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We introduce new implicit and explicit iterative algorithms for finding a common element of the set of solutions of the minimization
problem for a convex and continuously Fréchet differentiable functional, the set of solutions of a finite family of generalized mixed
equilibrium problems, and the set of solutions of a finite family of variational inclusions in a real Hilbert space. Under suitable
control conditions, we prove that the sequences generated by the proposed algorithms converge strongly to a common element of
three sets, which is the unique solution of a variational inequality defined over the intersection of three sets.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert
space H and let P be the metric projection of H onto C. Let
§:C — Cbe a self-mapping on C. We denote by Fix (S) the
set of fixed points of S and by R the set of all real numbers.
A mapping A : C — H is called L-Lipschitz continuous if
there exists a constant L > 0 such that

[Ax - Ay| <L|x-y|, Vx,yeC. (1)

In particular, if L = 1, then A is called a nonexpansive
mapping [1]; if L € [0, 1), then A is called a contraction.

A mapping V is called strongly positive on H if there
exists a constant ¢ > 0 such that

Vx € H. (2)

Let A : C — H be a nonlinear mapping on C. We
consider the following variational inequality problem (VIP):
find a point x € C such that

(Ax,y-x) >0, VyeC. 3)
The solution set of VIP (3) is denoted by VI (C, A).

(Vx, x) = pllxl,

The VIP (3) was first discussed by Lions [2]. There
are many applications of VIP (3) in various fields; see, for
example, [3-6]. It is well known that if A is a strongly
monotone and Lipschitz continuous mapping on C, then VIP
(3) has a unique solution. In 1976, Korpelevi¢ [7] proposed an
iterative algorithm for solving the VIP (3) in Euclidean space
R™

Yn = PC (xn - TAxn)’
(4)

Xui1 = P (xn - TA}’n) , VYn=0,

with 7 > 0 a given number, which is known as the
extragradient method (see also [8]). The literature on the VIP
is vast and Korpelevich’s extragradient method has received
great attention given by many authors, who improved it in
various ways; see, for example, [9-24] and references therein,
to name but a few.

Letp : C — Rbe areal-valued function, A : H — H
a nonlinear mapping, and ® : C x C — R a bifunction. In
2008, Peng and Yao [12] introduced the following generalized
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mixed equilibrium problem (GMEP) of finding x € C such
that
O(xy)+¢(y)—@(x)+{Ax,y-x) >0, VyeC. (5)
We denote the set of solutions of GMEP (5) by GMEP
(©,¢, A). The GMEP (5) is very general in the sense that
it includes, as special cases, optimization problems, varia-
tional inequalities, minimax problems, and Nash equilibrium
problems in noncooperative games. The GMEP is further
considered and studied; see, for example, (11, 14, 23, 25-28]. If
¢ = 0and A = 0, then GMEP (5) reduces to the equilibrium
problem (EP) which is to find x € C such that
O(x,y)=0, VyeC. (6)
It is considered and studied in [29]. The set of solutions of
EP is denoted by EP (®). It is worth mentioning that the EP
is a unified model of several problems, namely, variational
inequality problems, optimization problems, saddle point
problems, complementarity problems, fixed point problems,
Nash equilibrium problems, and so forth.
Throughout this paper, it is assumed as in [12] that ® : Cx
C — Risa bifunction satisfying conditions (Al)-(A4) and
¢ : C — Risalower semicontinuous and convex function
with restriction (B1) or (B2), where

(A1) O(x,x) =0forall x € C;
(A2) © is monotone; that is, O(x, y) + O(y, x) < 0 for any

x,y €G;
(A3) O is upper-hemicontinuous; that is, for each x, y, z €
C)
limsup® (tz + (1 -t) x, y) <O (x, y); )
t—0*

(A4) ©(x,-) is convex and lower semicontinuous for each
x € C;

(B1) for each x € H and r > 0, there exists a bounded
subset D, ¢ C and y, € C such that, for any z €
C\D,,

O(z, ) +o(y.) —9(2) + % (Ve—22-x)<0;  (8)

(B2) C is a bounded set.

Next we list some elementary results for the MEP.

Proposition 1 (see [26]). Assume that ® : Cx C — R
satisfies (Al)-(A4) and let ¢ : C — R be a proper lower
semicontinuous and convex function. Assume that either (Bl)
or (B2) holds. For r > 0 and x € H, define a mapping
T . H — C as follows:

T (x) = {z€C:0(23) +9 () -9 ()
1 (©)
o (y-zz-x)z0vyech,
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for all x € H. Then the following hold:

(i) for each x € H,T'®?(x) is nonempty and single-
valued;

(ii) Tr(®"p) is firmly nonexpansive; that is, for any x, y € H,

[T@Px — TPy < (TP - T®Py,x— y);  (10)

(iii) Fix (T'®%) = MEP(®, ¢);
(iv) MEP(®, ¢) is closed and convex;

2
W ITOPx TP < (s - /)T x - T,
T®x — x) forall s,t > 0 and x € H.

Let A, 1,A,5...,A,y € (0,1], n > 1. Given the
nonexpansive mappings S;,S,,...,Sy on H, for eachn > 1,
the mappings U, |, U,,,, ..., U, y are defined by

Uy =4S+ (1-4,0) L,
Un,2 = /\n,ZSnUn,l + (1 - /\n,z) I,

Un,n—l = /\n—lTn—lUn,n + (1 - An—l) I,

an
Upn-t = AanaSneiUpnoa + (1= Anen) I
Wn = Un,N = An,N SN Un,N—l + (1 - /\n,N) L
The W,, is called the W-mapping generated by S, ..., Sy

and A,,,A,,,...,A, n. Note that the nonexpansivity of S;
implies the nonexpansivity of W,

In 2012, combining the hybrid steepest-descent method
in [30] and hybrid viscosity approximation method in [31],
Ceng et al. [27] proposed and analyzed the following hybrid
iterative method for finding a common element of the set of
solutions of GMEP (5) and the set of fixed points of a finite
family of nonexpansive mappings {S;},.

Theorem CGY (see [27, Theorem 3.1]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let ® : C x
C — R be a bifunction satisfying assumptions (Al)-(A4)
and ¢ C — R a lower semicontinuous and convex
function with restriction (B1) or (B2). Let the mapping A :
H — H be 8-inverse-strongly monotone and {S;}Y, a finite
family of nonexpansive mappings on H such that N | Fix(S;) N
GMEP(©,,A)#0. Let F : H — H be a x-Lipschitzian
and n-strongly monotone operator with constants k,n > 0
andV : H — H a p-Lipschitzian mapping with constant
p>0.Let0 < p < 2n/c* and 0 < yp < 7, where T =

1—1/1 — u(2n — ux?). Suppose {w,,} and {B,,} are two sequences

in (0, 1), {y,} is a sequence in (0, 28], and {An,i}f\il is a sequence
in [a,b] with0 < a < b < 1. For everyn > 1, let W, be the

W-mapping generated by S,,...,Sy and A, 1, A, 55, A, N
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Given x, € H arbitrarily, suppose that the sequences {x,} and
{u,} are generated iteratively by

O (uy, y) + 9 (¥) — 9 (u,) + (Ax,, y —u,)

+l<y—un,un—xn>20, Vy e C,
r

Xn+1 = (Xnyvxn + ﬁnxn + ((1 - ﬁn) I- (xn.“F) W,
Vn>1,
(12)

where the sequences {&,},{B,},{r,} and the finite family of
N . .
sequences {A,,;};5, satisfy the conditions:

(i) lim,, _, &, =0and Y >, a, = 00;
(ii) 0 < liminf, ,, B, <limsup,_, B, <L

(iii) 0 < liminf,_, r, < limsup,_ 7, < 28 and
lim, , (r,01 — 1) = 0;

(iv) lim,, , (A4, — Ayy) =0 foralli=1,2,...,N.

Then both {x,,} and {u, } converge strongly to x™ € ﬂf\:]l Fix($;)Nn

GMEP(®, ¢, A), where X" = Pon gix (s)nomep©@g.4) (I = UF +

yf)x" is a unique solution of the variational inequality problem

(VIP):

((uF —yV)x",x" —=x) <0,

N (13)
Vx € [ |Fix(S;) N GMEP (©, ¢, A).

i=1

Let B be a single-valued mapping of C into H and R a
multivalued mapping with D(R) = C. Consider the following
variational inclusion: find a point x € C such that

0 € Bx + Rx. (14)

We denote by I(B,R) the solution set of the variational
inclusion (14). In particular, if B = R = 0, then I(B,R) = C.
If B = 0, then problem (14) becomes the inclusion problem
introduced by Rockafellar [32]. It is known that problem (14)
provides a convenient framework for the unified study of
optimal solutions in many optimization related areas includ-
ing mathematical programming, complementarity problems,
variational inequalities, optimal control, mathematical eco-
nomics, and equilibria and game theory.

In 1998, Huang [33] studied problem (14) in the case
where R is maximal monotone and B is strongly monotone
and Lipschitz continuous with D(R) = C = H. Subsequently,
Zeng et al. [34] further studied problem (14) in the case which
is more general than Huang’s one [33]. Moreover, the authors
[34] obtained the same strong convergence conclusion as
in Huang’s result [33]. In addition, the authors also gave
the geometric convergence rate estimate for approximate
solutions. Also, various types of iterative algorithms for
solving variational inclusions have been further studied
and developed; for more details, refer to [35-39] and the
references therein.

Let {T,},2, be an infinite family of nonexpansive self-
mappings on C and {A,},2, a sequence of nonnegative
numbers in [0, 1]. For any n > 1, define a self-mapping W,
on C as follows:

Un,n+1 = I’
Un,n = /\nTnUn,nJrl + (1 - An) I’

Un,n—l = /\n—lTn—lUn,n + (1 - )‘n—l) I,

Ui = MTUper + (1= A) L, (15)

Upjeor = Mecr T Uy + (1= Ay) L

Upr = MU, 5 + (1-1,)1,
W,=U,, =AMT\U,, +(1-1,) L

Such a mapping W, is called the W-mapping generated by
T,T, 1 ....,Tyand A, A, ..., Ay

Whenever C = H a real Hilbert space, Yao et al. [11] very
recently introduced and analyzed an iterative algorithm for
finding a common element of the set of solutions of GMEP
(5), the set of solutions of the variational inclusion (14), and
the set of fixed points of an infinite family of nonexpansive
mappings.

Theorem YCL (see [11, Theorem 3.2]). Let¢p : H — Rbea
lower semicontinuous and convex functionand ® : Hx H —
R a bifunction satisfying conditions (A1)-(A4) and (Bl). Let V
be a strongly positive bounded linear operator with coefficient
u>0andR: H — 2% a maximal monotone mapping. Let
the mappings A, B : H — H be a-inverse-strongly monotone
and f-inverse-strongly monotone, respectively. Let f : H — H
be a p-contraction. Let v > 0,y > 0, and A > 0 be three
constants such that r < 2a, A < 23, and 0 < y < u/p.
Let {A};2 | be a sequence of positive numbers in (0, b] for some
b € (0,1) and {T,}2, an infinite family of nonexpansive self-
mappings on H such that Q == n;? | Fix(T,,)NGMEP(®, ¢, A)n
I(B, R) # 0. For arbitrarily given x, € H, let the sequence {x,}
be generated by

O (u,, ) + @ (¥) — @ () + (¥ — u Ax,.)
o1 (y -upu,—x,) >0, VyeH,
r

Xny1 = “an (xn) + ﬁnxn
+[(1 =B -, VW, Jp (1, — ABu,), Vn=>1,
(16)

where {a,}, {,,} are two real sequences in [0, 1] and W, is the
W -mapping defined by (15) (with X = H and C = H). Assume
that the following conditions are satisfied:



(C1) lim,, _, oo, = 0 and Y2 ax,, = 00;
(C2) 0 < liminf,_, , B, <limsup, B, <L
Then the sequence {x,} converges strongly to x* € Q, where

x* = Po(yf(x™) + (I - V)x*) is a unique solution of the VIP:

((pf -V)x"y-x") <0,

Let f : C — R be a convex and continuously Fréchet
differentiable functional. Consider the convex minimization
problem (CMP) of minimizing f over the constraint set C

VyeQ. a7)

minf (x) (18)

(assuming the existence of minimizers). We denote by T’ the
set of minimizers of CMP (18). It is well known that the
gradient-projection algorithm (GPA) generates a sequence
{x,} determined by the gradient Vf and the metric projection
Pe:

Xp1 = Po(x, - AVf (x,)), V¥n=0, (19)
or more generally,
X1 = Po(x, - 1, Vf (x,)), V¥n>0, (20)

where, in both (19) and (20), the initial guess x, is taken
from C arbitrarilyn and the parameters A or A, are positive
real numbers. The convergence of algorithms (19) and (20)
depends on the behavior of the gradient Vf. As a matter of
fact, it is known that if Vf is «a-strongly monotone and L-
Lipschitz continuous, then, for 0 < A < 2a/L?, the operator
P-(I—-AVf) is a contraction; hence, the sequence {x,} defined
by the GPA (19) converges in norm to the unique solution of
CMP (18). More generally, if the sequence {A,} is chosen to
satisfy the property

0< linn_l,ig})f)‘n < liy?lso%pA" < i—?, (21)
then the sequence {x,} defined by the GPA (20) converges in
norm to the unique minimizer of CMP (18). If the gradient
Vf is only assumed to be Lipschitz continuous, then {x,}
can only be weakly convergent if H is infinite-dimensional
(a counterexample is given in Section 5 of Xu [40]).

Since the Lipschitz continuity of the gradient Vf implies
that it is actually (1/L)-inverse-strongly monotone (ism) [41],
its complement can be an averaged mapping (i.e., it can be
expressed as a proper convex combination of the identity
mapping and a nonexpansive mapping). Consequently, the
GPA can be rewritten as the composite of a projection and an
averaged mapping, which is again an averaged mapping. This
shows that averaged mappings play an important role in the
GPA. Recently, Xu [40] used averaged mappings to study the
convergence analysis of the GPA, which is hence an operator-
oriented approach.

Motivated and inspired by the above facts, we in this
paper introduce new implicit and explicit iterative algorithms
for finding a common element of the set of solutions of the
CMP (18) for a convex functional f : C — R with L-
Lipschitz continuous gradient Vf, the set of solutions of a
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finite family of GMEPs, and the set of solutions of a finite
family of variational inclusions for maximal monotone and
inverse-strong monotone mappings in a real Hilbert space.
Under mild control conditions, we prove that the sequences
generated by the proposed algorithms converge strongly to a
common element of three sets, which is the unique solution
of a variational inequality defined over the intersection of
three sets. Our iterative algorithms are based on Korpelevich’s
extragradient method, hybrid steepest-descent method in
[30], viscosity approximation method, and averaged map-
ping approach to the GPA in [40]. The results obtained in
this paper improve and extend the corresponding results
announced by many others.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert
space whose inner product and norm are denoted by (., -)
and || - ||, respectively. Let C be a nonempty closed convex
subset of H. We write x,, — x to indicate that the sequence
{x,} converges weakly to x and x, — x to indicate that
the sequence {x,} converges strongly to x. Moreover, we use
w,,(x,) to denote the weak w-limit set of the sequence {x,,};
that is,

w, (x,) = {er:xni—\x

for some subsequence {xni} of {xn}}. )
Recall that a mapping A : C — H is called
(i) monotone if
(Ax—Ay,x—y) >0, Vx,y€C; (23)

(ii) #-strongly monotone if there exists a constant 7 > 0
such that

(Ax - Ay, x-y) =q|x -y, Vx,yeC (24)

(iil) ac-inverse-strongly monotone if there exists a constant
a > 0 such that

(Ax - Ay, x - y) =z af|Ax - Ay|’, Vx,yeC. (25

It is obvious that if A is a-inverse-strongly monotone,
then A is monotone and (1/«)-Lipschitz continuous.

The metric (or nearest point) projection from H onto C is
the mapping P : H — C which assigns to each point x € H
the unique point P-x € C satisfying the property

v-Berl = inf e -l = 0. (g

Some important properties of projections are gathered in
the following proposition.
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Proposition 2. For given x € H and z € C,
(z=Pxeo(x-2,y-2)<0,forally e C

(i) z = Pex © |lx—z|* < llx =yl = Iy -zl for all
yeC;

(iii) (Pox — Poy,x — ) = |Pex — Peyl?, forall y € H.
Consequently, P is nonexpansive and monotone.
If A is an a-inverse-strongly monotone mapping of C into

H, then it is obvious that A is (1/«)-Lipschitz continuous. We
also have that, forallu,v € Cand A > 0,

I = AA) u = (I = AA)VI* = | = v) = A (Au — AV)|?
= lu-v|* =21 (Au— Av,u —v)
+ M| Au — Ay
<lu-v* +A(A-2a)
x || Au — Av]*.
(27)

So,if A < 2a, then I — AA is a nonexpansive mapping from C
to H.

Definition 3. A mapping T : H — H is said to be
(a) nonexpansive [1] if

ITx~Ty| < |x-y|., VxyeH; (28)

(b) firmly nonexpansive if 2T — I is nonexpansive or,
equivalently, if T' is 1-inverse-strongly monotone (1-
ism),

x -y Tx—-Ty) > |Tx - Ty|*, Vx, ye H; (29)
y y y y

alternatively, T' is firmly nonexpansive if and only if T can be
expressed as

T:%(I+S), (30)

where S : H — H is nonexpansive; projections are firmly
nonexpansive.

It can be easily seen that if T' is nonexpansive, then
I — T is monotone. It is also easy to see that a projection
P is 1-ism. Inverse-strongly monotone (also referred to as
co-coercive) operators have been applied widely in solving
practical problems in various fields.

Definition 4. A mapping T : H — H is said to be an
averaged mapping if it can be written as the average of the
identity I and a nonexpansive mapping; that is,

T=01-a)l+asS, (31)

where « € (0,1) and S : H — H is nonexpansive. More
precisely, when the last equality holds, we say that T' is «-
averaged. Thus, firmly nonexpansive mappings (in particular,
projections) are (1/2)-averaged mappings.

Proposition 5 (see [42]). Let T :
mapping.

H — H be a given

(i) T is nonexpansive if and only if the complement I — T
is (1/2)-ism.

(ii) If T is v-ism, then, for y > 0,yT is (v/y)-ism.

(iii) T is averaged if and only if the complement I =T is v-ism
forsomev > 1/2. Indeed, for« € (0, 1), T is a-averaged
ifand only if I — T is (1/2c)-ism.

Proposition 6 (see [42, 43]). Let S, T,V : H — H be given
operators.

D) IT = (1 - a)S + aV for some o € (0,1) and if S is
averaged and V is nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement
I - T is firmly nonexpansive.

(ii) f T = (1 - a)S + aV for some a € (0,1) and if S is
firmly nonexpansive and V' is nonexpansive, then T is
averaged.

(iv) The composite of finitely many averaged mappings
is averaged. That is, if each of the mappings {T;}~
is averaged, then so is the composite T, ---Ty. In
particular, if T) is o, -averaged and T, is «,-averaged,
where oy, , € (0,1), then the composite T, T, is a-
averaged, where & = o) + &, — o4 &,.

(v) If the mappings {Ti}f\:] , are averaged and have a
common fixed point, then

N
() Fix (T;) = Fix (T, -+ Ty). (32)

i=1

The notation Fix(T) denotes the set of all fixed points of the
mapping T; that is, Fix(T) = {x € H : Tx = x}.

We need some facts and tools in a real Hilbert space H
which are listed as lemmas below.

Lemma 7. Let X be a real inner product space. Then the
following inequality holds:

I+ y|” <lxl> +2(px+y), VxyeX — (33)

Lemma 8. Let A : C — H be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 2(i)) implies
u e VI(C,A) & u=P-(u—-AAu), forsome A > 0.
(34)

Lemma 9 (see [44, Demiclosedness principle]). Let C be a
nonempty closed convex subset of a real Hilbert space H. Let
T be a nonexpansive self-mapping on C with Fix(T) # 0. Then
I — T is demiclosed. That is, whenever {x,,} is a sequence in C
weakly converging to some x € C and the sequence {(I - T)x,}
strongly converges to some y, it follows that (I - T)x = y. Here
I is the identity operator of H.



Lemma 10 (see [45]). Let {s,} be a sequence of nonnegative
numbers satisfying the conditions

Spe1 < (1 —a,) s, + o, B,y Vn21, (35)
where {«,} and {B,} are sequences of real numbers such that

(i) {o,} € [0,1] and Y2, &, = 00 or, equivalently,

(o8] n
[T -a):= lim [T(1-a)=0; (36)
n=1 k=1
(i) limsup,, _, 3, < 0, 0r X020 lev, Bl < 0.
Then lim,, _, s, = 0.

Lemma 11 (see [46]). Let {x,} and {z,} be bounded sequences
in a Banach space X and {f3,} a sequence in [0, 1] with

0< linrrii(gfﬁn < hrIerSolipﬁn <1 (37)

Suppose that x,,,, = (1 - B,)z, + B,x, for eachn > 1 and

limsup (||z,., = z,|| = [|%p1 — x.]|) < 0. (38)
n— 0o
Then lim,,_, . llz, — x,|l = 0.

The following lemma can be easily proven and, therefore,
we omit the proof.

Lemma 12. Let V : H — H be an I-Lipschitzian mapping
with constant | > 0, and let F H — H bea «-
Lipschitzian and y-strongly monotone operator with positive
constants k, 1 > 0. Then, for 0 < yl < un,

((WE = yV) x = (uF =yV) yox = y) = (un =) |x - y|,
Vx,y € H.
(39)

That is, uF — yV is strongly monotone with constant pr — yl.

Let C be a nonempty closed convex subset of a real Hilbert
space H. We introduce some notations. Let A be a number in
(0, 1]andlet y > 0. Associating with a nonexpansive mapping

T:C — H, we define the mapping T* : C — H by
T x = Tx — MEF (Tx), VxeC, (40)

where F : H — H is an operator such that, for some
positive constants x, 77 > 0, F is x-Lipschitzian and #-strongly
monotone on H; that is, F satisfies the conditions:

. (Fx-Fyx-y)znlx -y,
(41)

|Fx = Ey|| < |x = »|

forallx,y € H.

Lemma 13 (see [45, Lemma 3.1]). T" is a contraction provided
0 < u < 2n/K%; that is,

"T)Lx - le" <(1-A1)|x-y|, Vx,yeC, (42)

where T = 1 — 1 — u(2n — ux?) € (0, 1].
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Recall that a set-valued mapping R : D(R) ¢ H — 2" is
called monotoneifforall x, y € D(R), f € R(x)and g € R(y)

imply
(f-g:x-y)=0. (43)

A set-valued mapping R is called maximal monotone if R is
monotone and (I + AR)D(R) = H for each A > 0, where I
is the identity mapping of H. We denote by G(R) the graph
of R. It is known that a monotone mapping R is maximal if
and only if, for (x, f) € Hx H, (f — g,x — y) > 0 for every
(¥, 9) € G(R) implies f € R(x).

Let A: C — H be a monotone, k-Lipschitz continuous
mapping and let Nv be the normal cone to C at v € C; that
is,

Nev={weH:{(v-u,w) >0, Yu € C}. (44)

Define

Ty — ‘IAV + Ngv, ifveC, (45)

0, ifv ¢ C.

Then, T is maximal monotone and 0 € Tvif and only if v €
VI(C, A); see [32].

Assume that R : D(R) ¢ H — 29 is a maximal
monotone mapping. Then, for A > 0, associated with R, the
resolvent operator Jp 5 can be defined as

Jaax = (I +AR)'x, Vx e H. (46)

In terms of Huang [33] (see also [34]), the following property
holds for the resolvent operator J , : H — D(R).

Lemmal4. ]y, is single-valued and firmly nonexpansive; that
is,

(Jrax = Jrpysx = ) 2 |[Jgax - ]R,A;VHZ’ Vx,y € H.
(47)

Consequently, J , is nonexpansive and monotone.

Lemma 15 (see [39]). Let R be a maximal monotone mapping
with D(R) = C. Then, for any given A > 0, u € C is a solution
of problem (14) if and only if u € C satisfies

u=Jp, (u—ABu). (48)

Lemma 16 (see [34]). Let R be a maximal monotone mapping
with D(R) = C and let B: C — H be a strongly monotone,
continuous, and single-valued mapping. Then, for each z € H,
the equation z € (B+ AR)x has a unique solution x, for A > 0.

Lemma 17 (see [39]). Let R be a maximal monotone mapping
with D(R) = Candlet B: C — H be a monotone, continuous,
and single-valued mapping. Then (I + A(R+ B))C = H for each
A > 0. In this case, R + B is maximal monotone.
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3. Implicit Iterative Algorithm and
Its Convergence Criteria

We now state and prove the first main result of this paper.

Theorem 18. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let f : C — R be a convex
functional with L-Lipschitz continuous gradient Vf. Let M, N
be two integers. Let ®, be a bifunction from C x C to R
satisfying (A1)-(A4) and let ¢ : C — R U {+oo} be a
proper lower semicontinuous and convex function, where k €
{1,2,...,M}. Let R, : C — 2" be a maximal monotone
mapping and let A, : H — Hand B; : C — H be -
inverse-strongly monotone and ;-inverse-strongly monotone,
respectively, where k € {1,2,...,M}, i € {1,2,...,N}. Let
F : H — H be a x-Lipschitzian and n-strongly monotone
operator with positive constantsk,n > 0. LetV: H — H bean
I-Lipschitzian mapping with constant 1 > 0. Let 0 < p < 217/x*

\J1 — u(2n — px?). Assume that

Q = nYY, GMEP(®y, ¢, Ay) N NY,I(B, R) N T #0 and that
either (B1) or (B2) holds. Let {x,} be a sequence generated by

and 0 < yl < 1, wheret =1 -

u, = Tr(ii/[’(PM) (I _ rM,nAM) T(®M—1)‘PM—1)

"M-1,n
X (I=ryyphpy) Tr(l(il’%) (I=r10A1) X,

Vi = TR (I- AN,nBN) ]RN,I,/\N,M

x (I - AN—I,nBN—l) IR, (I- A1yBi) s

(49)

Xp = Snyvxn + (I - SmuF) Tnvn’
Vn > 1,

where Po(I-A,Vf) = s,1+(1-s,)T, (here T, is nonexpansive
ands, = (2-1,L)/4 € (0,1/2) foreach A,, € (0,2/L)). Assume
that the following conditions hold:

(i) s, € (0,1/2) foreach A, € (0,2/L), lim
lim A, =2/L);

n— 00

(i) {A;,.} € [a;, ] € (0,2), foralli € {1,2,...,N};
(iii) {re,} € [ew fil € (0,2u), forallk € {1,2,..., M}.

s, =0 (e

n— 00

Then {x,} converges strongly as A,, — 2/L (& s, — 0)toa
point q € Q, which is a unique solution of the VIP:

((uF=yV)g.p-q) =20, VpeQ. (50)

Equivalently, g = Po(I — uF +yV)q.

Proof. First of all, let us show that the sequence {x,} is well
defined. Indeed, since Vf is L-Lipschitzian, it follows that Vf
is 1/L-ism; see [41]. By Proposition 5(ii) we know that, for A >
0, AVf is (1/AL)-ism. So by Proposition 5(iii) we deduce that
I — AVf is (AL/2)-averaged. Now since the projection Py is
(1/2)-averaged, it is easy to see from Proposition 6(iv) that
the composite Po(I — AVf) is (2 + AL)/4-averaged for A €
(0,2/L). Hence, we obtain that, for each n > 1, Po(I — A, Vf)

is ((2 + A,L)/4)-averaged for each A, € (0,2/L). Therefore,
we can write

/\,,LI N 2+A,L

2_
PC(I_Aan): 4 Tn:snl+(1_5n)Tn’

(51)

where T, is nonexpansive and s,, := s,(A,) = 2-A,L)/4 €
(0,1/2) for each A, € (0,2/L). It is clear that

2
An—>z<=}sn—>0. (52)

Put

AF = Tr(lik"/)k) (I _ rk,nAk) T(Ok1:9%1)

n 1 1
‘ o (53)
©,¢;
X (I =1y pAir) "Trm I =11 ,A1) X,
forallk € {1,2,...,M}andn > 1,
Aln = ]R,»,Ai,n (I - /\f,nBi) ]R,.,l,)t,.,l,n
(54)

x (I - /\i—l,nBi—l) “IRoAL, (I- /\l,nBl) >

foralli € {1,2,...,N}and»n > 1, and A(L = A(il = I, where I
is the identity mapping on H. Then we have that u,, = AYx,
and v, = ANu,.

Consider the following mapping G,, on H defined by

G,x = s,pVx + (I - s,uF) T,AYAMx, VxeH, n>1,
(55)

where s, = (2-1,,L)/4 € (0,1/2) for each A,, € (0,2/L). By
Proposition 1(ii) and Lemma 13 we obtain from (27) that for
allx,y e H

|G, = G,
< s,y [V = Vy|| + (T = s,4F) T, A} A% x
(I = s,uF) T,A A%y
< sl =yl + (1=s5,7) [AN AN x - AN AYY|
< syl =yl + (1= 5,7) | (T = Ay, By) A AN
= (1= AyuBy) A A%y

< slfx =y + (1=s,7) A3 AN x - AN AYY)|

<sylllx=y|+(1-s,7) “AOnAlfx - A(LAIZIy"



= Snyl ”X - y“ + (1 - SnT) HAIZIX - AIXIJ}"

<sylflx=y|+(1-s, T)H ~ Ty Ay AM X

-(I- "M,nAM) A _1)’"

< st o1+ (1- )35 42

<sylflx =y +(1-s,7) HA(;x - A(Ly"
= syl x =y + (1 =s,7) |x -y

= (=5, (=) -5l
(56)

Since0 < 1-s,(r—-vy) < 1,G, : H - Hisa
contraction. Therefore, by the Banach contraction principle,
G,, has a unique fixed point x,, € H, which uniquely solves
the fixed point equation:

X, = $,yVx, + (I = s,uF) T,ANAY x, . (57)

This shows that the sequence {x,,} is defined well.
Note that 0 < yI < Tand uy > 7 & « > 5. Hence, by
Lemma 12 we know that

((UE = yV) x = (uF =yV) yox = y) = (un =) |x - y|,
Vx,y € H.
(58)

That is, uF — yV is strongly monotone for 0 < yl < 7 < pn.
Moreover, it is clear that uF — yV is Lipschitz continuous. So
the VIP (50) has only one solution. Below we use g € Q to
denote the unique solution of the VIP (50).

Now, let us show that {x,} is bounded. In fact, take p € Q
arbitrarily. Then from (27) and Proposition 1(ii) we have

®M¢M) (I_rMnAM) AM ' Xn

e, =l =
Tr(S]:[ (1 - ") Alr\:[_IP“

M 1
H rM nAM Xn

~(I =" An) AJZI_IP“

M-1 M-1
< e, a2

(59)

< [A%x, - A%p
=[x, -l
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Similarly, we have

"Vn - P" = "]RN,)LN,,, (I- AN,nBN) AI;H
TR (I - An,By) AI:,HP"
S “(I = AnnBy) AN, = (I- Ay,By) AI;HP”

< I ]

< ”Aonun - A(Lp"

= [, - p|-
(60)
Combining (59) and (60), we have
v, = pll < % - £l (61)
Since
2
P=PC(I_/\an)p=Snp+(1_sn)Tnp’ VAn€<0’z>’
(62)

where s, :=s,(A,) = (2-1,L)/4 € (0,1/2), it is clear that
T,p = pforeach A, € (0,2/L). Thus, utilizing Lemma 13 and
the nonexpansivity of T,,, we obtain from (61) that

%, = pll = s (yVi,, = uFp) + (I = 5,uF) T,p,
~ (I = s,uF) T,,p|
< |1 = s,uF) T, = (I = s,uF) T, p]|
+ 5, YV, - up|
< (1=s,7) v - pl
+5, (v [V, = Vo[ + |yvp - uFpl)
< (1=s,7) [, — pl
+ 5, (V% = | + |lyVp - uFpl)
= (1 =5, (= 1)) |, = Pl + s, [y¥Vp — uFp] -
(63)

This implies that ||lx, — pl| < |yVp—uFpll/(t—yl). Hence, {x,}
is bounded. So, according to (59) and (61) we know that {u,,},
.5 {T,v,}, {Vx,}, and {FT,v,} are bounded.

Next let us show that [|u, — x| — 0, |lv,—u,| — 0,and
lx, — T,x,| = Oasn — oo.
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Indeed, from (27) it follows that for all i € {1,2,..., N} = (1= 5,2)|vs - P + 25,y (Vx,, - VP, x,, - p)
and k € {1,2,..., M}

+2s, (yVp — uFp, x,, - p)
I, - oI = AN, - |
< AL - [

"IR)L (I Azn z)Al lu

< (1= 5,7 [va - oI + 25,01, - I/
+ an “YVP - Aqu" "xn - p“

<(1-s,7) [Ilun = ol + A (A - 26)
2
_]R Ain (I /\zn i p"

"(I Azn z)Al 1Li _(I /\zn i P||2

< "Ai;l“n - P“z +A, (Ai,n -2n;)

x|, w, - Bp| ]
+ 25,71, = plI* + 25, [yVp — uEp| |x, - p|

| 2 < (1= 5,20 [ 1= I+ 7 (s~ 20
x |B:AY w, - Bip| . ,
5 X ”AkAn*lxn - Akp"

= "un - P" + Ai,n (/\i,n - 2771')

y ||BiAi;1un B BiP||2 +Ai, (A, — 215) “B A'u, - B p“z]

<y = P>+ Aiw (Ai— 27) + 25,9llx, = pl* + 25, |yVp - uFp| |, - pl
< B, — Bop| =[1-25,(c =y + 5,77, - o’
lu, - oI = |A%x, - p”Z - (1-5,7)’ [fk,n (bt = o) AR 5, - AkP||2
< Ak, - o i (2= Ay, | B, ~ Bp ]
=10 (1~ 1, ,A,) A1, +2s, [yVp - uFp |x, - pl

< |x, - p|* + 22|, - p||* - (1 = s,7)°
1O (14 of bl sl ol

x [rk,n (244 = 1) AkA];—lxn - AkP"

< "(I ~ enAr) A L x, = (1= 13,A1) P"2

/\in 2 i_Ain BiAF1 n_Bi ’
s |A}:1_1xn _p||2 +rk,n (rk,n _Zf’lk) ' ’ ( ! ’ ) - p“ ]

+2s, [yVp - uFp| ||x, -

X "AkAl;_lxn - Akp"2 (65)
< |x, - p”2 + T (Fen — 204 which implies that
_ 2
X "AkAI:lxn - Akp||2' (1 - SnT)z [rk,n (zl’lk - rk,n) "AkA]; lxn - Akp"
64 .
oy i (2= 130) | B, ~ Bip] (66
Thus, utilizing Lemma 7, from (49) and (64) we have
I, - oI < si7|lx, = pl” + 25, IyVe - uFp| |, - ol
= |is, (yVx,, — uFp) + (I - s,uF) T,v, Since {A;,,} € [a;, b] € (0,27;) and {ry,.} < [eg, fie] < (0,2p4)

foralli € {1,2,...,N}and k € {1,2,..., M}, froms, — 0

— (I-s,uF)T, P||2 we conclude immediately that

< (1 = uuF) T, = (1 = s,uF) T, p Jim 4,87 x, - Ayp] =0, (67)
+ 2Sn <nyn - [’tFp’ Xy — P> hm "B Al lu Bip" =0,

< (1-5,2)|v, = pl* + 25, (yVx,, — uFp, x, — p) forallk € {1,2,...,M}andi € {1,2,...,N}.
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‘e lgilr;herm](\);(}e, by Proposition 1(ii) we obtain that for each % (” (I-1,,B) Az by~ (I - AinB) p"
oy P o 2

k) Ak—lx _( zn 1)p
- (W= p)[)

R I}

2
‘Tr(,ik’w) (I -7,A%) P“

l
< <(I - rk,nAk) Al;_lxn - (I - rk,nAk) p> AI;xn - p> E (

i-1

- % ("(I - rk,nAk) A]:lxn - (I - rk,nAk) p“Z - “Al;lu” B Ai”u” B Ai’” (BiAl;lu” B Bip)||2>

1 2
+[alx, P" (1= rpai) A, E<”u AN
— (I =ruA) p oty = Nyt = Ay, (B, — B P)"Z)
70
o) v
%( k=1 p" Aex, P” which implies

_"A’:lxn - A]:an — Tk (AkAI;:lxn - AkP)"2> > ”Ainun B p“Z < [, - P||2 B ”A’;lun B Ain“n

(68)
which implies that Ao (BAL w, - Bp)|
8%, - p|f = o = oI = A5 1y = Al
<[5 e~ Nl Biry w, ~ Bipl

- ”A]:l_lxn - Al:lxn ~Tkn (AkA’;_lxn - Akp)||2 * 20 <Al”1u” B A”u”’ 7

N A N | Bkt = ip)

i-1 i 2
= N

2
- rlz,n“AkA};_lxn - 14kp“2 < “un - p" -

- )
+ 21y, <Alf1_1xn _ A];xn,AkA};_lxn _ Akp> (69) + ZA- "Al u, — A’nun"

BA’ 'u, - B;p|.
cJet s, -puZ—uA“x stef ! |
on, A5 x, - ke AkP“ Thus, utilizing Lemma 7, from (49), (69), and (71) we have
< I = ol - :
Ak 1 A "xn - p”
2 -
+2r, l\k x, = Ny || — s, (WVix, — aFp) + (I = 5,uF) T,
1
L, - At S
Also, by Lemma 14, we obtain that for each i € {1,2,..., N} I F)T (I F)T ||2
< |\(I = s,uF) v, — (I - s,uF) T, p
2
u, - P” +2s, {(yVx, — uFp, x, — p)
2
”]R Ain (I /\tn z) - ]R Ain (I Aanz P” < (1 - SnT)2||Vn - P"2 + anyl“xn h P"2

<<I Azn 1)A (I A’lﬂ 1)p A p> +25n"VVp_#Fp“ “'xn_p"
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= (1= 5,00 | AN, = |+ 25,1, - I + 20 [ = A | B, By
+2s, [lyVp - uFp| ||x, - p| +2s, [lyvp - uFp| ||x, - p|

< (1= s, A%, - pf + 25,01, - I < %o = pl* + 557 - pl* - (1= 5,7)°
+ 25, [yVp - uFp| |, - pl (85, - A%+ A% - A )

i-1 i 2
A, u, — Anun“ + 21k,

k-1 k
A, x, - A x,

< (1= 5,7)° [, - pII” -

AkA,:lxn - AkP"

+ 24, A, — Ainun” + 20, [|A ey, — A"nun“ “BiA';lun -B p“
x|[B,A" - Bip] | +2s, [yVp - wFp| |Ix. - pll-
(72)
+ 25, 9ll%, = pI* + 25, |yVp - uFp| |, - pl It immediately follows that
= (1 - SnT)Z I:“Alr\l/[xn - p“z - "Air?lun - Ainun |2 (1 - Sn‘l')2 ("A’:lxn - A];Xnuz + |'Ai;11/ln - Ainun"z)
+2A;, Al;l“n - Ainun” < sflrz [, p||2 + 21, “Aljl_lxn - A];xn”
' (73)
x| B u, - Bip| ] x| Acd %, - Ap| + 20, AT, - AL,
+ zsnyl"xn - P"2 + zsn “YVP - ‘qu” ”xn - P" x "BiA:l”n - Bip" + 25n "VVP - ptFp" "xn - P” :

Since {A;,,} C [a;,b] € (0,27;) and {ry .} € [ex, fi] € (0,2)
foralli € {1,2,..., N}and k € {1,2,..., M}, from (67) and
s, — 0 we deduce that

<(1- sn‘r)2 [”Aixn - p"2 - "A’;lun - Ainun"2

i-1 i
+21;, "An u, — Anun” . .
. -1 . i-1 i
nIL%O “An X, — Anxn' =0, Jim "An u, — Anun" =0,

x B, - B | (74)

+ 25,0, - pllz + 25, |[yVp — uFp| |x, - p| forallk € {1,2,..., M}andie{l,2,..., N}. Hence, we get

||xn - un" = “A(an - Afxn

<(1-s,1)° [“xn -1l - ”A’:lxn - A];xn"2

0 1 1 2
or, |45, - Ak <[ = dnl + Jasn = i (75)

M-1 M
+---+.|An xn—Anxn“ —0

x ||AkA’;‘1xn - Akp“
as n — 09,

A1 Al 2
- n Un = DUy

||un - vn" = “A(ilun - Afun“
+21;,

i-1 i
AN, u,— Anun" o . X X
< ”Anun - Anun” + “Anun - Anun“

o (76)
X "BiAn u, Bip" ] +oeeet “Al;fflun - Al:l]un” — 0
+25,¥l|x, - p|I° as n — 0o.
+2s, [yVp - uFp||||x, - pl So, taking into account that [|x,, — v, || < llx,, —u, |l + llu, = v,
< (1= 26, (e 1)+ 22 oo - e
n n n lim |x, - v,| = 0. 77)

n— 00
2

k-1 k
An Xn — An'xn

Thus, from (77) and s, — 0 we have

- (=50

"Vn - Tnvn“ = "Vn - xn” + ”xn - Tnvn“

+ A’;lun - Ainunnz)

= "Vn - xn” + Sy ||YVxn - VFTnVn” — 0 (78)

k-1 k
A, x, - A x,

+ ZTk,n

k-1
AN — A ||
KBy X kP as n — 0.
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Now we show that ||x, - T, x,| — 0Oasn — oo.In fact, from
the nonexpansivity of T,,, we have

s = Tl < 12, = vall + [ = vl
+ | Tav = Tl (79)
< 2%, = vl + v = Tvall-
By (77) and (78), we get
Jim ||x, - T,x,[ = 0. (80)
From (78) it is easy to see that
Jim |x, = T,v,[ =o0. (81)
Observe that
1Pc (T = A Vf) v, =il
= [lsuvs + (1= 5,) Tv = vl
(82)
= (1= 5,) [T, = v
< Tv = vl

where s, = (2 - A,L)/4 € (0,1/2) for each A,, € (0,2/L).
Hence, we have

2
Jre (1= Lor) =

< "PC <I - %Vf) v, = Po (=1, Vf),

+ “PC (I - Anvf) Yy = Vn”
(83)

< ”(I - %w) v —(I=AVf)v,
# [P (1-2,9f) v, - v,
< (2 =0 ) IS Gl + T =il

From the boundedness of {v,},s, — 0 (& A, — 2/L) and
IT, v, — v, — 0 (due to (78)), it follows that

lim =0. (84)
n— 00

2
Vy — PC (I - sz) Vy

Further, we show that w,(x,) ¢ Q. Indeed, since {x,}
is bounded, there exists a subsequence {x,} of {x,} which
converges weakly to some w. Note that lim,, _, . [lx, —u,[| =0
(due to (75)). Hence, x,, — w. Since C is closed and convex,
C is weakly closed. So, we have w € C. From (74) and (75),
we have that Al;ixni —w, Aju, — wu, = W, — W,
where k € {1,2,...,M}, m € {1,2,..., N}. First, we prove
that w € NY_ I(B,,, R,,). As a matter of fact, since B,, is 7],,-
inverse-strongly monotone, B,, is a monotone and Lipschitz
continuous mapping. It follows from Lemma 17 that R, + B,,
is maximal monotone. Let (v,g) € G(R,, + B,,); that is,
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g - B,v € R,v. Again, since AJu, = Jp ; (I -
A,.B )A’Z‘lun, n>1,me{l,2,...,N}, we have

mn-m

A = A B AT, € (T4 Ay ,R,) ATy (85)
that is,
1 _ _
A (Ars lun - Arsun - Am,anArZ lun) € RmAnr:un' (86)
m,n

In terms of the monotonicity of R,,,, we get

1
<v—A’Zun,g—Bmv— 3

m,n

(87)

n m,n—m =

X (Amilun -ATu, -\, B A’:flun) > >0
and hence
<V - Ar:;un’ g>

1
> <V—A’Zun,Bmv+ T

mn

X (Arrr:_lun - A’Zun - /\m,anAr::_lun) >
= <v -A"u,, B, v—- B, A u, +B,A"u, (88)

m—1
-B, A, u,+

/\1 (Arrr:_lun - A'Zun)>

mn

> <v - AT, B, Nu, — BmAr::_lun>

n-n>
+ <V—Amu L(A"Hu - A"u )>
n n’A n n n-n N
m,n

In particular,

<V - ArZiu”i’g>

> <v—Amu

n;'n>

1
+ <v— Ar:iunp 3

mn;

m m—1
B, A U, — BmAn,- “n,->

(An’::i_luni - Ar::iu”i)> '

Since |A"u, — A’Z"lunH — 0 (due to (74)) and ||B,,A"u,, —
B,,A" 'u,| — 0 (due to the Lipschitz continuity of B,,), we
conclude from A} U, —w and condition (ii) that

(89)

lim (v- Ar:,.”n,-’9> =(v-w,g) >0. (90)

It follows from the maximal monotonicity of B,, + R,
that 0 € (R, + B, )w; that is, w € I(B,,R,).
Therefore, w € NY_ I(B,,R,). Next we prove that



Abstract and Applied Analysis

w € N GMEP(®y, ¢, Ay). Since Alx, = T -
rk)nAk)A’;_lxn, n>1ke{l,2,..., M}, wehave
k k
Oy (A%x 7) + 91 () — i (A5x,,)
k— k
+ <AkAn lxn,y—Anxn> (91)

1 k k k-1
+ ; <y—Anxn,Anxn—An xn> > 0.
N

By (A2), we have
o (1) = o (Ax,) + (A x, y - A x,)

+ i <y - A’;xn, Aﬁxn - Akilxn> > 0, (y, A];xn) .

5 n
(92)

Letz, =ty+ (1 -t)wforallt € (0,1] and y € C. This implies
that z, € C. Then, we have

<zt - A];xn, Akzt>

=X (A];xn) ~ o (2) + <Zt - Al;xn’ Akzt>

k k-1
- t n
(7, - M, ApA ')

n-n’ n

k k-1

AN x, — AN x

k n’'n n “'n k

_<zt—Anxn,T + 0y (20, A% x,)
N

= Pk (A];xn) - ¢ ()

+ (2, ~ Mix, Az, - A,

+(z - Alx,, ApAx, — A A )
A x — Ay
- <zt - Ak x,, M> + 0, (zt, A};xn) :
7"k,n
(93)
By (74), we have IIAkAI;xn - AkA’;_lxnll — 0 (due

to the Lipschitz continuity of A;). Furthermore, by the
monotonicity of A, we obtain (z, — A’;xn, Az, —A kA];xn) >
0. Then, by (A4) we obtain

(7~ w, Arz,) 2 ¢ (W) — @ (2,) + O (z,w) . (94)
Utilizing (Al), (A4), and (94), we obtain
0=0y(22) + 9 (2) — 9 (20)

<tO (25, ) + (1 - 1) O (2, w) + ter (¥)
+(1=1) ¢ (W) — 9 (2,)

<t[O (20 ) + 91 (¥) = o1 (21)] (95)
+(1 -z, —w,Asz,)

=[O (20 y) + 91 (¥) = o1 (21)]
+(1-t)t(y-w, Az,

13

and hence

0< 0 (26 y) + 91 (7))~ (2) + (1 =) (y ~w, Akzt(>9'6)

Lettingt — 0, we have, for each y € C,
0< 6 (w,y) + i (y) — g (W) + (y ~w, Agw) . (97)

This implies that w € GMEP(®y, ¢, A;) and hence w €
N, GMEP(®y, ¢, A,). Further, let us show that w € T. Asa
matter of fact, from (84), Vy, — W, and Lemma 9, we conclude
that

w=p(1- %Vf) w. (98)

So, w € VI(C,Vf) = I. Therefore, w € nkM:1 GMEP(0,,
@A) NNY I(B;, R) NT =: Q. This shows that w,,(x,) ¢ Q.

Finally, let us show that x, — qasn — oo where g is
the unique solution of the VIP (50). Indeed, we note that, for
w e Qwithx, —w,

Xy —W=S, (van - ‘MPLU) + (I - SmuF) Tnvn
(99)
— (I - s,uF)w.
By (61) and Lemma 13, we obtain that
I%, - w|* = s, (yVix,, — uFw, x,, - w)
+ <(I - snl"F) Tnvn - (I - SnMF) w, x, — w>
=S ()/Vxn - #Fw’ Xn — w>
+||(I = s,uF) T, — (I - s,uF) w| |x, - w|
<s, (yVx, — pFw, x, — w)
+(1=s,7)|]v, - w| ||, - w]

<s, (yVx, - pFw,x, - w) + (1 —s,7) ||xn - w||2.
(100)

Hence, it follows that
2 1
"xn - w" < ; <van - [/le, X — w>
1
= (y{(Vx, - Vw, x,, — w)

+{(yVw - pFw, x,, — w))

1
< - (Yl”Xn - w||2 + {(yVw - puFw, x,, — w)) ,
(101)
which hence leads to
sy~ wff < PYRTHER X Tw) g,

T-vl
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In particular, we have

<wa - uFw,x, - w>

o, ol = a0y

-yl

Since x,, — w, it follows from (103) thatx,, — wasi — ©o.
Now we show that w solves the VIP (50). Since x,, =
s,yVx, + (I — s,uF)T,v,, we have

(‘MF - yV) Xp = _l ((I - STIMF) Xp — (I - Sn.uF) Tnvn) .
Sﬂ
(104)
It follows that, for each p € Q,

<(/’lF - ’}/V) X Xy — p>

= _l <(I_ Sn‘”F) Xn — (I _Sn(’lF) Tnvn’xn _p>
S

n

=L (1= 5uF) x, — (T = $,4F) Ty, %, - )
Sn

1
= _S_ <(I - Sn/’lF) Xn — (I - sn."lF) TnAl:z]AIr\l/Ixn’ Xn — P>

=—i<(I—THAIZAJZI) ~(1-T,ANAM) p,x, - p)

+ <‘qun - .uFTnAIZAI:fxn’ Xn — P>
< (uFx, — uFT, A AY'x

w Xn = P> ’
(105)

since I — TnAIZAIZI is monotone (i.e., {(I — T,,AI:AJZI)x -(I-
T,ANAM)y,x — y) > 0 forall x,y € H. This is due to
the nonexpansivity of T,,AI;] AIZI )- Since ||lx, — T,v,| = (I -
TnAIZ AIZI )x,| — 0asn — o0, by replacing n in (105) with
n; and letting i — 00, we get

((uF —=yV)w,w - p)

< lim <;4Fx — UFT, v, x,

n; n’
i— 00

p>:0.

That is, w € Q is a solution of VIP (50).

Finally, in terms of the uniqueness of solutions of VIP
(50), we deduce thatw = gand x,, — gasn — 00.So, every
weak convergence subsequence of {x,} converges strongly to
the unique solution g of VIP (50). Therefore, {x,} converges
strongly to the unique solution g of VIP (50). In addition, the
VIP (50) can be rewritten as

(I-pF+yV)q-q.9-p) =0,

By Proposition 2(i), this is equivalent to the fixed point
equation:

Vp e Q. (107)

Po(I-uF+yV)q=q. (108)

This completes the proof. O
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Corollary 19. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional
with L-Lipschitz continuous gradient Vf. Let ® be a bifunction
from C x C to R satisfying (A1)-(A4) and let ¢ : C — R U
{+00} be a proper lower semicontinuous and convex function.
Let R, : C — 2" be a maximal monotone mapping and let
A:H — HandB; : C — H be(-inverse-strongly monotone
and n;-inverse-strongly monotone, respectively, fori = 1,2. Let
F : H — H be a x-Lipschitzian and n-strongly monotone
operator with positive constantsx,n > 0. LetV: H — H bean
I-Lipschitzian mapping with constant1 > 0. Let 0 < u < 21/x*

and 0 < yl < 1, where T = 1 — \|1 — u(2n — px?). Assume that

Q := GMEP(0, ¢, A) N I(B,,R,) N I(B,,R,) N T # 0 and that
either (BI) or (B2) holds. Let {x,} be a sequence generated by

O (uy, y) + 9 (¥) — 9 (u,) + (Ax,, y —u,)
1
+—(y-u,u,—x,) >0, VyeC,
Tn (109)

YV = ]szAz,n (I - AZ,nBZ) ]Rl,)tm (I - Al,nBl) Uy

x, = s,yVx, + (I - s,uF)T,v,, Yn=1,

where Po(I-A,Vf) = s, I1+(1-s,)T, (here T, is nonexpansive
ands, = (2-A,L)/4 € (0,1/2) foreach A,, € (0,2/L)). Assume
that the following conditions hold:

(i) s, € (0,1/2) foreach A,, € (0,2/L),lim,,_, s, =0 (&
limn_>OO . =2/L);

(i) {A;,.} € [a5, ] € (0,21;) fori=1,2;
(iii) {r,,} < [e, ] € (0,20).

Then {x,} converges strongly as A,, — 2/L (&'s, — 0)toa
point q € Q, which is a unique solution of the VIP:

((UF=yV)a.p-q) =0, VpeQ.

Corollary 20. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional
with L-Lipschitz continuous gradient Vf. Let ® be a bifunction
from CxC to R satisfying (Al)-(A4) andletp : C — RU{+0c0}
be a proper lower semicontinuous and convex function. Let
R : C — 2" be a maximal monotone mapping and let
A: H — Hand B : C — H be {-inverse-strongly
monotone and &-inverse-strongly monotone, respectively. Let
F : H — H be a k-Lipschitzian and n-strongly monotone
operator with positive constantsx,n > 0. LetV: H — H bean
I-Lipschitzian mapping with constant1 > 0. Let 0 < u < 217/x*

(110)

and 0 < yl < 7, where T = 1 — |1 — u(25 — px?). Assume that

Q := GMEP(0, ¢, A) N I(B, R) NI # 0 and that either (B1) or
(B2) holds. Let {x,,} be a sequence generated by

O (uy y) + 9 (y) — 9 (u,) + (Ax,, y —u,)

1
+—(y-u,u,-x,) >0, VyeC,
Tn (111)

Xn = snnyn + (I - SmuF) Tn]R,pn (un - pnBun) >

Vn>1,
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where Po(I- A, Vf) = s,1+(1-s,)T, (here T, is nonexpansive
ands, = (2-A,L)/4 € (0,1/2) foreach A,, € (0,2/L)). Assume
that the following conditions hold:

(i) s, € (0,1/2) foreach A,, € (0,2/L),lim,,_, s, =0 (&

lim, , A, = 2/L);

(ii) {p,}  [a,b] € (0,28);

(iii) {r,} < [e, f] € (0,20).
Then {x,} converges strongly as A,, — 2/L (& s, — 0)toa
point q € Q, which is a unique solution of the VIP:

((WF=yV)qp-q) 20, VpeQ. (112)
4. Explicit Iterative Algorithm
and Its Convergence Criteria

We next state and prove the second main result of this paper.

Theorem 21. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let f : C — R be a convex
functional with L-Lipschitz continuous gradient Vf. Let M, N
be two integers. Let ®, be a bifunction from C x C to R
satisfying (A1)-(A4) and let ¢, : C — R U {+oo} be a
proper lower semicontinuous and convex function, where k €
{1,2,...,M}. Let R; : C — 2" be a maximal monotone
mapping and let A, : H — Hand B; : C — H be -
inverse-strongly monotone and n;-inverse-strongly monotone,
respectively, where k € {1,2,...,M}, i € {1,2,...,N}. Let
F : H — H be a x-Lipschitzian and n-strongly monotone
operator with positive constantsk,n > 0. LetV: H — H bean

I-Lipschitzian mapping with constant 1 > 0. Let 0 < u < 217/x”
and 0 < yl < 7, where T = 1 — |1 — u(2n — ux?). Assume that

Q == NYL, GMEP(®y, ¢, Ap) N MY, (B, R) N T #0 and that
either (B1) or (B2) holds. For arbitrarily given x, € H, let {x,}
be a sequence generated by

U, = Tr(iff’%) (I - rM,nAM) Tﬁsf;l’(pMil)

X (I =1y pAp) Tr(l(il’%) (I=r141) X,
Vn = ]RN,AN,,, (I - )‘N,nBN) ]RN,I,)LN,LH
x (I - /\N—l,nAN—l) e ]Rl,)tl),, (- )H,nBl) Uy»

Xn+1 = Snyvxn + ﬁnxn + ((1 - ﬁn) I- Sn."lF) Tnvn’
Vn > 1,

(113)

where Po(I-A,Vf) = s,1+(1-s,)T, (here T, is nonexpansive
ands, = (2-A,L)/4 € (0,1/2) foreach A,, € (0,2/L)). Assume
that the following conditions hold:

(i) s, € (0,1/2) for each A,, € (0,2/L), and lim,, , s,
0 (& lim,_, A, = 2/L);

(i) {8, < (0,1) and 0 < liminf, B, <
limsup, _, B, < 1L;
(iii) {A;,} € [a;,b] € (0,2#;) andlim,, , |A;, 1 —A;,1 =0

forallie{1,2,...,N};

(IV) {rk’n} C [ek, fk] C (0, 21“]() and limnﬂoo|rk’n+l —rk,nl =
Oforallk € {1,2,..., M}.
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Then {x,} converges strongly as A, — 2/L (&'s, — 0)toa
point q € Q, which is a unique solution of VIP (50).

Proof. First of all, repeating the same arguments as in
Theorem 18, we can write

2oAL 2+4AL
Po(I=A9f) = =1+ +4” T,=s,I+(1-5s,)T,

(114)

where T, is nonexpansive and s, := s,(1,) = (2 -1,L)/4 €
(0,1/2) for each A, € (0,2/L). It is clear that

2
A, — I s, — 0. (115)
Put
Al; — Tr(gk#’k) (I _ rk,nAk) Tr(glf;l Pr-1)
(116)
0,
X (I = 1y phier) Tr(ml o (I-r,A,)x,
forallk € {1,2,...,M}andn > 1,
Aln = ]R,-,/\,-m (I - Ai,nBi) ]Ri,l,)t,-,l,n
117)

x (I - Ai—l,nBi—l) TR, (I- A1,n31)

foralli € {1,2,...,N}andn > l,andA(L = A(L = I, whereI is
the identity mapping on H. Then we have thatu,, = AMx, and
v, = ANu,. In addition, taking into consideration conditions
(i) and (ii), we may assume, without loss of generality, that
s, <1-p,foralln>1.

We divide the remainder of the proof into several steps.

Step 1. Let us show that [lx,, — pll < max{llx, — pll, lyVp -
uFpll/(t —yD} foralln > 1 and p € Q. Indeed, take p € Q
arbitrarily. Repeating the same arguments as those of (59)-
(61) in the proof of Theorem 18, we obtain
lu, - pll < I, - 2l
v, = ol < s = 2l
v = ol < Ix. - -

(118)

Then from (118), T,,p = p, and Lemma 13, we have

%1 = £l
= s, (yVix,, = uFp) + B, (x, = p)
+((1=B) I = s,uF) T,
~((1=B) I~ s,uF) T,p|
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<8y, ”VV’Cn - /,tFp" + ﬁn "xn - P"

== )| (1- 22pwr ) 1

(152 “g! )1,

< Sn (||)/Vxn - pr" + "pr - /’le")

~pl+ (=) (1- 725 )=l

+ B lx

< s, (Jyvax, = Vo[ + |yvp - uFpl)
+ Bullxn = ol + (1= By = 5,7) 1%~ Pl
< sy¥l 2, = pll + s, [¥Vp — uFp|
+(1=s,7) %, - 1l
= (1=s, (v =) |x, - Pl

lyve - uFp|
+s,(t—-90) E—
lyvp - uFp|
< max {"xn p” 5 T——yl .
(119)
By induction, we have
bl < mas e -l 2Ly
T—yl
(120)

Hence, {x,} is bounded. According to (118), {u,}, {v,,}, {T,v,}>
{Vx,}, and {FT,v,} are also bounded.

Step 2. Let us show that ||x,,,
end, define

- x,| — 0asn — oo. To this

X1 = Buxn+ (1-B,)z,, Vn=1. (121)

Observe that, from the definition of z,,,

Zp+l ~ Rn
_ Xn+2 _ﬁn+1xn+1 _ Xp+1 ﬁn n
1- ﬁn+1 1- ﬁn
_ Sn+1yvxn+l + ((1 B ﬁn+1) n+1‘”F) Tn+1 n+1

I- ﬁrwl

Snyvxn + ((1 - ﬁn) I- Sn."lF) Tnvn
1- ﬁn
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Sn+1
- Vx, + T,V
ﬁn+1 1 B y n+l1"n+1
Sn+1
-T,v,+ _ﬁnyFT v, — 1—ﬁn+1 T,i1Vne1
= I_H—ELH (YVX nuF n+1V, n+1)
S
+ —— (UFT,v, — yVx,) + Tpp1Vys1 — TV
1- ﬁn

(122)

Thus, it follows that

Sn+1

|21 = 2] < —ﬁ (V| + # | F 1)

+ 12 Ty V)
n

+ ” n+1Vn+1 — Tnvn" .

(123)

On the other hand, since Vf is (1/L)-ism, Po(I — A, Vf) is
nonexpansive for A, € (0,2/L). So, it follows that, for any
given p € (),

1Pc (I = As V) vall < 1P (I = A V) v = pll + 12
= 1P (I = A V) v,
~Po (I =21 VF) 2l + |12l
< v =2l + 2l

< vl + 22l -
124

This together with the boundedness of {v,} implies that
{Po(I - A,.1Vf)v,} is bounded. Also, observe that

" ni1Vn Tnvn“

_ 4PC(I_/\n+1Vf) (2 An+1L)I
2+ AL n

4P (I-AVf)-(2-A,L)I
2+A,L "

4R 1= 2,%)
- 24+A L "

n+l
= || (4 (2 + /\nL) PC (I - /\n+lvf) Vu

4P (I - A, Vf)
2+A,L '

2 - /\L
2+/\L

2- /\n+1L
C24A,,L"

—4 (2 + AnJrlL) PC (I - Anvf) Vn)

X((2+ A yrL) (2 + A,0)) |

T
@+ A L) 2+ 4,0 1
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" (4L (/\n - )Ln+1) PC (I - AnHVf) Vp T 4 (2 + An+1L)
X (PC (I - /\n+lvf) Vi = PC (I - /\nvf) Vn))
X((Z + An-«-lL) (2 + AnL))_l ||

4L lAn+1 B An|
+ vl
CRSWNICRS WA

4L I/\n B An+1| ”PC (I B An+1vf) Vn"
(2+A,,L)(2+A,L)

+ (4 (2 + An+1L) "PC (I - AnJrlvf) Vi
~Pc(I-A,f)v,|)

X (244, L) (2 +2,0))"

e
@+ AL @+ 4,0

= |/\n+1 - An| [L "PC (I - /\n+lvf) Vn”

+4|Vf ()l + Lval]

< M |/\n+1 n| ’
(125)

where suplgl{LHPC(I—AnHVf)vnH +4|VF (v )l +Llv,lI} < M
for some M > 0. So, by (125), we have that

" n+1Vn+1 T v ” < " n+1Vn+1 _TnHVn”
+ || i1V Tnvn”
= 126
< Wt = vall + BT Ay =2, 026
4M
< ||Vn+1 - Vn" + T ($n+1 + sn) .
Note that
"Vn+1 - Vn” = ”AIZﬂunﬂ - AI:LI”n

= ”]RN,AN,,,H (I - /\N,n+1BN) Al;tj-:llurwl
TR (I- AN,nBN) AIZ_I”n”
< ”]RN,AN,,H (I = AN By) Al;tj-:llurwl
TRy A (I = AnnaBy) A n+1 n+1|'
"IRN A (I- ANnBN)AnH Upyy

_]RN,AN,,‘ (1 - /\N,nBN) AIZ_ ”n"
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“(I ANnHBN) An+1 n+1

(I ANnBN)AnJrl n+1||
+ (1= AnBa) AN

n+1 Upt1

- (I - /\N,nBN) AIr\:_ un"

SMN,nH A n+1 Uyt

N-1
|'An+1 n+1_An un“

N-2
+ [ An-tmet = ANt "BN—IAnHunH"

|ANn+l A’an '|BNAn+1 n+l

N-2
|'An+1 n+1_An Uy

ANl ByAY

+ |)‘N—1,n+1

N—1n| "BN lAn+1 n+1||

Al,nl “BlAn+1un+1 "

0 0
+ ”Anﬂun+1 - Anun"

= |AN,n+1 n+1 Uyt

Tt |A1,n+1 -

N
< MOZ lAi,nJrl - Ai,n| + ||un+1 - un” >
i=1

(127)

where supn>1{z, IIIB,Al +1un+1||} < M, for some M, > 0.
Also, utilizing Proposition 1(v) we deduce that

“um—l - un“

nn

M M
= ”Anﬂxnﬂ A x

(@ ) M-1
T, w90 (T — 7'M,n+1AM) A1 Xni1

"Mpn+1

(©r:9n1) M-1
_TrMy]:[ P (1_ rM,nAM)An Xn

(OrrPnr) M-1
TrMm (I = "o Ang) Aoy X

(OrPn)
_Ter:[ o (I_rMnAM)ArHl Xn+1

M-1

(®n:Pn)
+ TrM:/I o (I - rM,nAM) An+1 Xnt1

(© ) M-1
TrMI,\:I A (I - rMnAM) A Xn

(© ) M-1
TrMi/iI(PM (I - rM,nJrlAM) AnJrl Xn+1

Oy
_Tr(M,Inw o) (I M, n+1AM) A

n+1 Xn+1
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+ [ Tromeee) (1 AV

- rM,rH—lAM) nl Xnel

T ®rfm) (I - ”MnAM) An+1 n+1

"™n

+ “(I ”MnAM) An+1 e — (1= ”M,nAM) Ajy\f_lxn”

< lrM,n+1 - rM,nl T(®M,tpM)

"Mpn+1

(1 - ”Mn+1AM) An+1 n+1
rM,n+1

- (I - ”M,n+1AM) AM_lan

n+1
+ |rM,n+1 - rM,nl AMAn+1 n+l |
+ ' Acﬁ-—llxnﬂ - AIZI_lxn
= |rM,n+1 - TM,n|
| Janddin,|
+ ! Tiij :PM) (I - rM n+1AM) An+1 n+1
TMan+1
—(I- ”Mn+1AM) An+1 n+l ]
+ "An+1 Xnt1 A];1/I_lxn||

< l”M,n+1 - rM,n|

[ ||AMAn+1 Xn+1 ||

1
+—

(® )
T, P (I — T, n+1AM) An+1 n+l
TMp+1

"M+l

_(I rMn+1AM)An+1 Xn+1

+oet |rl,n+1 - rl,nl
x| [A,AL,,x
15 n+1"n+1

T ©Gup) (I -n n+1A ) AO

Tl n+1%n+1

)

+ [
T n+1

-(I- rl,n+1A1) A?’Hl'xm-l

0 0
+ “An+1xn+1 - Anxn“

. M
< MIZ |rk,n+1 - rk,nl + ”xn+1 - xn" >
k=1

(128)
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where M, > 0 is a constant such that for each n > 1

S 1
Z ["AkAnﬂxnﬂ | +
k=1 Tnt1
(I - rk,n+1Ak) Aljl;llxnﬂ (129)
(I T+l k)An+1xn+1 ] < My

Combining (123)-(128), we get

||Zn+1 - zn" -

< Sn+1

N l_ﬁnﬂ

ﬁn

"xn+1 - xn“

y ”V'xn+1 "

(#[FTv.|

+ " n+1Vn+1 — Tnvn”

Sn+1

1_ﬁn+

IA

N
+ n
1

_ﬁn

+ ||vn+1

Sn+1

l_ﬁn+

N
+ n
1

IN

_ﬁn

¥ [V

(4 |FT,v,|

V| + —
y ”V'xn+1||

(4 |FT, v,

+u "F +1Vn+1||
| +7[vx,])
- ”xn+1 - xn"

tu "F +1Vn+1||
|+ [Vx.|)
(5n+1 +s ) “er-l - xn”

+u "F +1Vn+1||

|+ [Vl

N
* MOZ |/""”+1 B Ai,n| + "un+1 - ”n"
i=1

4M

+ T (5n+1 + Sn) -

Sn+1

l_ﬁn+

N
+ n
1

IN

_:Bn

y ”V'xn+1 "

(4 |FT, v,

"xn+1 - xn“
+u "F +1Vn+1||

|+ [Vl

M

N
+ MOZ |/‘i,n+l - Ai,n| + Ml Z |rk,n+1 - rk,nl
i=1

+ "xn+1

Snt1

I- ﬁn-fl

N
+ n
1

_ﬁn

- x| +

[V

(u|[FT,v,|

k=1

4M
T (Sn+1 + Sn) - |lxn+1 - xn"

+ U "FTn+lvn+1")

|+ y[vx])
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N M
+ MOZ |/\i,n+1 - )‘i,nl + Ml Z Irk,n+1 ~ Tin
i=1 k=1

4M
+ T (Sn+1 + Sn) .

(130)
Thus, it follows from (130) and conditions (i)-(iv) that
lim sup (||Zn+1 - Zn" - "xn+1 - xn”) <0. (131)
n— oo
Hence, by Lemma 11 we have
,,ILH&) “zn - xn" =0. (132)
Consequently,
nli—>n3>o s = 2] = nli—>n(l>o (=B zn=xa] =0, (133)
and, by (126)-(128),
nll,néo "un+1 - un" =0,
lim V1 = v = 0, (134)

n— 00

lim [T,y — T,v,| = 0.

n— o0

Step 3. Let us show that ||AkAI;_1xn - Aipl — 0 and
IB;A" 'w, — Bipll — 0 forallk € {1,2,...,M}and i €
{1,2,...,N}.

Indeed, since

Xp+1 = Sn]/VXn + ﬁnxn + ((1 - ﬁn) I- Sn"lF) Tnvn’ (135)

we have
"xn - Tnvn" < ”xn - xn+1” + ”xn+1 - Tnvn“
< |xn = %piall + 50 |yVx, — wFT,v, | (136)
+ :Bn “xn - Tnvn" >
that is,
1
"xn - Tnvn" £ 1- ﬁ ”xn - xnﬂ”
" (137)
S
+ —— (y||Vx, | + ¢ |FT,v,) -

l_ﬁn

So, from's, — 0, |lx,,; — x,l — 0, and condition (ii), it
follows that

Jim_ %, = T,yv, || = 0. (138)
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Also, from (27) it follows that for alli € {1,2,...,N}and k €
{1,2,...,M}

v~ pIF = A, - pff
i 2
< “Anun - p“
= “]Ri:/\i,n (I - Ai,nBi) Airjlun
IR, (I-2i,B:) P"2
< “(I - Ai,nBi) Aiglun
- (I~ Ai,nBi) p ||2
< “Ai;lun - P||2 + Ai,n (/\i,n - 27’11')
x| B, ~ Bp
< “un - P"2 + Ai,n (Ai,n - 2’7i)
x| B, - Bp
< |x, - P"2 + Aip (Aiw = 211) (139)
i-1 2
X “BiAn U, — sz“ >
”un - P"2 = “Alzfxn - p”z
<[ A, - p||2

1O (1 - 1y, 4,) 85,
109 (11,80 |
< (= rwd) A5, = (1= A o
< 8570, = | + 1 (i — 200)
x |4a% x, - Agp|
< 1t = I + i (i — 26)
x |4eak x, - Agp|
Furthermore, utilizing Lemma 7, we deduce from (113) that

s = 2l
= |ls, (yVax, — uFp) + B, (x, = T,v,,)
+ (I - Sn["F) Tnvn - (I - SmuF) p”Z
< “ﬁn (xn - Tnvn) + (I - Sn["F) Tnvn - (I - SmuF) p”2

+ 2511 (nyn - Aqu’ Xn+1 ~ p)
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< (B ln = Tuvall + 10 = $,aF) T, = (1 = s,B) T, |1
+ 25, 9V, = uFp| %1 = p

< (Bl = Tovall + (1= 5,0) v = 2T’
+ 25, 9V, = uFp| %1 = p

= (1= 5,0) v = oI + Bl = T’
+2(1=5,7) By f[v = pll 0 = Tovil

+2s, [yVx, = uFp| |1 — Pl -
(140)

From (139)-(140), it follows that
"xn+1 - P”Z < "Vn - P"2 + ﬁﬁ”xn - Tnvnllz
+2 (1 - SnT) Bn "Vn - p" "xn - Tnvn”
+ 25, [lyVax, = uFp|| |01 - 2l
< "un - P"2 + Ai,n (/\i,n - 2’71’)
. 2
x "BiA'nlun - B,»p" + ﬁi”xn - Tnvn"2
+2 (1 - SnT) Bn "Vn - P" "xn - Tnvn"
+ 25, [lyVax, = uFp|| |01 - pll (141)
< "xn - p“z + Tkn (rk,n - 2Auk)
_ 2
x |Aal x, - Agp|
i-1 2
+ Ai (Ai = 213) ||BiAn Uy~ BiP"
+ Brllx, = T
+2 (1 - SnT) /371 "Vn - P" "xn - Tnvn"

+ zsn "YVXn - #FP" ||xn+1 - P" >

and so
Ten (24 = i) "AkAI;_lxn - AkP”Z
+ Ay (21— Ay,) |BAS s, — Bip|
< = PI* = I%er = 2l + Bills = Tl
+2(1=5,7) By v = pll % = T
+ 28, [yVae, = uFp|| %1 - P
< (o = 2l + e = 2l

(142)

x| = x| + Bl = Toval
+2 (1 - SnT) /3n "Vn - P" ”xn - Tnvn”

+ 25, [yVix, = uFp|l %1 = pll-
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Since {A; ,} C [a;,b] € (0,27;) and {ry .} € [er, fi] € (0,2)
foralli € {1,2,...,N}and k € {1,2,..., M}, by (133), (138),
and (142) we conclude immediately that

i 4,855, 4] o,
' (143)
lim "BiA’;lun - Bip" =0,

n— 00

forallk € {1,2,...,M}andi € {1,2,...,N}.

Step 4. Let us show that ||x,, — u,| — 0, [lu,, —v,| — 0,and
lv,-T,v,ll — O0Oasn — oo.

Indeed, by Proposition 1(iii) we obtain that for each k €
{1,2,..., M}

|, - ol

2
(O-pr) k-1 (O9)
Trk,,,k o (I - rk,nAk) An Xn — Trkmk o (I - rk,nAk) PH

< <(1 — i) A5 x, = (1= 1, Ar) pr A, — P>
= 2 (0= rpa0) 455, = (1= ) o]
+ ||Al:fzxn - p”Z - ”(I - rk,nAk) AI;_lxn
~(I=1e,Ar) p
-(%x-p)[)
< 3 (185, = ol + [, - o

e, - e, - (4851, - ),
(144)

which implies that

k 2 k-1 2
|Anxn_p|| < |An xn_p'l

k-1 k
- "An x, — A, x,

“Tkn (AkA]:lxn - AkP)"2
ol - e
- rlf,n "AkA];_lxn - Akp"2

k-1 k k-1
+21, <An x, — Nx,, AN x, — Akp>

k-1 2 k-1 k. |3
S|An xn—p” —|An x, — A, x,

+ 21, A5 x, = Al | [ AAY  x, - Agp|
<, - ol - 2% x, - A%,

+ 21, A5 x, = Al | [AkAY e, - Agp| .-
(145)
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Also, by Lemma 14, we obtain that for each i € {1,2,..., N}

; 2
A un—p"

= T, (1= 0iB) ALty = T, (1= A B) o

< ((I=2;,B)) A u, = (T- A,,B,) p, Ayu, — p)
(|| (1= A5,B) A, — (1= 1,,8,) p||
N =~ - AiB) A
—(I-AiB) p
o)
<5 (5w, p||2+||Azun—p||2

A, K, = A, (B, - Bp)[)

IN

% ("un - pllz + HAinun - pnz

A, K, - A (B, - B)[E),
(146)
which implies
[ = o] = s~ I
A ALty = A (B, ~ Bp)|
=l = I =, =
X B e, Bop|

+2X, (A, = A, BAT ', — Bip)

n> 1 n

< [ty = ol = 7 0, — |

20, A, = N[BT, - B
(147)

Thus, from (140), (145), and (147), we have
P—
< (1= 5,7 v, = P + Bl = Tl
+2(1=5,7) B, v = pll [0 ~ T
+ 25, |9V, uFp] [0es — £
= (1= 5,7 | AN, — o + B2lxs - Tva
+2(1=5,7) B v = pll [0 — T

+ 25, [ vV, = uFp|| %1 - P

< (1 - SnT)ZHAinun - p"2 + ﬁrzl“xn - Tflvnuz

<

<

<

<

+2 (1 - SnT) ﬁn “Vn - P“ “xn - Tnvn"
+ an "}IVXH - MFp” ”xnﬂ - P"
(1 - SnT)2 ["un - p”Z - “Air:lun - in n

+2), A%y,

- Ainun“
x| B, - Bip| |

+ Bl = Tl +2(1 = 5,7) B, v, -

x o, = Tyv|| + 25, [[yVx, = pFp |01 = P

(1= 5,) [|aMx, - o = 0w, - A |
+2M, AL, - A,
X3, - Bip]

+ Bl = Tl +2 (1= 5,7) B, v, -

% || = Tyvall + 25, YV, = uFp|| |01 = P

(1-s,7) [ A*

. . 2
i—1 i
= Ny

2
xn_p" -

i-1 i
= Nt

><||BA' Yu —Bp"]

1 n n

+ ﬁi"xn - Tnvrl”2 +2 (1 - SnT) Bn ”Vn - p”

x|l = Tava] + 25, IIVVx - ukp| lem -7l

(1= 5,7)" [, - ol -

+ Zrk,n

n x -

k-1
A, x, - A x,

n

x | Ak x, - Agp|

i-1

+21;, ”A’;lun - Ainun“
x| B, - Bip| |
+ ﬂﬁ"xn - Tnvn”
+2 (1 - SnT) :8n ”Vn - p“ “xn - Tnvn"
+ 2‘Sn ||van - nqu” ”xnﬂ - P"
[, = p||2 -(1- snT)ZHAI;_lxn - Al;xnn2

k-1 k
A, x, - A x,

n

+ Zrk,n

kAI;_lxn - AkP"

21
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= (1=, = A
+ 24, A%, = A | | BAT - Bip|
4 Ballxn = Tl +2(1 = 5,7) By v~ o
x ||, = Tyl + 25, vV, — uFp|| |01 = pl5
(148)
that is,
(1-s,0) [, - A |+ A, - N[
< [l = pl* = s = 2l
+ 21, AN x, - A, | |ArAY x, - Arp|
+ 20, AL, = A | | B, - Bip|
+Ballxu = T’
+2(1=5,7) B I~ ol %, T )

+25, [yVx, = uFp|| %1 - 2l
< (”xn - P" + ||xn+1 - P") "xn - xn+1"
+ 21, || A x, - A | AAY  x, - Agp|

i-1 i
+2A,, (A w, - A,

BA, ', - BiP"

+ ﬁrzl“xn - TnVn"2 +2 (1 - snT) ﬁn "Vn - P"
X ||xn - Tnvn” +2s, ||nyn - pr" ||anrl - p“ .
So, from s, — 0, (133), (138), and (143), we immediately get

nli_{IgO ' A';lun - Ainun =0, nli_)rr&) | A’;_Ixn - A’;xn =0,
(150)
foralli € {1,2,...,N}andk € {1,2,..., M}. Note that
||xn - un" = HA(an - Ajfxn
< HA(an - Alnxn" + "Alnxn - Aznxn"
+ 1t HAf’lxn - Alfxn' ,
(151)

0 N
AN, — N, u,

“”n - Vn" = ‘

0 1
< HA aln — N Uy,

+ HAlnun - Aznun“
+ot HAIZ_lun - AIZun" .
Thus, from (150) we have

lim |x, —u,| =0,

n— o0

,,ILI%O "un - Vn” =0. (152)

It is easy to see thatasn — oo

||xn - vn” < ||xn - un" + ||un - vn” — 0. (153)
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Also, observe that

||Tnvn - vn|| < ||T,,vn - xn“ + llxn - vn" . (154)
Hence, we have from (138)
nlLHéO “Tnvn - Vn” =0. (155)

Step 5. Let us show that lim sup,, _, . ((uF —yV)g,q9-x,,) <0,
where g € Q is the same as in Theorem 18; that is, g € Q
is a unique solution of VIP (50). To show this inequality, we
choose a subsequence {x, } of {x,} such that

lim sup ((uF - yV) q,q — x,,)

n— 00

(156)
= lim ((uF -yV) 4,9~ x,,).

Since {x,} is bounded, there exists a subsequence {x,, } of
ij

{x,,.} which converges weakly to w. Without loss of generality,
we may assume that x, — w. From Step 4, we have that

A’;ixni — w, A’Ziuni - w,u, — w,andv, — w, where
ke{l,2,...,M},me{l,2,...,N}. Sincev, - T,v, — 0by
Step 4, by the same arguments as in the proof of Theorem 18,
we get w € Q. Since g = Py (I — uF + yV)g, it follows that

lim sup ((uF = V) 4,q = x,) = lim ((uF ~V)q.q - x,,)

= ((WF -yV)q,q - w) <0.
(157)

Step 6. Let us show that lim,, _, . llx,, — gll = 0, where g € Q is
the same as in Theorem 18; that is, g € () is a unique solution
of VIP (50). From (113), we know that

Xn+e1 =9 = Sy (van - MFq) + ﬁn (Tnvn - q)
+ ((1 - ﬁn) I- smuF) Tnvn (158)
- ((1 - ﬁn) I- Sn[/lF) q.

Applying Lemmas 7 and 13 and noticing T,,q = q and |v, —
qll < llx,, — gll for all n > 1, we have

%1 = all’
= “:Bn (Tnvn - q) + ((1 - ﬁn) I- Sn["F) Tnvn
- ((1 - ﬁn) I- SmuF) q"2

+ 25, (YVx,, — uFq, X0 — q)
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< [ﬂn "Tnvn - q” + ”((1 - ﬂn) I- Sru“F) Tnvn
- ((1 - ﬂn)l - Sn[’lF) q" ]2
+ 25, (YVx, =YV %11 — )

+2s, (YVq — uFq, X0y — q)

= [ﬁn ”Tnvn - q" + (1 - ﬁn)

S N
I-—"—uF|Tv,—|(1-—"~uF|T,
< 1_[;"[4 > nvn < 1_[;"# > qu

+25, (YVx,, = YVq X0 — q)

X

]Z

+2s, (YVq - uFq, X,y — q)

<[Bul-al+ - (1- 125 Y b
+ 28, (YVx, = YV X011 — q)
+ 25, (YVq - uFq, X141 — )
= [Bullva=al + (1 = By = s7) v~ alll®
+ 28, (YVx, = YV X1 — )
+ 25, (YVq — uFq, X1 — )
< [Bullxu =gl + (1= By = 5,7) |, —all)?

+ 25, (YVx, = YV X1 — q)
+ 25, (YVq - uFq, X1 — q)
< (1= 5,7) s = all” + 25,01 %, — al
* | %par = qll + 25, YV — uFq, x,1 — 9)
< (1= 5,7) I = all” + 59 (s = al” + 2 —al”)

+25, (YVq - uFq, X, — q) -

(159)
This implies that
s = all’
1-21s, +7°s> +5,y] 2
LTty
2s
n _ F , _
T (YVq - uFq, X,y = q)
B 2(r—yl)s, ) TZSfL )
(12 Y - -l
¢ (Ve - uFgx,,, - q)
Y yvq - urg, X, —4q

1_n

23
2(t -yl 2(t -yl
<[1- (T Y)Sn “xn_q"2+ (T )/)Sn
1-s,yl 1-s,yl
s, —
_—n M
X(z(r—w) :
1
e (#Fq—VVq,q—xm))
= (1 - Gn) "xn - q"2 + o'n(sn’
(160)

where M, = sup,,., llx, — ql*, o, = Q@ = yD/(A = s,y1))s,,5
and

2
T°s — 1
8, = "M Fq-yVg,q - . (6l
" el 2+T_VZ<M‘1 YWaq - %) (161)

From condition (i) and Step 5, it is easy to see that o, — 0,
Y20, = 00 and limsup, _, 8, < 0. Hence, by Lemma 10,
we conclude that x, — qasn — oo. This completes the
proof. O

Corollary 22. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional
with L-Lipschitz continuous gradient Vf. Let ® be a bifunction
from C x C to R satisfying (Al)-(A4) and let ¢ : C — R U
{+00} be a proper lower semicontinuous and convex function.
Let R, : C — 2" be a maximal monotone mapping and let
A:H — HandB,; : C — H be(-inverse-strongly monotone
and n;-inverse-strongly monotone, respectively, fori = 1,2. Let
F : H — H be a k-Lipschitzian and n-strongly monotone
operator with positive constantsx,n > 0. LetV: H — H bean
I-Lipschitzian mapping with constant1 > 0. Let 0 < u < 21/x”

and 0 < yl < 7, where T = 1 — |1 — u(2n — px?). Assume that

Q = GMEP(®, ¢, A) N I(B,,R,) N I(B,, R,) N T #0 and that
either (B1) or (B2) holds. For arbitrarily given x, € H, let {x,}
be a sequence generated by

O (uy, y) + ¢ (¥) — 9 (u,) + (Ax,, y —u,)

1
+—(y-upu,—x,) >0, VyeC,

Tn

162
Vn = ]RZ’AZ,n (I - A2,;/132) ]Rl,)tl,n (I - Al,nBl) Uy 162)
Xn+1 = Snyvxn + ﬁnxn + ((1 - :Bn) I- SmblF) Tnvn’
Vn>1,
where Po(I-A,Vf) = s, I1+(1-s,)T, (here T, is nonexpansive

ands, = (2-A,L)/4 € (0,1/2) foreach A,, € (0,2/L)). Assume
that the following conditions hold:

(i) s, € (0,1/2) for each A, € (0,2/L), and lim s

n—ootn

0 (& lim,_, A, =2/L);

(i) {8, < (0,1) and 0 < liminf, B, <
limsup, _, B, < 1L

(iii) {A;,,} ¢ [a;, b] € (0,21;) andlim,, | |A;, 1 =A;,l =0

fori=1,2;
(iv) {r,} c [e, f1 € (0,20) and lim,, _, |7, — 1| = O.
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Then {x,} converges stronglyas A, — 2/L (&'s, — 0)toa
point q € Q, which is a unique solution of VIP (110).

Corollary 23. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional
with L-Lipschitz continuous gradient Vf. Let ® be a bifunction
from CxC to R satisfying (Al)-(A4) andlet ¢ : C — RU{+0c0}
be a proper lower semicontinuous and convex function. Let
R : C — 2" be a maximal monotone mapping and let
A: H — Hand B : C — H be {-inverse-strongly
monotone and &E-inverse-strongly monotone, respectively. Let
F : H — H be a x-Lipschitzian and n-strongly monotone
operator with positive constantsk,n > 0. LetV: H — H bean
I-Lipschitzian mapping with constant 1 > 0. Let 0 < u < 217/x”
and 0 < yl < 7, where T = 1 — \|1 — u(2n — px?). Assume that
Q := GMEP(O, ¢, A) N I(B,R) N T # 0 and that either (BI) or
(B2) holds. For arbitrarily given x, € H, let {x,} be a sequence
generated by

O (uy, y) + 9 (¥) — 9 (u,) + (Ax,, y —u,)

+l<y—un,un—xn> >0, VyeC,
r

n

Xn+1 = Snnyn + ﬁnxn

+((1 - ﬁn) I- SnMF)Tn]R,pn(un - PnBun)’ Vn 21,

(163)

where Po(I - A, Vf) = s,I+(1-s,)T, (here T, is nonexpansive
ands, = (2-1,L)/4 € (0,1/2) foreach A, € (0,2/L)). Assume
that the following conditions hold:

(i) s, € (0,1/2) for each A,, € (0,2/L), and lim,, , s,
0 (& lim,_, A, = 2/L);
(i) {B,} < (0,1) and 0 <
limsup, , B, <L
(iii) {p,} € [a,b] C (0,2&) and lim,,_, ,|pys1 — Pul = 0;
(iv) {r,} < [e, f1 € (0,20) and lim,,_, o |7,y — 7l = O.

lim inf

IN

n—>oo/5n

Then {x,} converges strongly as A, — 2/L (&'s, — 0)toa
point q € Q, which is a unique solution of VIP (112).
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