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We present new results on the existence and uniqueness of tripled fixed points for nonlinearmappings in partially ordered complete
metric spaces that extend the results in the previous works: Berinde and Borcut, 2011, Borcut and Berinde, 2012, and Borcut, 2012.
An example and an application to support our new results are also included in the paper.

1. Introduction

In some very recent papers, Berinde and Borcut [1], Borcut
and Berinde [2], and Borcut [3] have introduced the concepts
of tripled fixed point and tripled coincidence point, respec-
tively, for nonlinear contractive mappings 𝐹 : 𝑋

3
→ 𝑋

in partially ordered complete metric spaces and obtained
existence and uniqueness theorems of tripled fixed points
and tripled coincidence points, respectively, for some general
classes of contractive type mappings.

The presented theorems in [1–3] extend several existing
results in the literature [4–6]. We recall the main concepts
needed to present them.

Let (𝑋, ≤) be a partially ordered set and let 𝑑 be a metric
on 𝑋 such that (𝑋, 𝑑) is a complete metric space. Consider
on the product space 𝑋

3 the following partial order: for
(𝑥, 𝑦, 𝑧), (𝑢, V, 𝑤) ∈ 𝑋

3,

(𝑢, V, 𝑤) ≤ (𝑥, 𝑦, 𝑧) ⇐⇒ 𝑥 ≥ 𝑢, 𝑦 ≤ V, 𝑧 ≥ 𝑤. (1)

Definition 1 (see [1]). Let (𝑋, ≤) be a partially ordered set and
𝐹 : 𝑋

3
→ 𝑋. We say that 𝐹 has the mixed monotone

property if 𝐹(𝑥, 𝑦, 𝑧) is nondecreasing in 𝑥 and 𝑧 and is
nonincreasing in 𝑦, that is, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋,

𝑥
1
, 𝑥
2
∈ 𝑋, 𝑥

1
≤ 𝑥
2
⇒ 𝐹 (𝑥

1
, 𝑦, 𝑧) ≤ 𝐹 (𝑥

2
, 𝑦, 𝑧) ,

𝑦
1
, 𝑦
2
∈ 𝑋, 𝑦

1
≤ 𝑦
2
⇒ 𝐹 (𝑥, 𝑦

1
, 𝑧) ≥ 𝐹 (𝑥, 𝑦

2
, 𝑧) ,

𝑧
1
, 𝑧
2
∈ 𝑋, 𝑧

1
≤ 𝑧
2
⇒ 𝐹 (𝑥, 𝑦, 𝑧

1
) ≤ 𝐹 (𝑥, 𝑦, 𝑧

2
) .

(2)

Definition 2 (see [1]). An element (𝑥, 𝑦, 𝑧) ∈ 𝑋
3 is called a

tripled fixed point of 𝐹 : 𝑋
3
→ 𝑋 if

𝐹 (𝑥, 𝑦, 𝑧) = 𝑥, 𝐹 (𝑦, 𝑥, 𝑦) = 𝑦, 𝐹 (𝑧, 𝑦, 𝑥) = 𝑧.

(3)

Let (𝑋, 𝑑) be a metric space. The mapping 𝑑 : 𝑋
3
→ 𝑋,

given by

𝑑 [(𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤)] = 𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) + 𝑑 (𝑧, 𝑤) , (4)

defines ametric on𝑋3, whichwill be denoted for convenience
by 𝑑, too.

Definition 3. Let𝑋, 𝑌, 𝑍 be nonempty sets and 𝐹 : 𝑋
3
→ 𝑌,

𝐺 : 𝑌
3
→ 𝑍. We define the symmetric composition (or, the

s-composition, for short) of 𝐹 and 𝐺, by 𝐺 ∗ 𝐹 : 𝑋
3
→ 𝑍,

(𝐺 ∗ 𝐹) (𝑥, 𝑦, 𝑧) = 𝐺 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑦, 𝑥, 𝑦) , 𝐹 (𝑧, 𝑦, 𝑥))

(𝑥, 𝑦, 𝑧 ∈ 𝑋) .

(5)

For each nonempty set 𝑋, denote by 𝑃
𝑥
the projection

mapping

𝑃
𝑋
: 𝑋
3
→ 𝑋, 𝑃 (𝑥, 𝑦, 𝑧) = 𝑥 for 𝑥, 𝑦, 𝑧 ∈ 𝑋. (6)

The symmetric composition has the following properties.
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Proposition 4 (associativity). If 𝐹 : 𝑋
3
→ 𝑌, 𝐺 : 𝑌

3
→ 𝑍

and

𝐻 : 𝑍 × 𝑍 × 𝑍 → 𝑊, 𝑡ℎ𝑒𝑛 (𝐻 ∗ 𝐺) ∗ 𝐹 = 𝐻 ∗ (𝐺 ∗ 𝐹) .

(7)

Proposition 5 (identity element). If 𝐹 : 𝑋
3
→ 𝑌, then

𝐹 ∗ 𝑃
𝑋
= 𝑃
𝑌
∗ 𝐹 = 𝐹. (8)

Proposition6 (mixedmonotonicity). If (𝑋, ≤), (𝑌, ≤), (𝑍, ≤)
are partially ordered sets and the mappings 𝐹 : 𝑋

3
→ 𝑌, 𝐺 :

𝑌
3
→ 𝑍 are mixed monotone, then𝐺∗𝐹 is mixed monotone.

Proposition 7. If (𝑋, ≤) is a partially ordered set and 𝐹 is
mixed monotone, then 𝐹

𝑛
= 𝐹 ∗ 𝐹

𝑛−1
= 𝐹
𝑛−1

∗ 𝐹 is mixed
monotone for every 𝑛.

The first main result in [1] is given by the following
theorem.

Theorem 8 (see [1]). Let (𝑋, ≤) be a partially ordered set and
suppose that there is a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a
complete metric space. Let 𝐹 : 𝑋

3
→ 𝑋 be a continuous

mapping having the mixed monotone property on 𝑋. Assume
that there exist the constants 𝑗, 𝑘, 𝑙 ∈ [0, 1)with 𝑗+𝑘+𝑙 < 1 for
which

𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤)) ≤ 𝑗𝑑 (𝑥, 𝑢) + 𝑘𝑑 (𝑦, V) + 𝑙𝑑 (𝑧, 𝑤) ,

(9)

for all 𝑥 ≥ 𝑢, 𝑦 ≤ V, 𝑧 ≥ 𝑤. If there exist 𝑥
0
, 𝑦
0
, 𝑧
0
∈ 𝑋 such

that

𝑥
0
≤ 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
) , 𝑦

0
≥ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) ,

𝑧
0
≤ 𝐹 (𝑧

0
, 𝑦
0
, 𝑥
0
) ,

(10)

then there exist 𝑥, 𝑦, 𝑧 ∈ 𝑋 such that

𝑥 = 𝐹 (𝑥, 𝑦, 𝑧) , 𝑦 = 𝐹 (𝑦, 𝑥, 𝑦) , 𝑧 = 𝐹 (𝑧, 𝑦, 𝑥) .

(11)

Remark 9. If we take 𝑗 = 𝑘 = 𝑙 = 𝛼/3 in Theorem 8,
then the contraction condition (9) can be written in a slightly
simplified form

𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤))

≤
𝛼

3
[𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) + 𝑑 (𝑧, 𝑤)] .

(12)

Theorem 10 (see [1]). By adding to the hypotheses of Theo-
rem 8 the condition, for every (𝑥, 𝑦, 𝑧), (𝑥

1
, 𝑦
1
, 𝑧
1
) ∈ 𝑋×𝑋×𝑋,

there exists a (𝑢, V, 𝑤) ∈ 𝑋×𝑋×𝑋 that is comparable to (𝑥, 𝑦, 𝑧)
and (𝑥

1
, 𝑦
1
, 𝑧
1
); then, the tripled fixed point of 𝐹 is unique.

Theorem 11 (see [1]). In addition to the hypotheses of The-
orem 8, suppose that 𝑥

0
, 𝑦
0
, 𝑧
0
∈ 𝑋 are comparable. Then

𝑥 = 𝑦 = 𝑧.

2. Main Results

Starting from the results presented in the first section, we will
obtain new existence and uniqueness theorems for operators
which verify a Kannan type contraction condition; see [7].

Denote

𝐹
𝑥
= 𝐹 (𝑥, 𝑦, 𝑧) , 𝐹

𝑦
= 𝐹 (𝑦, 𝑥, 𝑦) , 𝐹

𝑧
= 𝐹 (𝑧, 𝑦, 𝑥) .

(13)

Theorem 12. Let (𝑋, ≤) be a partially ordered set and suppose
that there is a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let 𝐹 : 𝑋

3
→ 𝑋 be a mapping having the mixed

monotone property on 𝑋. Assume that there exists a 𝑘 ∈ [0, 1)

such that
𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤))

≤
𝑘

8
[𝑑 (𝑥, 𝐹

𝑥
) + 𝑑 (𝑦, 𝐹

𝑦
) + 𝑑 (𝑧, 𝐹

𝑧
) + 𝑑 (𝑢, 𝐹

𝑢
)

+ 𝑑 (V, 𝐹V) + 𝑑 (𝑤, 𝐹
𝑤
) ] , ∀𝑥 ≥ 𝑢, 𝑦 ≤ V, 𝑧 ≥ 𝑤.

(14)

Also suppose that either
(a) 𝐹 is continuous or
(b) 𝑋 has the following property:

(i) if a nondecreasing sequence {𝑥
𝑛
} → 𝑥, then 𝑥

𝑛
≤

𝑥 for all 𝑛,
(ii) if a nonincreasing sequence {𝑦

𝑛
} → 𝑦, then 𝑦

𝑛
≥

𝑦 for all 𝑛.

If there exist 𝑥
0
, 𝑦
0
, 𝑧
0
∈ 𝑋 such that

𝑥
0
≤ 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
) , 𝑦

0
≥ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) ,

𝑧
0
≤ 𝐹 (𝑧

0
, 𝑦
0
, 𝑥
0
) ,

(15)

then 𝐹 has a triple fixed point; that is, there exist 𝑥, 𝑦, 𝑧 ∈ 𝑋

such that

𝑥 = 𝐹 (𝑥, 𝑦, 𝑧) , 𝑦 = 𝐹 (𝑦, 𝑥, 𝑦) , 𝑧 = 𝐹 (𝑧, 𝑦, 𝑥) .

(16)

Proof. Let the sequences {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
} ⊂ 𝑋 be defined by

𝑥
𝑛+1

= 𝐹 (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) = 𝐹
𝑛+1

(𝑥
0
, 𝑦
0
, 𝑧
0
) ,

𝑦
𝑛+1

= 𝐹 (𝑦
𝑛
, 𝑥
𝑛
, 𝑦
𝑛
) = 𝐹
𝑛+1

(𝑦
0
, 𝑥
0
, 𝑦
0
) ,

𝑧
𝑛+1

= 𝐹 (𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
) = 𝐹
𝑛+1

(𝑧
0
, 𝑦
0
, 𝑥
0
) , (𝑛 = 0, 1, . . .) .

(17)

Since 𝐹
𝑛 is mixed monotone for every 𝑛 ∈ N, by Proposi-

tion 7, it follows by (15) that {𝑥
𝑛
} and {𝑧

𝑛
} are nondecreasing

and {𝑦
𝑛
} is nonincreasing. Due to the mixed monotone

property of 𝐹, it is easy to show that

𝑥
2
= 𝐹 (𝑥

1
, 𝑦
1
, 𝑧
1
) ≥ 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
) = 𝑥
1

𝑦
2
= 𝐹 (𝑦

1
, 𝑥
1
, 𝑦
1
) ≤ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) = 𝑦
1

𝑧
2
= 𝐹 (𝑧

1
, 𝑦
1
, 𝑥
1
) ≥ 𝐹 (𝑧

0
, 𝑦
0
, 𝑥
0
) = 𝑧
1

(18)
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and thus we obtain three sequences satisfying the following
conditions:

𝑥
0
≤ 𝑥
1
≤ ⋅ ⋅ ⋅ ≤ 𝑥

𝑛
≤ ⋅ ⋅ ⋅,

𝑦
0
≥ 𝑦
1
≥ ⋅ ⋅ ⋅ ≥ 𝑦

𝑛
≥ ⋅ ⋅ ⋅,

𝑧
0
≤ 𝑧
1
≤ ⋅ ⋅ ⋅ ≤ 𝑧

𝑛
≤ ⋅ ⋅ ⋅.

(19)

Now, for 𝑛 ∈ N, denote

𝐷
𝑥
𝑛+1

= 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) , 𝐷

𝑦
𝑛+1

= 𝑑 (𝑦
𝑛+1

, 𝑦
𝑛
) ,

𝐷
𝑧
𝑛+1

= 𝑑 (𝑧
𝑛+1

, 𝑧
𝑛
) ,

𝐷
𝑛+1

= 𝐷
𝑥
𝑛+1

+ 𝐷
𝑦
𝑛+1

+ 𝐷
𝑧
𝑛+1

.

(20)

Using (14), we get

𝐷
𝑥
𝑛+1

= 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑑 (𝐹 (𝑥

𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) , 𝐹 (𝑥

𝑛−1
, 𝑦
𝑛−1

, 𝑧
𝑛−1

))

≤
𝑘

8
[𝑑 (𝑥
𝑛
, 𝐹
𝑥
𝑛

) + 𝑑 (𝑦
𝑛
, 𝐹
𝑦
𝑛

) + 𝑑 (𝑧
𝑛
, 𝐹
𝑧
𝑛

)

+𝑑 (𝑥
𝑛−1

, 𝐹
𝑥
𝑛−1

)+𝑑 (𝑦
𝑛−1

, 𝐹
𝑦
𝑛−1

)+𝑑 (𝑧
𝑛−1

, 𝐹
𝑧
𝑛−1

)]

=
𝑘

8
[𝐷
𝑥
𝑛

+ 𝐷
𝑦
𝑛

+ 𝐷
𝑧
𝑛

+ 𝐷
𝑥
𝑛+1

+ 𝐷
𝑦
𝑛+1

+ 𝐷
𝑧
𝑛+1

] ,

(21)

and so

𝐷
𝑥
𝑛+1

≤
𝑘

8
[𝐷
𝑥
𝑛

+ 𝐷
𝑦
𝑛

+ 𝐷
𝑧
𝑛

+ 𝐷
𝑥
𝑛+1

+ 𝐷
𝑦
𝑛+1

+ 𝐷
𝑧
𝑛+1

] . (22)

Similarly, we obtain

𝐷
𝑦
𝑛+1

≤
𝑘

8
[𝐷
𝑥
𝑛

+ 2𝐷
𝑦
𝑛

+ 𝐷
𝑥
𝑛+1

+ 2𝐷
𝑦
𝑛+1

] ,

𝐷
𝑧
𝑛+1

≤
𝑘

8
[𝐷
𝑥
𝑛

+ 𝐷
𝑦
𝑛

+ 𝐷
𝑧
𝑛

+ 𝐷
𝑥
𝑛+1

+ 𝐷
𝑦
𝑛+1

+ 𝐷
𝑧
𝑛+1

] .

(23)

By (22) and (23), we get

𝐷
𝑛+1

≤
𝑘

8
[3𝐷
𝑥
𝑛

+ 4𝐷
𝑦
𝑛

+ 2𝐷
𝑧
𝑛

+ 3𝐷
𝑥
𝑛+1

+ 4𝐷
𝑦
𝑛+1

+ 2𝐷
𝑧
𝑛+1

]

≤
𝑘

8
[4𝐷
𝑥
𝑛

+ 4𝐷
𝑦
𝑛

+ 4𝐷
𝑧
𝑛

+ 4𝐷
𝑥
𝑛+1

+ 4𝐷
𝑦
𝑛+1

+ 4𝐷
𝑧
𝑛+1

]

≤
𝑘

2
[𝐷
𝑛
+ 𝐷
𝑛+1

] .

(24)

Therefore, for all 𝑛 ≥ 1, we have

𝐷
𝑛+1

≤ 𝛼 ⋅ 𝐷
𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝛼

𝑛
⋅ 𝐷
1
, where 𝛼 =

𝑘

2 − 𝑘
∈ [0, 1) ,

when 𝑘 ∈ [0, 1) .

(25)

Because 𝐷
𝑥
𝑛+1

≤ 𝐷
𝑛+1

, 𝐷
𝑦
𝑛+1

≤ 𝐷
𝑛+1

, and 𝐷
𝑧
𝑛+1

≤ 𝐷
𝑛+1

, we
have

𝐷
𝑥
𝑛+1

≤ 𝛼
𝑛
⋅ 𝐷
1
, 𝐷

𝑦
𝑛+1

≤ 𝛼
𝑛
⋅ 𝐷
1
, 𝐷

𝑧
𝑛+1

≤ 𝛼
𝑛
⋅ 𝐷
1
.

(26)

This implies that {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
} are Cauchy sequences in 𝑋.

Indeed, let𝑚 ≥ 𝑛; then,

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤ 𝐷

𝑥
𝑚

+ 𝐷
𝑥
𝑚−1

+ ⋅ ⋅ ⋅ + 𝐷
𝑥
𝑛+1

≤ [𝛼
𝑚−1

+ 𝛼
𝑚−2

+ ⋅ ⋅ ⋅ + 𝛼
𝑛
] ⋅ 𝐷
1

=
𝛼
𝑛
− 𝛼
𝑚

1 − 𝛼
⋅ 𝐷
1
<

𝛼
𝑛

1 − 𝛼
⋅ 𝐷
1
.

(27)

Similarly, we can verify that {𝑦
𝑛
} and {𝑧

𝑛
} are also Cauchy

sequences.
Since𝑋 is a complete metric space, there exist 𝑥, 𝑦, 𝑧 ∈ 𝑋

such that

lim
𝑥→∞

𝑥
𝑛
= 𝑥, lim

𝑥→∞
𝑦
𝑛
= 𝑦, lim

𝑥→∞
𝑧
𝑛
= 𝑧. (28)

Finally, we claim that

𝑥 = 𝐹 (𝑥, 𝑦, 𝑧) , 𝑦 = 𝐹 (𝑦, 𝑥, 𝑦) , 𝑧 = 𝐹 (𝑧, 𝑦, 𝑥) .

(29)

Suppose first that assumption (a) holds. Hence 𝐹 is
continuous at (𝑥, 𝑦, 𝑧), and, therefore, for any given 𝜖/2 > 0,
there exists 𝛿 > 0 such that

𝑑 ((𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤)) = 𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) + 𝑑 (𝑧, 𝑤)

< 𝛿 ⇒ 𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤)) <
𝜖

2
.

(30)

Since

lim
𝑥→∞

𝑥
𝑛
= 𝑥, lim

𝑥→∞
𝑦
𝑛
= 𝑦, lim

𝑥→∞
𝑧
𝑛
= 𝑧, (31)

for 𝜂 = min(𝜖/2, 𝛿/2), there exist 𝑛
0
, 𝑚
0
, 𝑝
0
such that, for

𝑛 ≥ 𝑛
0
,𝑚 ≥ 𝑚

0
, 𝑝 ≥ 𝑝

0
,

𝑑 (𝑥
𝑛
, 𝑥) < 𝜂, 𝑑 (𝑦

𝑛
, 𝑦) < 𝜂, 𝑑 (𝑧

𝑛
, 𝑧) < 𝜂. (32)

Hence, for 𝑛 ∈ N, 𝑛 ≥ max{𝑛
0
, 𝑚
0
, 𝑝
0
},

𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝑥) ≤ 𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑥)

= 𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
)) + 𝑑 (𝑥

𝑛+1
, 𝑥)

<
𝜖

2
+ 𝜂 ≤ 𝜖.

(33)

This shows that 𝑥 = 𝐹(𝑥, 𝑦, 𝑧). Similarly, one can show that

𝑦 = 𝐹 (𝑦, 𝑥, 𝑦) , 𝑧 = 𝐹 (𝑧, 𝑦, 𝑥) . (34)

Suppose now that assumption (b) holds. Since {𝑥
𝑛
}, {𝑧
𝑛
}

are nondecreasing and 𝑥
𝑛

→ 𝑥, 𝑧
𝑛

→ 𝑧, {𝑦
𝑛
} is non-

increasing and 𝑦
𝑛

→ 𝑦, by assumption (b), we have that
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𝑥
𝑛
≤ 𝑥, 𝑦

𝑛
≥ 𝑦, and 𝑧

𝑛
≤ 𝑧, for all 𝑛. Then, by triangle

inequality and (14), we get

𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧))

≤ 𝑑 (𝑥, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝐹 (𝑥, 𝑦, 𝑧))

= 𝑑 (𝑥, 𝑥
𝑛+1

) 𝑑 (𝐹 (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) , 𝐹 (𝑥, 𝑦, 𝑧))

≤ 𝑑 (𝑥, 𝑥
𝑛+1

) +
𝑘

8
[𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

)

+ 𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) + 𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧))

+ 𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦))+𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥))] ,

𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦))

≤ 𝑑 (𝑦, 𝑦
𝑛+1

) +
𝑘

8
[𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)+2𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

)

+𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧))+2𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦))] ,

𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥))

≤ 𝑑 (𝑧, 𝑧
𝑛+1

) +
𝑘

8
[𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

)

+ 𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

) + 𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧))

+ 𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦))+𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥))] .

(35)

By summing (35), we obtain

𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦)) + 𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥))

≤
2

2 − 𝑘
[𝑑 (𝑥, 𝑥

𝑛+1
) + 𝑑 (𝑦, 𝑦

𝑛+1
) + 𝑑 (𝑧, 𝑧

𝑛+1
)]

+
𝑘

4 (2 − 𝑘)
[3𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 4𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

)

+2𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

)] ,

(36)

and by letting 𝑛 → ∞ in the previous inequality, one obtains

𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦)) + 𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥)) ≤ 0,

(37)

which proves that 𝑥 = 𝐹(𝑥, 𝑦, 𝑧), 𝑦 = 𝐹(𝑦, 𝑥, 𝑦), 𝑧 =

𝐹(𝑧, 𝑦, 𝑥).

3. Uniqueness of Tripled Fixed Points

In [1–3], the authors also considered some additional condi-
tions that ensure the uniqueness of the tripled fixed point or
that, for the tripled fixed point (𝑥, 𝑦, 𝑧), we have 𝑥 = 𝑦 = 𝑧.

Similarly, one can prove that the tripled fixed point in
Theorem 12 is in fact unique, provided that the product space
𝑋
3 endowed with the partial order mentioned earlier has an

additional property, as shown in the next theorem.

Theorem 13. By adding to the hypotheses of Theorem 12 the
condition, for every (𝑥, 𝑦, 𝑧), (𝑥

1
, 𝑦
1
, 𝑧
1
) ∈ 𝑋 × 𝑋 × 𝑋, there

exists a (𝑢, V, 𝑤) ∈ 𝑋 × 𝑋 × 𝑋 which is comparable to (𝑥, 𝑦, 𝑧)
and (𝑥

1
, 𝑦
1
, 𝑧
1
); then, the tripled fixed point of 𝐹 is unique.

Proof. If (𝑥∗, 𝑦∗, 𝑧∗) ∈ 𝑋 × 𝑋 × 𝑋 is another tripled fixed
point of 𝐹, then we show that

𝑑 ((𝑥, 𝑦, 𝑧) , (𝑥
∗
, 𝑦
∗
, 𝑧
∗
)) = 0, (38)

where

lim
𝑥→∞

𝑥
𝑛
= 𝑥, lim

𝑥→∞
𝑦
𝑛
= 𝑦, lim

𝑥→∞
𝑧
𝑛
= 𝑧, (39)

are as in the proof of Theorem 12. We consider two cases.
Case 1. If (𝑥, 𝑦, 𝑧) are comparable to (𝑥∗, 𝑦∗, 𝑧∗) with respect
to the ordering in𝑋

3, then, for every 𝑛 = 0, 1, 2, . . .,

(𝐹
𝑛
(𝑥, 𝑦, 𝑧) , 𝐹

𝑛
(𝑦, 𝑥, 𝑦) , 𝐹

𝑛
(𝑧, 𝑦, 𝑥)) = (𝑥, 𝑦, 𝑧)

that is comparable to (𝐹
𝑛
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
) , 𝐹
𝑛
(𝑦
∗
, 𝑥
∗
, 𝑦
∗
) ,

𝐹
𝑛
(𝑧
∗
, 𝑦
∗
, 𝑥
∗
)) = (𝑥

∗
, 𝑦
∗
, 𝑧
∗
) .

(40)

Also, using the process of obtaining (26), we get

𝑑 ((𝑥, 𝑦, 𝑧) , (𝑥
∗
, 𝑦
∗
, 𝑧
∗
))

= 𝑑 (𝑥, 𝑥
∗
) + 𝑑 (𝑦, 𝑦

∗
) + 𝑑 (𝑧, 𝑧

∗
)

= 𝑑 (𝐹
𝑛
(𝑥, 𝑦, 𝑧) , 𝐹

𝑛
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
))

+ 𝑑 (𝐹
𝑛
(𝑦, 𝑥, 𝑦) , 𝐹

𝑛
(𝑦
∗
, 𝑥
∗
, 𝑦
∗
))

+ 𝑑 (𝐹
𝑛
(𝑧, 𝑦, 𝑥) , 𝐹

𝑛
(𝑧
∗
, 𝑦
∗
, 𝑥
∗
))

≤ 𝛼
𝑛
[𝑑 (𝑥, 𝑥

∗
) + 𝑑 (𝑦, 𝑦

∗
) + 𝑑 (𝑧, 𝑧

∗
)]

= 𝛼
𝑛
𝑑 ((𝑥, 𝑦, 𝑧) , (𝑦

∗
, 𝑥
∗
, 𝑧
∗
)) , 𝛼 ∈ [0, 1) .

(41)

Now letting 𝑛 → ∞, this implies that 𝑑((𝑥, 𝑦, 𝑧),

(𝑦
∗
, 𝑥
∗
, 𝑧
∗
)) = 0.

Case 2. If (𝑥, 𝑦, 𝑧) are not comparable to (𝑥
∗
, 𝑦
∗
, 𝑧
∗
), then

there exists an upper bound or a lower bound (𝑢, V, 𝑤) ∈ 𝑋 ×

𝑋 × 𝑋 of (𝑥, 𝑦, 𝑧) and (𝑥∗, 𝑦∗, 𝑧∗). Then, for all 𝑛 = 1, 2, . . .,

(𝐹
𝑛
(𝑢, V, 𝑤) , 𝐹𝑛 (V, 𝑢, V) , 𝐹𝑛 (𝑤, V, 𝑢)) is comparable to

(𝐹
𝑛
(𝑥, 𝑦, 𝑧) , 𝐹

𝑛
(𝑦, 𝑥, 𝑦) , 𝐹

𝑛
(𝑧, 𝑦, 𝑥)) = (𝑥, 𝑦, 𝑧) and to

(𝐹
𝑛
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
) , 𝐹
𝑛
(𝑦
∗
, 𝑥
∗
, 𝑦
∗
) , 𝐹
𝑛
(𝑧
∗
, 𝑦
∗
, 𝑥
∗
))

= (𝑥
∗
, 𝑦
∗
, 𝑧
∗
) .

(42)
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We have

𝑑((

𝑥

𝑦

𝑧

) ,(

𝑥
∗

𝑦
∗

𝑧
∗

))

= 𝑑((

𝐹
𝑛
(𝑥, 𝑦, 𝑧)

𝐹
𝑛
(𝑦, 𝑥, 𝑦)

𝐹
𝑛
(𝑧, 𝑦, 𝑥)

) ,(

𝐹
𝑛
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
)

𝐹
𝑛
(𝑦
∗
, 𝑥
∗
, 𝑦
∗
)

𝐹
𝑛
(𝑧
∗
, 𝑦
∗
, 𝑥
∗
)

))

≤ 𝑑((

𝐹
𝑛
(𝑥, 𝑦, 𝑧)

𝐹
𝑛
(𝑦, 𝑥, 𝑦)

𝐹
𝑛
(𝑧, 𝑦, 𝑥)

) ,(

𝐹
𝑛
(𝑢, V, 𝑤)

𝐹
𝑛
(V, 𝑢 ⋅ V)

𝐹
𝑛
(𝑤, V, 𝑢)

))

+ 𝑑((

𝐹
𝑛
(𝑢, V, 𝑤)

𝐹
𝑛
(V, 𝑢, V)

𝐹
𝑛
(𝑤, V, 𝑢)

) ,(

𝐹
𝑛
(𝑥
∗
, 𝑦
∗
, 𝑧
∗
)

𝐹
𝑛
(𝑦
∗
, 𝑥
∗
, 𝑦
∗
)

𝐹
𝑛
(𝑧
∗
, 𝑦
∗
, 𝑥
∗
)

))

≤ 𝛼
𝑛
{[𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) + 𝑑 (𝑧, 𝑤)]

+ [𝑑 (𝑢, 𝑥
∗
) + 𝑑 (V, 𝑦∗) + 𝑑 (𝑤, 𝑧

∗
)]} → 0

as 𝑛 → ∞, and so 𝑑((

𝑥

𝑦

𝑧

) ,(

𝑥
∗

𝑦
∗

𝑧
∗

)) = 0.

(43)

Theorem 14. In addition to the hypotheses of Theorem 12,
suppose that 𝑥

0
, 𝑦
0
, 𝑧
0
∈ 𝑋 are comparable. Then 𝑥 = 𝑦 = 𝑧.

Proof. Recall that 𝑥
0
, 𝑦
0
, 𝑧
0
, ∈ 𝑋 are such that

𝑥
0
≤ 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
) , 𝑦

0
≥ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) ,

𝑧
0
≤ 𝐹 (𝑧

0
, 𝑦
0
, 𝑥
0
) .

(44)

Now, if 𝑥
0
≤ 𝑦
0
and 𝑧
0
≤ 𝑦
0
, we claim that, for all 𝑛 ∈ N, 𝑥

𝑛
≤

𝑦
𝑛
and 𝑧
𝑛
≤ 𝑦
𝑛
. Indeed, by the mixed monotone property of

𝐹,

𝑥
1
= 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
) ≤ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) = 𝑦
1
,

𝑧
1
= 𝐹 (𝑧

0
, 𝑦
0
, 𝑥
0
) ≤ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) = 𝑦
1
.

(45)

Assume that 𝑥
𝑛
≤ 𝑦
𝑛
and 𝑧
𝑛
≤ 𝑦
𝑛
for some 𝑛. Now, consider

𝑥
𝑛+1

= 𝐹
𝑛+1

(𝑥
0
, 𝑦
0
, 𝑧
0
)

= 𝐹 (𝐹
𝑛
(𝑥
0
, 𝑦
0
, 𝑧
0
) , 𝐹
𝑛
(𝑦
0
, 𝑥
0
, 𝑦
0
) , 𝐹
𝑛
(𝑧
0
, 𝑦
0
, 𝑥
0
))

= 𝐹 (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) ≤ 𝐹 (𝑦

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
) = 𝑦
𝑛+1

,

(46)

similarly for 𝑧
𝑛
. Hence,

𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑥
𝑛+1

) + 𝑑 (𝑦, 𝑥
𝑛+1

)

≤ 𝑑 (𝑥, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑦
𝑛+1

) + 𝑑 (𝑦, 𝑦
𝑛+1

)

= 𝑑 (𝑥, 𝐹
𝑛+1

(𝑥
0
, 𝑦
0
, 𝑧
0
))

+ 𝑑 [𝐹 (𝐹
𝑛
(𝑥
0
, 𝑦
0
, 𝑧
0
) , 𝐹
𝑛
(𝑦
0
, 𝑥
0
, 𝑦
0
) ,

𝐹
𝑛
(𝑧
0
, 𝑦
0
, 𝑥
0
)) ,

𝐹 (𝐹
𝑛
(𝑦
0
, 𝑥
0
, 𝑦
0
) , 𝐹
𝑛
(𝑥
0
, 𝑦
0
, 𝑥
0
) ,

𝐹
𝑛
(𝑦
0
, 𝑥
0
, 𝑦
0
))] + 𝑑 (𝑦, 𝑦

𝑛+1
) → 0

(47)

as 𝑛 → ∞. This implies that 𝑑(𝑥, 𝑦) = 0 and hence we have
𝑥 = 𝑦.

Similarly, we obtain that 𝑑(𝑥, 𝑧) = 0 and 𝑑(𝑦, 𝑧) = 0. The
other remaining cases for 𝑥

0
, 𝑦
0
, 𝑧
0
are similar.

4. An Example

Let 𝑋 = [0, 1] be endowed with the usual metric 𝑑(𝑥, 𝑦) =

|𝑥 − 𝑦| and let 𝐹 : 𝑋
3
→ 𝑋 be given by 𝐹(𝑥, 𝑦, 𝑧) = 11/80,

for (𝑥, 𝑦, 𝑧) ∈ [0, 4/5] × [0, 1]
2, and 𝐹(𝑥, 𝑦, 𝑧) = 1/20, for

(𝑥, 𝑦, 𝑧) ∈ [4/5, 1] × [0, 1]
2.

Then 𝐹 satisfies the Kannan type contractive condition
(14) with 𝑘 = 14/15 < 1 but does not satisfy the Banach type
contractive condition (9).

Let us first prove the first part of the assertion above. It
suffices to completely cover the following limit case.

Case 1 (𝑥 ∈ [4/5, 1], 𝑢, 𝑦, 𝑧, V, 𝑤 ∈ [0, 4/5)). In this case,
condition (14) reduces to



1

20
−
11

80


≤
𝑘

8
[


𝑥 −

1

20


+


𝑦 −

11

80


+


𝑧 −

11

80



+


𝑢 −

11

80


+


V −

11

80


+


𝑤 −

11

80


] .

(48)

Since 𝑥 ∈ [4/5, 1], we have

𝑥 −

1

20


≥



4

5
−

1

20


=
3

4
(49)

and hence the minimum value of the right hand side of (48)
is greater or equal to 𝑘/8 ⋅ 3/4.

Therefore, in order to have (48) satisfied for all 𝑥 ∈

[4/5, 1] and 𝑢, 𝑦, 𝑧, V, 𝑤 ∈ [0, 4/5), with 𝑥 ≥ 𝑢, 𝑦 ≤ V, 𝑧 ≥ 𝑤,
that is,



1

20
−
11

80


≤
𝑘

8
⋅
3

4
, (50)

it suffices to take 𝑘 such that 14/15 ≤ 𝑘 < 1.

Note that, for the remaining cases to be discussed, the
right hand side of (14) will be greater than the value obtained
in Case 1.
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Case 2 (𝑥, V ∈ [4/5, 1] and 𝑢, 𝑦, 𝑧, 𝑤 ∈ [0, 4/5)). In this case,
for example, theminimum value of the right hand side of (14)
will be greater or equal to 𝑘/8 ⋅ 6/4.

Note also that, in the cases 𝑥, 𝑢 ∈ [4/5, 1] or 𝑥, 𝑢 ∈

[0, 4/5), the left hand side of (14) is always zero and so (14)
is satisfied for all values of 𝑦, 𝑧, V, 𝑤 ∈ [0, 1].

This proves that, indeed, 𝐹 satisfies (14) with 𝑘 = 14/15

< 1.
𝐹 is not continuous but 𝑋 satisfies assumption (b) in

Theorem 12. Moreover, by taking 𝑥
0
= 0, 𝑦

0
= 1/5, and

𝑧
0
= 1/8, one can easily check that (15) is fulfilled.
Thus, the assumptions in Theorem 12 are satisfied and

hence 𝐹 does admit tripled fixed points. By Theorem 13, we
actually conclude that 𝐹 has a unique tripled fixed point,
(11/80, 11/80, 11/80).

Now let us show that 𝐹 does not satisfy (9).
Assume the contrary, that is, that 𝐹 does satisfy (9) and

let 𝜖 > 0 such that 𝑢 = 4/5 − 𝜖 ∈ [0, 4/5), and then take
𝑥 = 4/5 and 𝑦 = 𝑧, V = 𝑤 ∈ [0, 1] arbitrary in (9) to obtain
the inequality

7

80
≤ 𝑖 ⋅ 𝜖, 𝜖 > 0. (51)

Now by letting 𝜖 → 0 in (51), we reach a contradiction. This
proves that, indeed, 𝐹 does not satisfy (9).

Remark 15. For various particular cases of the results estab-
lished in this section and for possible further developments,
we refer to [2, 4–6, 8–28].

5. Applications

In this section, we present an application of tripled fixed point
theorems for establishing existence and uniqueness results for
the solutions of the nonlinear integral equation

𝑥 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑥 (𝑠)) + 𝑔 (𝑠, 𝑥 (𝑠)) + ℎ (𝑠, 𝑥 (𝑠))] 𝑑𝑠

+ 𝑎 (𝑡) , 𝑡 ∈ [0, 𝑇] , 𝑇 > 0.

(52)

We consider the space 𝑋 = 𝐶([0, 𝑇],R) of continuous real
functions defined on the interval [0, 𝑇], endowed withmetric

𝑑 (𝑢, V) = max
0≤𝑡≤𝑇

|𝑢 (𝑡) − V (𝑡)| , for 𝑢, V ∈ 𝑋. (53)

Define the partial order “≤” on𝑋 by

for 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≤ 𝑦 ⇐⇒ 𝑥 (𝑡) ≤ 𝑦 (𝑡) ,

for any 𝑡 ∈ [0, 𝑇] .

(54)

Thus, (𝑋, 𝑑, ≤) is a partially ordered complete metric space.
For (52) we consider the following assumptions:

(i) 𝑓, 𝑔, ℎ : [0, 𝑇] ×R → R are continuous;
(ii) 𝑎 : [0, 𝑇] × → R is continuous;
(iii) 𝐺 : [0, 𝑇] × [0, 𝑇] → [0,∞) is continuous;

(iv) there exist the constants 𝜆
1
, 𝜆
2
, 𝜆
3
> 0, such that, for

all 𝑥, 𝑦 ∈ R, 𝑥 ≤ 𝑦 we have

0 ≤ 𝑓 (𝑠, 𝑦) − 𝑓 (𝑠, 𝑥) ≤ 𝜆
1
(𝑦 − 𝑥) ,

0 ≤ 𝑔 (𝑠, 𝑥) − 𝑔 (𝑠, 𝑦) ≤ 𝜆
2
(𝑦 − 𝑥) ,

0 ≤ ℎ (𝑠, 𝑦) − ℎ (𝑠, 𝑥) ≤ 𝜆
3
(𝑦 − 𝑥) ;

(55)

(v) we suppose that (𝜆
1
+ 𝜆
2
+ 𝜆
3
)sup
0≤𝑡≤𝑇

∫
𝑇

0
𝐺(𝑡, 𝑠)𝑑𝑠 <

1;

(vi) there exist continuous functions 𝛼, 𝛽, 𝛾 : [0, 𝑇] → R

such that

𝛼 ≤ ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝛼 (𝑠)) + 𝑔 (𝑠, 𝛽 (𝑠)) + ℎ (𝑠, 𝛾 (𝑠))] 𝑑𝑠

+ 𝑎 (𝑡)

𝛽 ≥ ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝛽 (𝑠)) + 𝑔 (𝑠, 𝛼 (𝑠)) + ℎ (𝑠, 𝛽 (𝑠))] 𝑑𝑠

+ 𝑎 (𝑡)

𝛾 ≤ ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝛾 (𝑠)) + 𝑔 (𝑠, 𝛽 (𝑠)) + ℎ (𝑠, 𝛼 (𝑠))] 𝑑𝑠

+ 𝑎 (𝑡) .

(56)

Theorem 16. Under assumptions (i)–(vi), (52) has a unique
solution in 𝐶([0, 1],R).

Proof. We consider the operator 𝐹 : 𝑋
3
→ 𝑋 defined by

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
) (𝑡)

= ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑥
1 (𝑠)) + 𝑔 (𝑠, 𝑥

2 (𝑠)) + ℎ (𝑠, 𝑥
3 (𝑠))] 𝑑𝑠

+ 𝑎 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

(57)

for any 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝑋.

We prove that the operator 𝐹 fulfills the conditions of
Theorem 8.

First, we prove that 𝐹 has the mixed-monotone property.
Let 𝑥
1
, 𝑦
1
∈ 𝑋, with 𝑥

1
≤ 𝑦
1
and 𝑡 ∈ [0, 𝑇], then, we have

𝐹 (𝑦
1
, 𝑥
2
, 𝑥
3
) (𝑡) − 𝐹 (𝑥

1
, 𝑥
2
, 𝑥
3
) (𝑡)

= ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑦
1
(𝑠)) − 𝑓 (𝑠, 𝑥

1
(𝑠))] 𝑑𝑠.

(58)

Given that 𝑥
1
(𝑡) ≤ 𝑦

1
(𝑡) for all 𝑡 ∈ [0, 𝑇] and based on our

assumption (iv), we have
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𝑓 (𝑠, 𝑦) − 𝑓 (𝑠, 𝑥) ≥ 0, ∀𝑥, 𝑦 ∈ R, 𝑥 ≤ 𝑦

and from (60) ,we have

𝐹 (𝑦
1
, 𝑥
2
, 𝑥
3
) (𝑡) − 𝐹 (𝑥

1
, 𝑥
2
, 𝑥
3
) (𝑡) ≥ 0, ∀𝑡 ∈ [0, 𝑇] .

(59)

That is, 𝐹(𝑥
1
, 𝑥
2
, 𝑥
3
)(𝑡) ≤ 𝐹(𝑦

1
, 𝑥
2
, 𝑥
3
)(𝑡).

For 𝑥
2
, 𝑦
2
∈ 𝑋, with 𝑥

2
≤ 𝑦
2
and 𝑡 ∈ [0, 𝑇], we have

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
) (𝑡) − 𝐹 (𝑥

1
, 𝑦
2
, 𝑥
3
) (𝑡)

= ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑔 (𝑠, 𝑥
2
(𝑠)) − 𝑔 (𝑠, 𝑦

2
(𝑠))] 𝑑𝑠.

(60)

Given that 𝑥
2
(𝑡) ≤ 𝑦

2
(𝑡) for all 𝑡 ∈ [0, 𝑇] and based on our

assumption (iv), that is,
𝑔 (𝑠, 𝑥) − 𝑔 (𝑠, 𝑦) ≥ 0, ∀𝑥, 𝑦 ∈ R, 𝑥 ≤ 𝑦

and from (62) , we get

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
) (𝑡) − 𝐹 (𝑥

1
, 𝑦
2
, 𝑥
3
) (𝑡) ≥ 0, ∀𝑡 ∈ [0, 𝑇] .

(61)

That is, 𝐹(𝑥
1
, 𝑥
2
, 𝑥
3
)(𝑡) ≥ 𝐹(𝑥

1
, 𝑦
2
, 𝑥
3
)(𝑡).

Similarly, one proves the same property for the third com-
ponent and hence we have 𝐹(𝑥

1
, 𝑥
2
, 𝑥
3
)(𝑡) ≤ 𝐹(𝑥

1
, 𝑥
2
, 𝑦
3
)(𝑡).

So, 𝐹 has the mixed-monotone property.
Now, we estimate 𝑑(𝐹(𝑥

1
, 𝑥
2
, 𝑥
3
), 𝐹(𝑦
1
, 𝑦
2
, 𝑦
3
)) for 𝑥

1
≤

𝑦
1
, 𝑥
2
≥ 𝑦
2
, 𝑥
3
≤ 𝑦
3
, and with 𝐹 having the mixed-monotone

property, we get

𝑑 (𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
) , 𝐹 (𝑦

1
, 𝑦
2
, 𝑦
3
))

= max
0≤𝑡≤𝑇

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
) (𝑡) − 𝐹 (𝑦

1
, 𝑦
2
, 𝑦
3
) (𝑡)



= max
0≤𝑡≤𝑇

(𝐹 (𝑦
1
, 𝑦
2
, 𝑦
3
) (𝑡) − 𝐹 (𝑥

1
, 𝑥
2
, 𝑥
3
) (𝑡)) .

(62)

Now, for all 𝑡 ∈ [0, 𝑡], by using (iv), we have

𝐹 (𝑦
1
, 𝑦
2
, 𝑦
3
) (𝑡) − 𝐹 (𝑥

1
, 𝑥
2
, 𝑥
3
) (𝑡)

= ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑦
1
(𝑠)) − 𝑔 (𝑠, 𝑥

1
(𝑠))] 𝑑𝑠

+ ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑔 (𝑠, 𝑦
2
(𝑠)) − 𝑔 (𝑠, 𝑥

2
(𝑠))] 𝑑𝑠

+ ∫

𝑇

0

𝐺 (𝑡, 𝑠) [ℎ (𝑠, 𝑦
3
(𝑠)) − ℎ (𝑠, 𝑥

3
(𝑠))] 𝑑𝑠

≤ (∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑑𝑠) (𝜆
1
𝑑 (𝑥
1
, 𝑦
1
) + 𝜆
2
𝑑 (𝑥
2
, 𝑦
2
)

+𝜆
3
𝑑 (𝑥
3
, 𝑦
3
))

≤ ( sup
0≤𝑡≤𝑇

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑑𝑠) (𝜆
1
𝑑 (𝑥
1
, 𝑦
1
) + 𝜆
2
𝑑 (𝑥
2
, 𝑦
2
)

+𝜆
3
𝑑 (𝑥
3
, 𝑦
3
)) ,

(63)
which implies

𝑑 (𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
) , 𝐹 (𝑦

1
, 𝑦
2
, 𝑦
3
))

≤ 𝛿
1
𝑑 (𝑥
1
, 𝑦
1
) + 𝛿
2
𝑑 (𝑥
2
, 𝑦
2
) + 𝛿
3
𝑑 (𝑥
3
, 𝑦
3
) ,

(64)

where

𝛿
𝑖
= ( sup
0≤𝑡≤𝑇

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑑𝑠) 𝜆
𝑖
, 𝑖 = 1, 2, 3. (65)

Using (v), we have 𝛿
1
+𝛿
2
+𝛿
3
< 1. So,𝐹 fulfills the conditions

of Theorem 8.
Let 𝛼, 𝛽, 𝛾 be the functions appearing in assumption (vi);

then, we have

𝛼 ≤ 𝐹 (𝛼, 𝛽, 𝛾) , 𝛽 ≥ 𝐹 (𝛽, 𝛼, 𝛽) , 𝛾 ≤ 𝐹 (𝛾, 𝛽, 𝛼) .

(66)

If 𝑥
0
= 𝛼, 𝑦

0
= 𝛽, 𝑧

0
= 𝜆, then all assumptions of Theorem 8

are fulfilled. So, there exists a tripled fixed point (𝑥
1
, 𝑥
2
, 𝑥
3
)

for the operator 𝐹; that is,

𝑥
1
= 𝐹 (𝑥

1
, 𝑥
2
, 𝑥
3
) , 𝑥

2
= 𝐹 (𝑥

2
, 𝑥
1
, 𝑥
2
) ,

𝑥
3
= 𝐹 (𝑥

3
, 𝑥
2
, 𝑥
1
) .

(67)

Now, we show that, for any (𝑥
1
, 𝑥
2
, 𝑥
3
), (𝑦
1
, 𝑦
2
, 𝑦
3
) ∈ 𝑋

3,
there exists (𝑧

1
, 𝑧
2
, 𝑧
3
) ∈ 𝑋

3 which is comparable to both of
them. Indeed, denote

𝑧
1
= max {𝑥

1
, 𝑦
1
} , 𝑧

2
= min {𝑥

2
, 𝑦
2
} ,

𝑧
3
= max {𝑥

3
, 𝑦
3
} .

(68)

Then we have 𝑥
1
≤ 𝑧
1
, 𝑥
2
≥ 𝑧
2
, 𝑥
3
≤ 𝑧
3
and 𝑦

1
≤ 𝑧
1
, 𝑦
2
≥

𝑧
2
, 𝑦
3
≤ 𝑧
3
. This implies that (𝑧

1
, 𝑧
2
, 𝑧
3
) is comparable with

(𝑥
1
, 𝑥
2
, 𝑥
3
) and with (𝑦

1
, 𝑦
2
, 𝑦
3
), so

(𝑥
1
, 𝑥
2
, 𝑥
3
) ≤ (𝑧

1
, 𝑧
2
, 𝑧
3
) , (𝑦

1
, 𝑦
2
, 𝑦
3
) ≤ (𝑧

1
, 𝑧
2
, 𝑧
3
) .

(69)

Now, byTheorem 10, it follows that𝐹 has a unique triple fixed
point which is in fact the solution the (52).
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