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Let Y be a real separable Banach space and let (K
𝐶
(𝑌), 𝑑

∞
) be the subspace of all normal fuzzy convex and upper semicontinuous

fuzzy sets of Y equipped with the supremum metric 𝑑
∞
. In this paper, we introduce several types of additive fuzzy set-valued

functional equations in (K
𝐶
(𝑌), 𝑑

∞
). Using the fixed point technique, we discuss the Hyers-Ulam-Rassias stability of three types

additive fuzzy set-valued functional equations, that is, the generalized Cauchy type, the Jensen type, and the Cauchy-Jensen
type additive fuzzy set-valued functional equations. Our results can be regarded as important extensions of stability results
corresponding to single-valued functional equations and set-valued functional equations, respectively.

1. Introduction

In 1940, Ulam [1] proposed the following question concern-
ing the stability of group homomorphisms.

Let 𝐺1 be a group and let 𝐺2 be a metric group with the
metric 𝑑(⋅, ⋅). Given 𝜖 > 0, does there exist a 𝛿 > 0 such
that if a function ℎ : 𝐺

1
→ 𝐺

2
satisfies the inequality

𝑑(ℎ(𝑥𝑦), ℎ(𝑥)ℎ(𝑦)) < 𝛿 for all 𝑥, 𝑦 ∈ 𝐺
1
, then there is a

homomorphism𝐻 : 𝐺
1
→ 𝐺
2
with 𝑑(ℎ(𝑥),𝐻(𝑥)) < 𝜖 for all

𝑥 ∈ 𝐺
1
?

Afterwards, Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Later, the
result of Hyers was generalized by Aoki [3] (for some histori-
cal comments regarding thework ofAoki, see [4]) for additive
mappings and by Rassias [5] for linear mappings in which
the Cauchy difference is allowed to be unbounded. However,
the paper of Rassias [5] has provided a lot of influence in the
development of what we call Hyer-Ulam stability or Hyers-
Ulam-Rassias stability of functional equations. Hereafter, a
generalization of Rassias’s Theorem obtained by Găvruţa [6]
by replacing the Cauchy difference with amore general majo-
rant function in the spirit of Rassias’ approach. Until now,

the stability problems for different types of functional equa-
tions in various spaces have been extensively studied. For
more detail, the reader can refer to [7]. Among the studies
of these problems, it is worth mentioning that Radu [8]
discarded the direct method which was frequently used
and proposed a novel method to establish the stability
of Cauchy functional equation via fixed point technique.
Recently, Ciepliński [9] summarized some applications of
several types of fixed point theorems to the Hyers-Ulam
stability of functional equations. As of now, this method has
been successfully used in the study of stability problems of
many types of functional equations in abstract spaces.

As defined in [7], let 𝐸
1
and 𝐸

2
be two appropriate spaces,

where 𝐸
2
is equipped with the metric 𝑑. For some 𝑝, 𝑞 ∈

N (N denotes the set of all natural numbers), the following
functions

𝑔𝑖 : 𝐸
𝑞

1
󳨀→ 𝐸1 (𝑖 ∈ 1, 2, . . . , 𝑝) ,

𝐺 : 𝐸
𝑝

2
× 𝐸
𝑞

1
󳨀→ 𝐸

2

(1)
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are given. Assume that 𝜑, Φ : 𝐸
𝑞

1
→ [0,∞) are functions

satisfying some given conditions. If for every function 𝑓 :

𝐸
1
→ 𝐸
2
satisfying the inequality

𝑑 (𝐺 (𝑓 (𝑔
1
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑞
)) , 𝑓 (𝑔

2
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑞
)) , . . . ,

𝑓 (𝑔𝑝 (𝑥1, 𝑥2, . . . , 𝑥𝑞)) , 𝑥1, 𝑥2, . . . , 𝑥𝑝) , 0)

≤ 𝜑 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑞
)

(2)

for all 𝑥
1
, 𝑥
2
, . . ., 𝑥

𝑞
∈ 𝐸
𝑞

1
, there exists a function𝐹 : 𝐸

1
→ 𝐸
2

such that

𝐺(𝐹 (𝑔
1
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑞
)) , 𝐹 (𝑔

2
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑞
)) , . . . ,

𝐹 (𝑔
𝑝
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑞
)) , 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑝
) = 0

(3)

for all 𝑥1, 𝑥2, . . ., 𝑥𝑞 ∈ 𝐸
𝑞

1
and

𝑑 (𝑓 (𝑥) , 𝐹 (𝑥)) ≤ Φ (𝑥, 𝑥, . . . , 𝑥) (4)

for all 𝑥 ∈ 𝐸
1
, then we say that the functional equation

𝐺(𝑓 (𝑔
1
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑞
)) , 𝑓 (𝑔

2
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑞
)) , . . . ,

𝑓 (𝑔𝑝 (𝑥1, 𝑥2, . . . , 𝑥𝑞)) , 𝑥1, 𝑥2, . . . , 𝑥𝑝) = 0

(5)

has the Hyers-Ulam-Rassias stability or the above functional
equation is stable in the sense of Hyers-Ulam-Rassias. In
particularly, if the functions 𝜑 and Φ are replaced by two
constants, 𝛿 and 𝐾𝛿 (𝐾 > 0), respectively, then we say that
the functional equation has the Hyers-Ulam stability or it is
stable in the sense of Hyers-Ulam.

In 2008, Mirmostafaee and Moslehian [10] initiated the
study of stability problems of functional equations in fuzzy
setting. Specifically, they considered the stability of the
Cauchy functional equation in a fuzzy normed space. In the
same year, they together with Mirzavaziri [11] proved the
stability of the Jensen functional equation in the same space.
Since then, the fuzzy stability problems of various types of
functional equations have been extensively investigated by
different authors [12, 13]. At the same time, the fixed point
method has been widely used to prove the fuzzy stability of
several types of functional equations [14, 15].

In summary, one can see that the (fuzzy) stability for
a single-valued functional equation is whether, for a given
mapping satisfying almost a functional equation (which
means that themapping is close to a solution of the functional
equation), there exists an exact solution of the functional
equation which can be used to approximate the given map-
ping. Typically, a metric associated with the corresponding
space is chosen to characterize the functional inequality. In
2009, Nikodem and Popa [16] considered the general solu-
tion of set-valued maps satisfying linear inclusion relation,
which can be regarded as a generalization of the additive
single-valued functional equation. By means of the inclusion
relation, Lu and Park [17] first investigated the stability of
two types of additive set-valued functional equations. In

the following, Park et al. [18] further studied the stability
problems of the quadratic, cubic, and quartic set-valued
functional equations in a similar way. However, it should be
pointed out that, in their studies, the inclusion relation is
applied to characterize the set-valued functional inequality
rather than an appropriate metric. Recently, similar to the
method that is used to deal with the single-valued functional
equations, Kenary et al. [19] proved the stability of several
types of set-valued functional equations via the fixed point
approach, in which the Hausdorff metric is adopted to
characterize the set-valued functional inequality.

The purpose of this paper is to extend the set-valued
functional equations to fuzzy set-valued functional equations
and establish some stability results of several important fuzzy
set-valued functional equations, including the generalized
Cauchy, Jensen, and Cauchy-Jensen type fuzzy set-valued
functional equations. Notice that the supremum metric,
as a generalization of the Hausdorff metric, is applied to
characterize the fuzzy set-valued functional inequality. More
importantly, the corresponding single-valued and set-valued
functional equations acted as special cases will be included in
our results.

2. Preliminaries

In what follows, we begin with some related concepts and
fundamental results, which are mainly derived from [20–23].
Let R, R+, and R𝑛 denote the set of all real numbers, the
set of all nonnegative real numbers, and the 𝑛-dimensional
Euclidean space, respectively.

Let 𝑌 be a real separable Banach space with the norm
‖ ⋅ ‖
𝑌
.We denote byK(𝑌) andK

𝐶
(𝑌) the set of all nonempty

compact subsets of 𝑌 and the set of all nonempty compact
convex subsets of 𝑌, respectively.

Let 𝐴 and 𝐵 be two nonempty subsets of 𝑌 and let 𝜆 ∈ R.
The (Minkowski) addition and scalar multiplication can be
defined by

𝐴 + 𝐵 = {𝑎 + 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ,

𝜆𝐴 = {𝜆𝑎 | 𝑎 ∈ 𝐴} .
(6)

Notice that the sets K(𝑌) and K
𝐶
(𝑌) are closed under

the operations of addition and scalar multiplication. In fact,
these two operations induce a linear structure on K(𝑌) and
K
𝐶
(𝑌)with zero element {0}, respectively. It should be noted

that this linear structure is just a cone rather than a vector
space because, in general, 𝐴 + (−1)𝐴 ̸= {0}. Moreover, for all
𝜆, 𝜇 ∈ R, it follows that

𝜆 (𝐴 + 𝐵) = 𝜆𝐴 + 𝜆𝐵, (𝜆 + 𝜇)𝐴 ⊆ 𝜆𝐴 + 𝜇𝐴. (7)
In particular, if 𝐴 is convex and 𝜆𝜇 ≥ 0, then (𝜆 + 𝜇)𝐴 =

𝜆𝐴 + 𝜇𝐴.
Furthermore, we can define the Hausdorff separation of

𝐵 from 𝐴 by

𝑑
∗

𝐻
(𝐵, 𝐴) = inf {𝜖 > 0 | 𝐵 ⊆ 𝐴 + 𝜖𝑆1} , (8)

where 𝑆
1
denotes the closed unit ball in 𝑌; that is, 𝑆

1
= {𝑦 ∈

𝑌 | ‖𝑦‖
𝑌
≤ 1}. Meantime, the Hausdorff separation of𝐴 from

𝐵 can also be defined in a similar way.
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Based on these two types of separations, the Hausdorff
distance between nonempty subsets 𝐴 and 𝐵 is defined by

𝑑
𝐻 (𝐴, 𝐵) = max {𝑑∗

𝐻
(𝐴, 𝐵) , 𝑑

∗

𝐻
(𝐵, 𝐴)} . (9)

In general, if 𝐴, 𝐵 ∈ K(𝑌) orK
𝐶
(𝑌), then 𝑑

𝐻
(𝜆𝐴, 𝜆𝐵) =

|𝜆|𝑑
𝐻
(𝐴, 𝐵) for all 𝜆 ∈ R. In addition, according to some

of the properties of Hausdorff distance, if we restrict our
attention to the nonemtpy closed subsets C(𝑌) of 𝑌, then
it can be verified that (C(𝑌), 𝑑

𝐻
) is a metric space. In

fact, it follows from [20] that (C(𝑌), 𝑑
𝐻
) is a complete

metric space. Clearly,K(𝑌) andK
𝐶
(𝑌) are closed subsets of

C(𝑌). Hence, (K(𝑌), 𝑑
𝐻
) and (K

𝐶
(𝑌), 𝑑

𝐻
) are also complete

metric spaces.
In 1991, Inoue [22] introduced the concept of Banach

space valued fuzzy sets in order to extend the usual fuzzy sets
defined onR orR𝑛. In other words, the base space of a fuzzy
set is replaced by a more general Banach space.

For a given real separable Banach space 𝑌, a fuzzy set
defined on 𝑌 is a mapping 𝑢 : 𝑌 → [0, 1]. Denote by
F(𝑌) the set of all fuzzy sets defined on 𝑌. LetF𝐾(𝑌) denote
the class of fuzzy sets 𝑢 : 𝑌 → [0, 1] with the following
properties:

(i) 𝑢 is normal, that is, [𝑢]1 = {𝑦 ∈ 𝑌 | 𝑢(𝑦) ≥ 1} is
nonempty;

(ii) 𝑢 is upper semicontinuous;
(iii) [𝑢]𝛼 = {𝑦 ∈ 𝑌 | 𝑢(𝑦) ≥ 𝛼} is compact for each 𝛼 ∈

(0, 1];

(iv) [𝑢]0 = ⋃
𝛼∈(0,1]

[𝑢]
𝛼 is a bound subset of 𝑌.

Notice that the conditions (ii) and (iv) imply that [𝑢]0
is also compact. Moreover, we use the notation F

𝐾𝐶
(𝑌) to

denote the subspace ofF(𝑌) whose members also satisfy

(v) 𝑢 is fuzzy convex; that is, [𝑢]𝛼 is convex for each 𝛼 ∈

(0, 1].

A linear structure can be defined inF(𝑌) in a similar way
to fuzzy sets in R or R𝑛 by

(𝑢 ⊕ V) (𝑦) = sup
𝑥+𝑧=𝑦

min {𝑢 (𝑥) , V (𝑧)} ,

(𝛾𝑢) (𝑦) =

{{

{{

{

𝑢(
𝑦

𝛾
) , if 𝛾 ̸= 0,

𝐼0 (𝑦) , if 𝛾 = 0,

(10)

for 𝑢, V ∈ F(𝑌) and 𝛾 ∈ R, where 𝐼
0(𝑦) = 0 if 𝑦 ̸= 0 and

𝐼0(0) = 1. Then F(𝑌) is closed under these operations and
level setwise

[𝑢 ⊕ V]𝛼 = [𝑢]
𝛼
+ [V]𝛼, [𝜆𝑢]

𝛼
= 𝜆[𝑢]

𝛼 (11)

for each 𝛼 ∈ [0, 1] and 𝜆 ∈ R. Similar to the closeness of
K
𝐶
(𝑌), it is easy to know that F

𝐾𝐶
(𝑌) is also closed under

these operations. Based on the statement mentioned above,
we can easily obtain the following lemma.

Lemma 1. For any 𝑢, V ∈ F
𝐾𝐶

(𝑌) and 𝜆, 𝜇 ∈ R, the following
equalities hold:

(i) 𝜆(𝑢 ⊕ V) = 𝜆𝑢 ⊕ 𝜆V;

(ii) 𝜆(𝜇𝑢) = (𝜆𝜇)𝑢;

(iii) (𝜆 + 𝜇)𝑢 = 𝜆𝑢 ⊕ 𝜇𝑢 for any 𝜆, 𝜇 ≥ 0.

Remark 2. The Lemma 1 shows that F
𝐾𝐶

(𝑌) is just a cone
defined on 𝑌 rather than a vector space.

As a generalization of the Hausdorff metric 𝑑
𝐻
inK(𝑌),

we will define the supremummetric 𝑑∞ inF𝐶(𝑌). For 𝑢, V ∈
F𝐶(𝑌), the supremummetric is defined by

𝑑
∞ (𝑢, V) = sup

𝛼∈(0,1]

𝑑
𝐻
([𝑢]
𝛼
, [V]𝛼) . (12)

Remark 3. Every ordinary crisp subset 𝐴 of 𝑌 can be
identifiedwith the fuzzy set on𝑌 by its characteristic function
𝜒
𝐴

: 𝑌 → {0, 1}, that is, with 𝜒
𝐴
(𝑦) = 1 if 𝑦 ∈ 𝐴 and

𝜒
𝐴
(𝑦) = 0 if 𝑦 ∉ 𝐴. Therefore, if 𝐴 ∈ K(𝑌) (or 𝐴 ∈ K

𝐶
(𝑌)),

then 𝜒
𝐴
∈ F
𝐶
(𝑌) (orF

𝐾𝐶
(𝑌)), and vice versa.

From Remark 3, for any 𝐴, 𝐵 ∈ K(𝑌) (or F
𝐾𝐶

(𝑌)), it
follows that

𝑑
∞
(𝜒
𝐴
, 𝜒
𝐵
) = sup
𝛼∈(0,1]

𝑑
𝐻
([𝜒
𝐴
]
𝛼
, [𝜒
𝐵
]
𝛼
) = 𝑑
𝐻 (𝐴, 𝐵) . (13)

In particular, if 𝐴 and 𝐵 degenerate into two singleton
sets {𝑎} and {𝑏}, then we can infer from equality (13) that
𝑑
∞
(𝜒
{𝑎}
, 𝜒
{𝑏}
) = 𝑑(𝑎, 𝑏), where 𝑑 denotes the usual metric

between 𝑎 and 𝑏.
In view of the property of the Hausdorff metric, it is easy

to see that 𝑑
∞
(𝜆𝑢, 𝜆V) = 𝜆𝑑

∞
(𝑢, V) for any 𝜆 ≥ 0. Restricting

attention to the setF
𝐾𝐶

(𝑌), we can prove that (F
𝐾𝐶

(𝑌), 𝑑
∞
)

is a complete metric space by the method analogous to that
used in [21] (see Proposition 7.2.3).

Finally, we quote a fundamental result in fixed point
theory.

Theorem4 (Diaz andMargolis [24]). Let (𝑋, 𝑑) be a complete
generalized metric space, that is, one for which 𝑑 may assume
infinite values. Suppose that 𝐽 : 𝑋 → 𝑋 is a strictly contractive
mapping with Lipschitz constant 𝐿 < 1. Then, for each given
element 𝑥 ∈ 𝑋, either

𝑑 (𝐽
𝑛
𝑥, 𝐽
𝑛+1

𝑥) = ∞ (14)

for all 𝑛 ≥ 0 or there exists an 𝑛
0
∈ N such that

(i) 𝑑(𝐽𝑛𝑥, 𝐽𝑛+1𝑥) < ∞ for all 𝑛 ≥ 𝑛
0
;

(ii) the sequence {𝐽𝑛𝑥} converges to a fixed point 𝑦∗ of 𝐽;

(iii) 𝑦∗ is the unique fixed point of 𝐽 in the set 𝑌 = {𝑦 ∈ 𝑋 |

𝑑(𝐽𝑛0𝑥, 𝑦) < ∞};

(iv) 𝑑(𝑦, 𝑦∗) ≤ (1/(1 − 𝐿))𝑑(𝑦, 𝐽𝑦) for all 𝑦 ∈ 𝑌.
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3. Stability of the Generalized
Cauchy Type Additive Fuzzy Set-Valued
Functional Equation

In this section, we will establish the Hyers-Ulam-Rassias
stability of the generalized Cauchy type additive fuzzy set-
valued functional equation by employing the fixed point
method.

Definition 5. Let 𝑋 be a cone with the vertex 0 and let
𝑓 : 𝑋 → F𝐾𝐶(𝑌) be a fuzzy set-valued mapping. The
generalized Cauchy type additive fuzzy set-valued functional
equation is defined by

𝑓 (𝜉𝑥 + 𝜂𝑦) = 𝜉𝑓 (𝑥) ⊕ 𝜂𝑓 (𝑦) (15)

for all 𝑥, 𝑦 ∈ 𝑋 and for some 𝜉, 𝜂 > 0 with 𝜉 + 𝜂 ̸= 1.

Especially, if 𝜉 = 𝜂 = 1, then (15) is called the standard
Cauchy type additive fuzzy set-valued functional equation.
Every solution of (15) is called a generalized Cauchy type
additive fuzzy set-valued mapping.

Example 6. Let 𝑋 = R+ and 𝑌 = R. Suppose that 𝑓 : R+ →

F𝐾𝐶(R) is a triangular fuzzy set-valued mapping, that is, for
every 𝑡 ∈ R+, 𝑓(𝑡) is a triangular fuzzy number in R, which
is defined by

𝑓 (𝑡) = (𝑡 − 𝑎𝑡, 𝑡, 𝑡 + 𝑏𝑡) , 𝑡 ∈ R
+
, (16)

where 𝑎 and 𝑏 are two nonnegative real numbers. By the
definition of 𝛼-level set, we can obtain that

[𝑓 (𝑡)]
𝛼
= [𝑡 − 𝑎𝑡 (1 − 𝛼) , 𝑡 + 𝑏𝑡 (1 − 𝛼)] (17)

for every 𝑡 ∈ R+. Then, for every 𝛼 ∈ [0, 1], it is easy to verify
that

[𝑓 (𝜉𝑥 + 𝜂𝑦)]
𝛼
= 𝜉[𝑓 (𝑥)]

𝛼
+ 𝜂[𝑓 (𝑦)]

𝛼 (18)

for all 𝑥, 𝑦 ∈ R+ and 𝜉, 𝜂 > 0 with 𝜉 + 𝜂 ̸= 1. That is, 𝑓 is a
solution of (15) in R+.

Remark 7. A triangular fuzzy number 𝑢 ∈ F
𝐾𝐶(R) is

characterized by an ordered triple (𝑥
𝑙
, 𝑥
𝑐
, 𝑥
𝑟
) ∈ R3 with

𝑥
𝑙
≤ 𝑥
𝑐
≤ 𝑥
𝑟
such that the support set [𝑢]0 = [𝑥

𝑙
, 𝑥
𝑟
] and

1-level set [𝑢]1 = {𝑥
𝑐
}.

Remark 8. More generally, if 𝑋 = R+, by Lemma 1, it is easy
to see that 𝑓(𝑡) = 𝑡𝑢

0
is a solution of (15) for any 𝑡 ∈ R+ and

any fixed 𝑢
0
∈ F
𝐾𝐶

(𝑌).

Theorem 9. Let 𝜑 : 𝑋 × 𝑋 → [0, +∞) be a function such
that there exists a positive constant 𝐿 < 1 satisfying

𝜑 (𝑥, 𝑦) ≤
𝐿

𝜉 + 𝜂
𝜑 ((𝜉 + 𝜂) 𝑥, (𝜉 + 𝜂) 𝑦) (19)

for all 𝑥, 𝑦 ∈ 𝑋 and for some 𝜉, 𝜂 > 0 with 𝜉 + 𝜂 ̸= 1. Suppose
that 𝑓 : 𝑋 → F

𝐾𝐶
(𝑌) is a mapping satisfying

𝑑
∞ (𝑓 (𝜉𝑥 + 𝜂𝑦) , 𝜉𝑓 (𝑥) ⊕ 𝜂𝑓 (𝑦)) ≤ 𝜑 (𝑥, 𝑦) (20)

for all 𝑥, 𝑦 ∈ 𝑋. Then

𝐴 (𝑥) = lim
𝑛→∞

(𝜉 + 𝜂)
𝑛
𝑓(

𝑥

(𝜉 + 𝜂)
𝑛
) (21)

exists for each 𝑥 ∈ 𝑋 and defines a unique generalized Cauchy
type additive fuzzy set-valued mapping 𝐴 : 𝑋 → F

𝐾𝐶(𝑌)

such that

𝑑
∞
(𝑓 (𝑥) , 𝐴 (𝑥)) ≤

𝐿

(𝜉 + 𝜂) (1 − 𝐿)
𝜑 (𝑥, 𝑥) (22)

for all 𝑥 ∈ 𝑋.

Proof. Replacing 𝑥 = 𝑦 in (20), by Lemma 1, we get

𝑑
∞
(𝑓 ((𝜉 + 𝜂) 𝑥) , (𝜉 + 𝜂) 𝑓 (𝑥)) ≤ 𝜑 (𝑥, 𝑥) (23)

for all 𝑥 ∈ 𝑋. Thus, we can obtain

𝑑∞ (𝑓 (𝑥) , (𝜉 + 𝜂) 𝑓(
𝑥

𝜉 + 𝜂
))

≤ 𝜑(
𝑥

𝜉 + 𝜂
,

𝑥

𝜉 + 𝜂
) ≤

𝐿

𝜉 + 𝜂
𝜑 (𝑥, 𝑥)

(24)

for all 𝑥 ∈ 𝑋.
Consider the set 𝐸 = {𝑔 | 𝑔 : 𝑋 → F𝐾𝐶(𝑌), 𝑔(0) = 𝐼0}

and introduce the generalizedmetric𝐷 on𝐸, which is defined
by

𝐷(𝑔, ℎ) = inf {𝜇 ∈ (0,∞) | 𝑑∞ (𝑔 (𝑥) , ℎ (𝑥))

≤ 𝜇𝜑 (𝑥, 𝑥) , ∀𝑥 ∈ 𝑋} ,
(25)

where, as usual, inf 0 = ∞. In can easily be verified that (𝐸,𝐷)

is a complete generalized metric space (see [25], Theorem
2.4).

Now, we consider the linear mapping 𝐽 : 𝐸 → 𝐸 such
that

𝐽𝑔 (𝑥) = (𝜉 + 𝜂) 𝑔(
𝑥

𝜉 + 𝜂
) (26)

for all 𝑥 ∈ 𝑋.
Let 𝑔, ℎ be given such that𝐷(𝑔, ℎ) ≤ 𝜖. Then

𝑑
∞
(𝑔 (𝑥) , ℎ (𝑥)) ≤ 𝜖𝜑 (𝑥, 𝑥) (27)

for all 𝑥 ∈ 𝑋. Hence, we have

𝑑
∞
(𝐽𝑔 (𝑥) , 𝐽ℎ (𝑥))

= 𝑑
∞
((𝜉 + 𝜂) 𝑔(

𝑥

𝜉 + 𝜂
) , (𝜉 + 𝜂) ℎ (

𝑥

𝜉 + 𝜂
))

= (𝜉 + 𝜂) 𝑑
∞
(𝑔(

𝑥

𝜉 + 𝜂
) , ℎ (

𝑥

𝜉 + 𝜂
))

≤ 𝜖 (𝜉 + 𝜂) 𝜑(
𝑥

𝜉 + 𝜂
,

𝑥

𝜉 + 𝜂
)

≤
𝐿

𝜉 + 𝜂
𝜖 (𝜉 + 𝜂) 𝜑 (𝑥, 𝑥) = 𝐿𝜖𝜑 (𝑥, 𝑥)

(28)
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for all 𝑥 ∈ 𝑋. So𝐷(𝑔, ℎ) ≤ 𝜖 implies that𝐷(𝐽𝑔, 𝐽ℎ) ≤ 𝐿𝜖. This
means that

𝐷(𝐽𝑔, 𝐽ℎ) ≤ 𝐿𝐷 (𝑔, ℎ) (29)

for all 𝑔, ℎ ∈ 𝐸. Evidently, 𝐽 is a strictly contractive self-
mapping on 𝐸 with the Lipschitz constant 𝐿 < 1.

Moreover, it follows from (24) that 𝐷(𝑓, 𝐽𝑓) ≤ 𝐿/(𝜉 + 𝜂).
According to Theorem 4, there exists a mapping 𝐴 : 𝑋 →

F
𝑐
(𝑌) satisfying the following.

(i) 𝐴 is a fixed point of 𝐽: that is,

1

𝜉 + 𝜂
𝐴 (𝑥) = 𝐴(

𝑥

𝜉 + 𝜂
) (30)

for all 𝑥 ∈ 𝑋. The mapping 𝐴 is the unique fixed point of 𝐽 in
the set

𝑀 = {𝑔 ∈ 𝐸 | 𝐷 (𝑓, 𝑔) < ∞} , (31)

which implies that 𝐴 is the unique mapping satisfying (30)
such that there exists a 𝑟 ∈ (0, 1) satisfying

𝑑
∞ (𝑓 (𝑥) , 𝐴 (𝑥)) ≤ 𝑟𝜑 (𝑥, 𝑥) (32)

for all 𝑥 ∈ 𝑋.

(ii) 𝐷(𝐽𝑛𝑓,𝐴) → 0 as 𝑛 → ∞. This implies the equality

lim
𝑛→∞

(𝜉 + 𝜂)
𝑛
𝑓(

𝑥

(𝛼 + 𝛽)
𝑛) = 𝐴 (𝑥) (33)

for all 𝑥 ∈ 𝑋.

(iii) 𝐷(𝑓,𝐴) ≤ (1/(1 − 𝐿))𝐷(𝑓, 𝐽𝑓), which implies the
inequality

𝐷(𝑓,𝐴) ≤
1

1 − 𝐿
⋅

𝐿

𝜉 + 𝜂
=

𝐿

(𝜉 + 𝜂) (1 − 𝐿)
. (34)

This implies that the inequality (22) holds.
By (20), we can obtain that

𝑑
∞
((𝜉 + 𝜂)

𝑛
𝑓(𝜉

𝑥

(𝜉 + 𝜂)
𝑛 + 𝜂

𝑥

(𝜉 + 𝜂)
𝑛) ,

(𝜉 + 𝜂)
𝑛
(𝜉𝑓(

𝑥

(𝜉 + 𝜂)
𝑛) ⊕ 𝜂𝑓(

𝑦

(𝜉 + 𝜂)
𝑛)))

≤ (𝜉 + 𝜂)
𝑛
𝜑(

𝑥

(𝜉 + 𝜂)
𝑛 ,

𝑦

(𝜉 + 𝜂)
𝑛)

≤ (𝜉 + 𝜂)
𝑛
⋅

𝐿𝑛

(𝜉 + 𝜂)
𝑛𝜑 (𝑥, 𝑥) = 𝐿

𝑛
𝜑 (𝑥, 𝑦) ,

(35)

which tends to zero as 𝑛 → ∞ for all 𝑥, 𝑦 ∈ 𝑋. Thus,

𝐴 (𝜉𝑥 + 𝜂𝑦) = 𝜉𝐴 (𝑥) ⊕ 𝜂𝐴 (𝑦) (36)

for all 𝑥, 𝑦 ∈ 𝑋 and therefore the mapping 𝐴 : 𝑋 →

F
𝐾𝐶

(𝑌) is a generalized Cauchy type additive fuzzy set-
valued mapping as desired.

Corollary 10. Let 𝑋 be a cone with the vertex 0 contained in
a real normed space and let 𝑝, 𝜃 be positive real numbers with
𝑝 > 1 (resp. 0 < 𝑝 < 1). Suppose that 𝑓 : 𝑋 → F

𝐾𝐶
(𝑌) is a

mapping satisfying

𝑑
∞
(𝑓 (𝜉𝑥 + 𝜂𝑦) , 𝜉𝑓 (𝑥) ⊕ 𝜂𝑓 (𝑦)) ≤ 𝜃 (‖𝑥‖

𝑝
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝
) (37)

for all 𝑥, 𝑦 ∈ 𝑋 and for some 𝜉, 𝜂 > 0 with 𝜉 + 𝜂 > 1 (resp. <1).
Then

𝐴 (𝑥) = lim
𝑛→∞

(𝜉 + 𝜂)
𝑛
𝑓(

𝑥

(𝜉 + 𝜂)
𝑛) (38)

exists for each 𝑥 ∈ 𝑋 and defines a unique generalized Cauchy
type additive fuzzy set-valued mapping 𝐴 : 𝑋 → F

𝐾𝐶
(𝑌)

such that

𝑑
∞
(𝑓 (𝑥) , 𝐴 (𝑥)) ≤

2𝜃‖𝑥‖
𝑝

(𝜉 + 𝜂)
𝑝
− (𝜉 + 𝜂)

(39)

for all 𝑥 ∈ 𝑋.

Proof. In Theorem 9, let 𝜑(𝑥, 𝑦) = 𝜃(‖𝑥‖
𝑝
+ ‖𝑥‖
𝑝
). Then we

can choose 𝐿 = (𝜉 + 𝜂)
1−𝑝 and we get the desired result.

Corollary 11. Let 𝑋 be a cone with the vertex 0 contained in
a real normed space and let 𝑝, 𝜃 be positive real numbers with
𝑝 > 1/2 (resp. 𝑝 < 1/2). Suppose that 𝑓 : 𝑋 → F

𝐾𝐶
(𝑌) is a

mapping satisfying

𝑑
∞
(𝑓 (𝜉𝑥 + 𝜂𝑦) , 𝜉𝑓 (𝑥) ⊕ 𝜂𝑓 (𝑦)) ≤ 𝜃‖𝑥‖

𝑝󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝 (40)

for all 𝑥, 𝑦 ∈ 𝑋 and for some 𝜉, 𝜂 > 0 with 𝜉 + 𝜂 > 1 (resp. <1).
Then

𝐴 (𝑥) = lim
𝑛→∞

(𝜉 + 𝜂)
𝑛
𝑓(

𝑥

(𝜉 + 𝜂)
𝑛) (41)

exists for each 𝑥 ∈ 𝑋 and defines a unique generalized Cauchy
type additive fuzzy set-valued mapping 𝐴 : 𝑋 → F

𝐾𝐶
(𝑌)

such that

𝑑
∞
(𝑓 (𝑥) , 𝐴 (𝑥)) ≤

𝜃‖𝑥‖
2𝑝

(𝜉 + 𝜂)
2𝑝

− (𝜉 + 𝜂)
(42)

for all 𝑥 ∈ 𝑋.

Proof. In Theorem 9, let 𝜑(𝑥, 𝑦) = 𝜃‖𝑥‖
𝑝
‖𝑦‖
𝑝. Then we can

choose 𝐿 = (𝜉 + 𝜂)
1−2𝑝 and we get the desired result.

Corollary 12. Let𝑋 be a cone with the vertex 0 contained in a
real normed space and let 𝑝, 𝑞, 𝜃 be positive real numbers with
𝑝 + 𝑞 > 1 (resp. 𝑝 + 𝑞 < 1). Suppose that 𝑓 : 𝑋 → F

𝐾𝐶
(𝑌) is

a mapping satisfying

𝑑∞ (𝑓 (𝜉𝑥 + 𝜂𝑦) , 𝜉𝑓 (𝑥) ⊕ 𝜂𝑓 (𝑦))

≤ 𝜃 (‖𝑥‖
𝑝󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩
𝑞
+ ‖𝑥‖
𝑝+𝑞

+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝+𝑞

)
(43)

for all 𝑥, 𝑦 ∈ 𝑋 and for some 𝜉, 𝜂 > 0 with 𝜉 + 𝜂 > 1 (resp. <1).
Then

𝐴 (𝑥) = lim
𝑛→∞

(𝜉 + 𝜂)
𝑛
𝑓(

𝑥

(𝜉 + 𝜂)
𝑛) (44)
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exists for each 𝑥 ∈ 𝑋 and defines a unique generalized Cauchy
type additive fuzzy set-valued mapping 𝐴 : 𝑋 → F

𝐾𝐶
(𝑌)

such that

𝑑
∞
(𝑓 (𝑥) , 𝐴 (𝑥)) ≤

3𝜃‖𝑥‖
𝑝+𝑞

(𝜉 + 𝜂)
𝑝+𝑞

− (𝜉 + 𝜂)
(45)

for all 𝑥 ∈ 𝑋.

Proof. In Theorem 9, let 𝜑(𝑥, 𝑦) = 𝜃(‖𝑥‖
𝑝
‖𝑦‖
𝑞
+ ‖𝑥‖

𝑝+𝑞
+

‖𝑦‖
𝑝+𝑞

). Then we can choose 𝐿 = (𝜉 + 𝜂)
1−(𝑝+𝑞) and we get

the desired result.

Remark 13. According to the equality (13), all results obtained
in this section still hold true, even if the fuzzy set-valued
mapping 𝑓 : 𝑋 → F

𝐾𝐶
(𝑌) degenerates into a set-valued

mapping 𝑓 : 𝑋 → K𝐶(𝑌) or a single-valued mapping
𝑓 : 𝑋 → 𝑌. Therefore, these results can be regarded as
an important extension of the stability results of the classical
additive Cauchy type functional equations and the additive
Cauchy type set-valued functional equations. In essence,
Theorem9 extends somemain results obtained byGajda [26],
Hyers [2], and Rassias [5].

4. Stability of the Jensen Type Additive
Fuzzy Set-Valued Functional Equation

In this section, wewill prove theHyers-Ulam-Rassias stability
of the Jensen type additive fuzzy set-valued functional equa-
tion by using the same method as employed in the previous
section.

Definition 14. Let 𝑋 be a cone with the vertex 0 and let 𝑓 :

𝑋 → F
𝐾𝐶

(𝑌) be a fuzzy set-valued mapping. The Jensen
type additive fuzzy set-valued functional equation is defined
by

2𝑓(
𝑥 + 𝑦

2
) = 𝑓 (𝑥) ⊕ f (𝑦) (46)

for all 𝑥, 𝑦 ∈ 𝑋. Every solution of (46) is called a Jensen type
additive fuzzy set-valued mapping.

Remark 15. Obviously, it can be checked that the triangular
fuzzy set-valued mapping 𝑓 as defined in Example 6 is also a
solution of (46) in R+. Similarly, 𝑓(𝑡) = 𝑡𝑢

0
is a solution of

(46) for any 𝑡 ∈ R+ and any fixed 𝑢
0
∈ F
𝐾𝐶

(𝑌).

Theorem 16. Let 𝑗 ∈ {−1, 1} be fixed and let 𝜑 : 𝑋 × 𝑋 →

[0, +∞) be a function such that there exists a positive constant
𝐿 < 1 satisfying

𝜑 (𝑥, 0) ≤ 2
𝑗
𝐿𝜑 (2

−𝑗
𝑥, 0) (47)

for all 𝑥 ∈ 𝑋. Moreover, assume that 𝜑 satisfies

lim
𝑛→∞

2
−𝑗𝑛

𝜑 (2
𝑗𝑛
𝑥, 2
𝑗𝑛
𝑦) = 0 (48)

for all 𝑥, 𝑦 ∈ 𝑋. If a mapping 𝑓 : 𝑋 → F
𝐾𝐶(𝑌) satisfies

𝑓(0) = 𝐼0 and the inequality

𝑑∞ (2𝑓(
𝑥 + 𝑦

2
) , 𝑓 (𝑥) ⊕ 𝑓 (𝑦)) ≤ 𝜑 (𝑥, 𝑦) (49)

for all 𝑥, 𝑦 ∈ 𝑋, then

𝐴 (𝑥) = lim
𝑛→∞

2
−𝑗𝑛

𝑓 (2
𝑗𝑛
𝑥) (50)

exists for each 𝑥 ∈ 𝑋 and defines a unique Jensen type additive
fuzzy set-valued mapping 𝐴 : 𝑋 → F

𝐾𝐶(𝑌) such that

𝑑
∞
(𝑓 (𝑥) , 𝐴 (𝑥)) ≤

{{{

{{{

{

1

1 − 𝐿
𝜑 (𝑥, 0) , 𝑖𝑓 𝑗 = −1,

𝐿

1 − 𝐿
𝜑 (𝑥, 0) , 𝑖𝑓 𝑗 = 1

(51)

for all 𝑥 ∈ 𝑋.

Proof. Letting 𝑦 = 0 in (49). Since 𝑢 ⊕ 𝐼
0
= 𝑢 for any 𝑢 ∈

F
𝐾𝐶

(𝑌), we get

𝑑∞ (2𝑓(
𝑥

2
) , 𝑓 (𝑥)) ≤ 𝜑 (𝑥, 0) (52)

for all 𝑥 ∈ 𝑋. Furthermore, it follows from (47) that

𝑑
∞
(𝑓 (𝑥) ,

1

2
𝑓 (2𝑥)) ≤

1

2
𝜑 (2𝑥, 0) ≤ 𝐿𝜑 (𝑥, 0) (53)

for all 𝑥 ∈ 𝑋.
Consider the set 𝐸 = {𝑔 | 𝑔 : 𝑋 → F𝐾𝐶(𝑌), 𝑔(0) = 𝐼0}

and introduce the generalizedmetric𝐷 on𝐸, which is defined
by

𝐷(𝑔, ℎ) = inf {𝜇 ∈ (0,∞) | 𝑑∞ (𝑔 (𝑥) , ℎ (𝑥))

≤ 𝜇𝜑 (𝑥, 0) , ∀𝑥 ∈ 𝑋} ,
(54)

where, as usual, inf 0 = ∞. In can easily be verified that (𝐸,𝐷)

is a complete generalized metric space (see [25], Theorem
2.4).

We now define the linear mapping 𝐽 : 𝐸 → 𝐸 by

𝐽𝑔 (𝑥) = 2
−𝑗
𝑔 (2
𝑗
𝑥) (55)

for all 𝑥 ∈ 𝑋.
Moreover, we can infer from (52) and (53) that

𝐷(𝑓, 𝐽𝑓) ≤ {
1, if 𝑗 = −1,

𝐿, if 𝑗 = 1.
(56)

The rest of the proof is similar to the proof of Theorem 9.

Corollary 17. Let 𝑗 ∈ {−1, 1} be fixed and let 𝑝, 𝜃 be positive
real numbers with 𝑝 ̸= 1, and let 𝑋 be a cone with the vertex
0 contained in a real normed space. Suppose that 𝑓 : 𝑋 →

F𝐾𝐶(𝑌) is a mapping satisfying

𝑑
∞
(2𝑓(

𝑥 + 𝑦

2
) , 𝑓 (𝑥) ⊕ 𝑓 (𝑦)) ≤ 𝜃 (‖𝑥‖

𝑝
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝
) (57)

for all 𝑥, 𝑦 ∈ 𝑋. Then

𝐴 (𝑥) = lim
𝑛→∞

2
−𝑗𝑛

𝑓 (2
𝑗𝑛
𝑥) (58)
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exists for each 𝑥 ∈ 𝑋 and defines a unique Jensen type additive
fuzzy set-valued mapping 𝐴 : 𝑋 → F

𝐾𝐶
(𝑌) such that

𝑑
∞
(𝑓 (𝑥) , 𝐴 (𝑥)) ≤

{{{

{{{

{

𝜃‖𝑥‖
𝑝

1 − 21−𝑝
, 𝑖𝑓 𝑗 = −1, 𝑝 > 1,

𝜃‖𝑥‖
𝑝

21−𝑝 − 1
, 𝑖𝑓 𝑗 = 1, 0 < 𝑝 < 1

(59)

for all 𝑥 ∈ 𝑋.

Proof. In Theorem 16, let 𝜑(𝑥, 𝑦) = 𝜃(‖𝑥‖
𝑝
+ ‖𝑦‖
𝑝
). Then we

can choose 𝐿 = 2𝑗(𝑝−1) and hence we can obtain the desired
result.

Remark 18. Theorem 16 and Corollary 17 can be viewed as
a direct extension of the stability results of the single-valued
Jensen functional equation obtained by Cădariu and Radu
[27] and Jung [28], respectively.

5. Stability of the Cauchy-Jensen Type Additive
Fuzzy Set-Valued Functional Equation

As a combination of the Cauchy and Jensen functional
equations, in this section, we will prove that the Hyers-Ulam-
Rassias stability of the Cauchy-Jensen type additive fuzzy set-
valued functional equation in a similar way as shown before.

Definition 19. Let 𝑋 be a cone with the vertex 0 and let 𝑓 :

𝑋 → F
𝐾𝐶

(𝑌) be a fuzzy set-valued mapping. The Cauchy-
Jensen type additive fuzzy set-valued functional equation is
defined by

𝑓(
𝑥 + 𝑦

2
+ 𝑧) ⊕ 𝑓(

𝑥 + 𝑧

2
+ y) ⊕ 𝑓(

𝑦 + 𝑧

2
+ 𝑥)

= 2 (𝑓 (𝑥) ⊕ 𝑓 (𝑦) ⊕ 𝑓 (𝑧))

(60)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Every solution of (60) is called a Cauchy-
Jensen type additive fuzzy set-valued mapping.

Remark 20. It is easy to see that the Example 6 is also suitable
for (60). Similarly, 𝑓(𝑡) = 𝑡𝑢

0
is a solution of (60) for any

𝑡 ∈ R+ and any fixed 𝑢
0
∈ F
𝐾𝐶

(𝑌).

Theorem 21. Let 𝑗 ∈ {−1, 1} be fixed and let 𝜙 : 𝑋3 →

[0, +∞) be a function such that there exists a positive constant
𝐿 < 1 satisfying

𝜑 (𝑥, 𝑦, 𝑧) ≤ 2
𝑗
𝐿𝜑 (2

−𝑗
𝑥, 2
−𝑗
𝑦, 2
−𝑗
𝑧) (61)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Assume that 𝑓 : 𝑋 → F
𝐾𝐶

(𝑌) is a
mapping satisfying

𝑑
∞
(𝑓(

𝑥 + 𝑦

2
+ 𝑧) ⊕ 𝑓(

𝑥 + 𝑧

2
+ 𝑦) ⊕ 𝑓(

𝑦 + 𝑧

2
+ 𝑥) ,

2 (𝑓 (𝑥) ⊕ 𝑓 (𝑦) ⊕ 𝑓 (𝑧)) ) ≤ 𝜙 (𝑥, 𝑦, 𝑧)

(62)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then

𝐴 (𝑥) = lim
𝑛→∞

2
−𝑗𝑛

𝑓 (2
𝑗𝑛
𝑥) (63)

exists for each 𝑥 ∈ 𝑋 and defines a unique Cauchy-Jensen type
additive fuzzy set-valued mapping 𝐴 : 𝑋 → F

𝐾𝐶(𝑌) such
that

𝑑
∞
(𝑓 (𝑥) , 𝐴 (𝑥)) ≤

{{

{{

{

𝐿

6 (1 − 𝐿)
𝜑 (𝑥, 𝑥, 𝑥) , 𝑖𝑓 𝑗 = −1,

1

6 (1 − 𝐿)
𝜑 (𝑥, 𝑥, 𝑥) , 𝑖𝑓 𝑗 = 1

(64)

for all 𝑥 ∈ 𝑋.

Proof. Letting 𝑥 = 𝑦 = 𝑧 in (62). By Lemma 1, we can get

𝑑
∞ (

1

2
𝑓 (2𝑥) , 𝑓 (𝑥)) ≤

1

6
𝜙 (𝑥, 𝑥, 𝑥) (65)

for all 𝑥 ∈ 𝑋. Furthermore, it follows from (61) that

𝑑
∞
(𝑓 (𝑥) , 2𝑓 (

𝑥

2
)) ≤

1

3
𝜙 (

𝑥

2
,
𝑥

2
,
𝑥

2
) ≤

𝐿

6
𝜙 (𝑥, 𝑥, 𝑥) (66)

for all 𝑥 ∈ 𝑋.
Consider the set 𝐸 = {𝑔 | 𝑔 : 𝑋 → F

𝐾𝐶
(𝑌), 𝑔(0) = 𝐼

0
}

and introduce the generalizedmetric𝐷 on𝐸, which is defined
by

𝐷(𝑔, ℎ) = inf {𝜇 ∈ (0,∞) | 𝑑∞ (𝑔 (𝑥) , ℎ (𝑥))

≤ 𝜇𝜑 (𝑥, 𝑥, 𝑥) , ∀𝑥 ∈ 𝑋} ,
(67)

where, as usual, inf 0 = ∞. It can easily be verified that (𝐸,𝐷)

is a complete generalized metric space (see [25], Theorem
2.4).

We now define the linear mapping 𝐽 : 𝐸 → 𝐸 by

𝐽𝑔 (𝑥) = 2
−𝑗
𝑔 (2
𝑗
𝑥) (68)

for all 𝑥 ∈ 𝑋.
Moreover, we can infer from (65) and (66) that

𝐷(𝑓, 𝐽𝑓) ≤

{{{{

{{{{

{

𝐿

6
, if 𝑗 = −1,

1

6
, if 𝑗 = 1.

(69)

The rest of the proof is similar to the proof of Theorem 9.

Remark 22. InTheorem 21, if the fuzzy set-valuedmapping𝑓
degenerates into a set-valued mapping, then the supremum
metric 𝑑

∞
will reduce to the Hausdorff metric 𝑑

𝐻
. Thus, this

theorem is obviously an extension ofTheorems 2.2 and 2.4 in
[19].

Corollary 23. Let 𝑗 ∈ {−1, 1} be fixed and let 𝑝, 𝜃 be positive
real numbers with 𝑝 ̸= 1 and let 𝑋 be a cone with the vertex
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0 contained in a real normed space. Suppose that 𝑓 : 𝑋 →

F
𝐾𝐶

(𝑌) is a mapping satisfying

𝑑
∞
(𝑓(

𝑥 + 𝑦

2
+ 𝑧) ⊕ 𝑓(

𝑥 + 𝑧

2
+ 𝑦) ⊕ 𝑓(

𝑦 + 𝑧

2
+ 𝑥) ,

2 (𝑓 (𝑥) ⊕ 𝑓 (𝑦) ⊕ 𝑓 (𝑧)) )

≤ 𝜃 (‖𝑥‖
𝑝
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝
+ ‖𝑧‖
𝑝
)

(70)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then

𝐴 (𝑥) = lim
𝑛→∞

2
−𝑗𝑛

𝑓 (2
𝑗𝑛
𝑥) (71)

exists for each 𝑥 ∈ 𝑋 and defines a unique Cauchy-Jensen type
additive fuzzy set-valued mapping 𝐴 : 𝑋 → F

𝐾𝐶(𝑌) such
that

𝑑
∞
(𝑓 (𝑥) , 𝐴 (𝑥)) ≤

{{{{

{{{{

{

𝜃‖𝑥‖
𝑝

2𝑝 − 2
, 𝑖𝑓 𝑗 = −1, 𝑝 > 1,

𝜃‖𝑥‖
𝑝

2 − 2𝑝
, 𝑖𝑓 𝑗 = 1, 0 < 𝑝 < 1

(72)

for all 𝑥 ∈ 𝑋.

Proof. In Theorem 21, let 𝜑(𝑥, 𝑦, 𝑧) = 𝜃(‖𝑥‖
𝑝
+ ‖𝑦‖
𝑝
+ ‖𝑧‖
𝑝
).

Then we can choose 𝐿 = 2𝑗(𝑝−1) and hence we can obtain the
desired result.

Corollary 24. Let 𝑗 ∈ {−1, 1} be fixed and let 𝑝, 𝜃 be positive
real numbers with 𝑝 ̸= 1/3 and let 𝑋 be a cone with the vertex
0 contained in a real normed space. Suppose that 𝑓 : 𝑋 →

F
𝐾𝐶

(𝑌) is a mapping satisfying

𝑑∞ (𝑓(
𝑥 + 𝑦

2
+ 𝑧) ⊕ 𝑓(

𝑥 + 𝑧

2
+ 𝑦) ⊕ 𝑓(

𝑦 + 𝑧

2
+ 𝑥) ,

2 (𝑓 (𝑥) ⊕ 𝑓 (𝑦) ⊕ 𝑓 (𝑧))) ≤ 𝜃‖𝑥‖
𝑝󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩
𝑝
‖𝑧‖
𝑝

(73)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then

𝐴 (𝑥) = lim
𝑛→∞

2
−𝑗𝑛

𝑓 (2
𝑗𝑛
𝑥) (74)

exists for each 𝑥 ∈ 𝑋 and defines a unique Cauchy-Jensen type
additive fuzzy set-valued mapping 𝐴 : 𝑋 → F

𝐾𝐶
(𝑌) such

that

𝑑∞ (𝑓 (𝑥) , 𝐴 (𝑥)) ≤

{{{{

{{{{

{

𝜃‖𝑥‖
3𝑝

3 (23𝑝 − 2)
, 𝑖𝑓 𝑗 = −1, 𝑝 >

1

3
,

𝜃‖𝑥‖
3𝑝

3 (2 − 23𝑝)
, 𝑖𝑓 𝑗 = 1, 0 < 𝑝 <

1

3

(75)

for all 𝑥 ∈ 𝑋.

Proof. In Theorem 21, let 𝜑(𝑥, 𝑦, 𝑧) = 𝜃‖𝑥‖
𝑝
‖𝑦‖
𝑝
‖𝑧‖
𝑝. Then

we can choose 𝐿 = 2𝑗(3𝑝−1) and hence we can obtain the
desired result.

Corollary 25. Let 𝑗 ∈ {−1, 1} be fixed and let 𝑝, 𝑞, 𝑡, 𝜃 be
positive real numbers with 𝑝 + 𝑞 + 𝑡 ̸= 1 and let 𝑋 be a cone
with the vertex 0 contained in a real normed space. Suppose
that 𝑓 : 𝑋 → F

𝐾𝐶
(𝑌) is a mapping satisfying

𝑑
∞
(𝑓(

𝑥 + 𝑦

2
+ 𝑧) ⊕ 𝑓(

𝑥 + 𝑧

2
+ 𝑦) ⊕ 𝑓(

𝑦 + 𝑧

2
+ 𝑥) ,

2 (𝑓 (𝑥) ⊕ 𝑓 (𝑦) ⊕ 𝑓 (𝑧)))

≤ 𝜃 (‖𝑥‖
𝑝󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩
𝑞
‖𝑧‖
𝑡
+ ‖𝑥‖
𝑝+𝑞+𝑡

+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝+𝑞+𝑡

+ ‖𝑧‖
𝑝+𝑞+𝑡

)

(76)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then

𝐴 (𝑥) = lim
𝑛→∞

2
−𝑗𝑛

𝑓 (2
𝑗𝑛
𝑥) (77)

exists for each 𝑥 ∈ 𝑋 and defines a unique Cauchy-Jensen type
additive fuzzy set-valued mapping 𝐴 : 𝑋 → F𝐾𝐶(𝑌) such
that

𝑑∞ (𝑓 (𝑥) , 𝐴 (𝑥))

≤

{{{{

{{{{

{

4𝜃‖𝑥‖
3𝑝

3 (2𝑝+𝑞+𝑡 − 2)
, 𝑖𝑓 𝑗 = −1, 𝑝 + 𝑞 + 𝑡 > 1,

4𝜃‖𝑥‖
𝑝+𝑞+𝑡

3 (2 − 2𝑝+𝑞+𝑡)
, 𝑖𝑓 𝑗 = 1, 0 < 𝑝 + 𝑞 + 𝑡 < 1

(78)

for all 𝑥 ∈ 𝑋.

Proof. In Theorem 21, let 𝜑(𝑥, 𝑦, 𝑧) = 𝜃(‖𝑥‖
𝑝
‖𝑦‖
𝑞
‖𝑧‖
𝑡
+

‖𝑥‖
𝑝+𝑞+𝑡

+ ‖𝑦‖
𝑝+𝑞+𝑡

+ ‖𝑧‖
𝑝+𝑞+𝑡

). Then we can choose 𝐿 =

2𝑗[(𝑝+𝑞+𝑡)−1] and hence we can obtain the desired result.

6. Concluding Remark

In this paper, we proved the Hyers-Ulam-Rassias stability of
several types of additive fuzzy set-valued functional equa-
tions, including Cauchy, Jensen, and Cauchy-Jensen type
fuzzy set-valued functional equations. Our results general-
ized certain important results obtained by other authors for
these equations when they are a single-valued or a set-valued
one. Obviously, this paper provided us a novel idea to discuss
the stability of functional equations from a more unified
perspective. Certainly, further work will focus on the stability
of other types of functional equations by using this idea.
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