.4 1.49182470 1.49182470 1.49182470
0.5 1.64872127 1.64872127 1.64872127
0.6 1.82211880 1.82211880 1.82211880
0.7 2.01375271 2.01375271 2.01375271
0.8 2.22554093 2.22554093 2.22554093
0.9 2.45960311 2.45960311 2.45960311
1.0 2.71828183 2.71828183 2.71828183

(𝑖 = 0, 1, . . . , 10) for 𝑁 = 9, of our presented method (PM)
together with numerical results 𝑦

𝑁
(𝑥
𝑖
), where 𝑥

𝑖
= 𝑖/10 for

𝑁 = 13, of the LCM in the case of 𝛼 = 4. From this table, it is
obvious that our method reaches the same results of [19] with
lower degree of approximation. Moreover, in this table the
numerical results 𝑦

𝑁
(𝑥
𝑖
), where 𝑥

𝑖
= 𝑖/10 (𝑖 = 0, 1, . . . , 10)

for𝑁 = 10, of our presented method (PM) together with the
numerical results 𝑦

𝑁
(𝑥
𝑖
), where 𝑥

𝑖
= 𝑖/10 for𝑁 = 13, of the

LCM and GDTM in the case of 𝛼 = 3.75 are given.

Example 4 (see [20]). As in the final example, let us consider
the following nonlinear fractional integro-differential equa-
tion of order 𝛼 = 6/5:

𝐷
𝛼

𝑦 (𝑥) =
5

2Γ (4/5)
𝑥
4/5

−
𝑥
9

252
+ ∫

𝑥

0

(𝑥 − 𝑡)
2

𝑦
3

(𝑡) 𝑑𝑡,

0 ≤ 𝑥 < 1,

(30)

with the supplementary conditions

𝑦 (0) = 0, 𝑦 (1) = 1. (31)

The exact solution of this problem is 𝑦(𝑥) = 𝑥2. Again,
we solve this problem by using our basic idea in Section 3.
For making a real comparison with a new technique, CAS
wavelet method (CASWM) [20], we should assume that𝑁 =
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Table 4: Numerical results of Example 4 for 𝛼 = 6/5.

𝑥
𝑖

𝛼 = 6/5

CASWM for 𝑘 = 2,𝑀 = 1 PM for𝑁 = 2 Exact solution
0.0 0.04 1.0𝑒 − 012 0.00000000
0.1 0.02 0.00992974 0.01
0.2 0.05 0.03987509 0.04
0.3 0.12 0.08983606 0.09
0.4 0.18 0.15981264 0.16
0.5 0.32 0.24980483 0.25
0.6 0.41 0.35981264 0.36
0.7 0.54 0.48983606 0.49
0.8 0.68 0.63987509 0.64
0.9 0.89 0.80992974 0.81
1.0 0.90 1.00000000 1

2 and then solve the abovementioned problem. Therefore,
in Table 4, we provide the numerical results 𝑦

𝑁
(𝑥
𝑖
), where

𝑥
𝑖
= 𝑖/10 (𝑖 = 0, 1, . . . , 10) for 𝑁 = 2, of our presented

method (PM) together with the numerical results 𝑦
𝑁
(𝑥
𝑖
),

where 𝑥
𝑖
= 𝑖/10 for 𝑁 = 2, of the CASWM. From this

table the efficiency of the presented method could be seen
obviously.

5. Conclusions

In this paper, the Bernoulli polynomials and Legendre Gauss
quadrature rule together with the LegendreGauss collocation
nodes are used to reduce the nonlinear fractional integro-
differential equations with appropriate initial or boundary
conditions to the solution of system of nonlinear algebraic
equations. From the computational point of view, the solution
obtained by this method is in excellent agreement with those
obtained by previous works and also it is efficient to use.
One issue of future work is to develop a similar technique
to solve some interesting nonlinear fractional partial integro-
differential equations. In addition, the method can also
be extended to the system of nonlinear fractional integro-
differential equations, but some modifications are required.
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[15] S. Yüzbaşı, “A numerical approximation based on the Bessel
functions of first kind for solutions of Riccati type differential-
difference equations,” Computers & Mathematics with Applica-
tions, vol. 64, no. 6, pp. 1691–1705, 2012.
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