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To overcome the staircasing effects introduced by the TV regularization in image restoration, this
paper investigates a fourth-order partial differential equation (PDE) filter for removing Poisson
noise. In consideration of the slow convergence property of the classical gradient descent method,
we adopt the alternating minimization algorithm for realizing this scheme. Compared with the
corresponding total variation based one, numerical simulations distinctly indicate the superiority
of our proposed strategy in handling smooth regions of Poissonian images and improving the
computational speed.

1. Introduction

Noise removal occupies an important position in image processing. The classical total
variation (TV) regularization model proposed by Rudin et al. [1] can be characterized as

min
u

∫
Ω
|Du| + λ

2

∫
Ω
(u − f)2dx, (1.1)

whereΩ stands for a spatial domainwith Lipschitz boundary, u and f are the clean image and
the initial noisy image, respectively, andDu represents the distributional derivative of u. This
strategy can do a better job in preserving the sharp edges while removing additive Gaussian
noise. However, in the real world, many important images, for instance, medical imaging
[2, 3], astronomy [4], were contaminated by Poisson noise more frequently than additive
Gaussian noise. Although the ROF model (1.1) is effective for removing Gaussian noise, it
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is inferior in processing Poissonian images, which contain noise that is signal dependent.
To remove Poisson noise effectively, Le et al. [5] introduced the following TV-regularization
model

min
u

∫
Ω
|Du| + λ

∫
Ω

(
u − f logu

)
dx, (1.2)

where umust be positive almost everywhere. Numerical experiments demonstrate the better
performance of scheme (1.2) for Poisson noise removal than model (1.1).

Although model (1.1) and model (1.2) have been indicated to be capable of achieving
a good tradeoff between noise removal and edge preservation, unfortunately, the unpleasant
blocky effect inevitably emerges in the homogeneous flat regions of restoration images owing
to the use of second-order scheme. One of the most well-known solutions to overcome this
drawback is to use high-order partial differential equations instead of second-order ones.
Up till the present, high-order diffusion strategies have made great progress in effectively
suppressing Gaussian noise such as schemes in [6–15]. Thereinto, the model proposed by
Lysaker et al. [10] for Gaussian noise removal has been paid more attention, which can be
formulated as

min
u

∫
Ω

∣∣∣D2u
∣∣∣ + λ

2

∫
Ω
(u − f)2dx. (1.3)

Numerical experiments obviously exhibit the superiority of the model mentioned above over
second-order version in relieving the staircase artifacts.

Motivated by the above models (1.2) and (1.3), we propose the following fourth-order
PDE regularization scheme to suppress Poisson noise:

min
u

E(u) = min
u

∫
Ω

∣∣∣D2u
∣∣∣ + λ

∫
Ω

(
u − f logu

)
dx. (1.4)

In consideration of the slow convergence speed of the traditional implicit steepest descent
method, we put forward the alternating minimization algorithm for obtaining its numerical
solution.

In this paper, we have two principal contributions. For one thing, a fourth-order
regularization strategy for restoring Poissonian image is proposed, which substantially
improves the quality of the reconstructed images, especially in relieving staircase artifacts.
For another, we introduce the alternating minimization (AM) algorithm for solving our
proposed fourth-order scheme (1.4).

The remainder of this paper is organized as follows. Section 2 shows the existence
and uniqueness of the solution of our proposed model (1.4). Section 3 focuses on the
numerical algorithm for solving the proposed strategy. The convergence analysis is arranged
in Section 4. Results of numerical experiments to indicate the advantage of our approach
in avoiding blocky effects and enhancing convergence speed, compared with the classical TV
regularization based one, are shown in Section 5. Finally, wemake the conclusion in Section 6.
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2. Existence and Uniqueness

In this section, the existence and uniqueness of the minimizer for the model (1.4) are proved.
Some basic notations and properties concerning with the BV 2 space can be seen in [8, 13].
Motivated by [5], we have the following existence and uniqueness result for the optimization
problem (1.4).

Theorem 2.1. Assume Ω is an open, bounded Lipschitz domain in R
n and f is a positive bounded

function. Let u ∈ BV 2(Ω) such that logu ∈ L1(Ω). Then there exists a unique minimizer for model
(1.4) in BV 2(Ω).

Proof. Obviously, the objective functional E(u) is lower bounded. Then there exists a
minimizing sequence {ui}∞i=1. Let F(u) =

∫
Ω(u − f logu)dx. Then, using Jensen inequality,

we conclude that

‖ui‖1 − ∥∥f∥∥∞ log ‖ui‖1 ≤ F(ui), (2.1)

which indicates that ‖ui‖1 is bounded. This, together with the boundedness of {∫Ω |D2ui|},
yields that {ui}∞i=1 is bounded in BV 2(Ω). Then, following the compactness theorem in
BV 2(Ω) space, we deduce that there exists a function u∗ ∈ BV 2(Ω) such that a subsequence
of {ui} denoted also by {ui} converges to u∗ a.e. in L1(Ω). In addition, by the lower
semicontinuity of the BV 2(Ω) space, we have lim infi→∞‖D2ui‖1 ≥ ‖D2u∗‖1. Combining this
with Fatou’s Lemma, we obtain

∫
Ω

∣∣∣D2u∗
∣∣∣ + λ

∫
Ω

(
u∗ − f logu∗)dx ≤ lim inf

i→∞

{∫
Ω

∣∣∣D2ui

∣∣∣ + λ

∫
Ω

(
ui − f logui

)
dx

}
, (2.2)

which ensures that u∗ is the minimizer of (1.4). Moreover, notice that the optimization
problem (1.4) is strictly convex, then u∗ is unique by convex analysis [16]. This completes
the proof.

3. Computational Method

This section focuses on minimizing the energy functional E(u) of the model (1.4). Generally
speaking, minimizing (1.4) can be achieved by the traditional gradient descent method [1,
17], which amounts to solve its formal Euler-Lagrange equation inW2,1(Ω):

(
uxx

|∇2u|
)

xx

+
(

uxy

|∇2u|
)

yx

+
(

uyx

|∇2u|
)

xy

+
(

uyy

|∇2u|
)

yy

+
λ

u

(
u − f

)
= 0, (3.1)

where |∇2u| = (u2
xx + u2

xy + u2
yx + u2

yy)
1/2. Introducing the auxiliary time variable t, we derive

the associated heat flow

∂u

∂t
= −

(
uxx

|∇2u|
)

xx

−
(

uxy

|∇2u|
)

yx

−
(

uyx

|∇2u|
)

xy

−
(

uyy

|∇2u|
)

yy

+
λ

u

(
f − u

)
. (3.2)
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Here, we omit the boundary conditions, but it can be deduced easily. Finite difference
approaches [1, 18–20] can be chosen to resolve problem (3.2). As everyone knows, |∇2u| is
usually replaced by

√
|∇2u|2 + ε because of the nondifferentiability of |∇2u|, where ε is a small

positive parameter. The tradeoff in choosing the smoothing parameter ε is the reconstruction
error versus the convergence speed. Therefore, exploring fast numerical computational
methods is an important assignment. In the last few years, many effective algorithms have
sprung up for handling problems like this. However, a great many current algorithms cannot
be directly applied to problem (1.4) because of its nonquadratic and nonsmooth higher order
properties, for instance, dual algorithm [20–22] and split Bregman iteration [23].

Motivated by [24–26], we adopt the alternating minimization (AM) algorithm to
acquire the optimal solution of the scheme (1.4). Take the numeric span of the variable u
of (1.4) into consideration, we substitute the variable z for logu. So instead of the model
(1.4), we consider the following minimization problem:

min
z

∫
Ω

∣∣∣D2z
∣∣∣ + λ

∫
Ω

(
ez − fz

)
dx. (3.3)

Owing to the calculation difficulties brought by the non-differentiability term
∫
Ω |D2z|, we

introduce an auxiliary variable w to add a quadratic fitting term ‖w − z‖22 to the model (3.3).
Then the following approximation scheme for problem (3.3)

min
z,w

E(z,w) = min
z,w

∫
Ω

(
ez − fz

)
dx + α‖w − z‖22 + β

∫
Ω

∣∣∣D2w
∣∣∣ (3.4)

is achieved. Here, α and β are two positive parameters. Usually, α is larger than β, since
relatively small α will result in inferior restoration quality. While for many problems, too
large value for αmakes (3.4) extremely difficult to solve numerically. Notice that the objective
function of problem (3.4) is strictly convex and differential with respect to the first variable z,
then the approach (3.4) can be decomposed into two decoupled z,w subproblems, namely,

zk = arg min
z

∫
Ω

(
ez − gz

)
dx + α

∥∥∥z −wk−1
∥∥∥2

2
,

wk = arg min
w

α
∥∥∥zk −w

∥∥∥2

2
+ β

∫
Ω

∣∣∣D2w
∣∣∣ .

(3.5)

For the z subproblem, the objective function is strictly convex, then the solution is
unique. In view of the differentiability of the objective function with regard to z, to determine
the solution of the first equation of the system (3.5) amounts to solve

ez − g + 2α
(
z −wk−1

)
= 0. (3.6)

Obviously, Newton iteration method is a good choice for efficiently solving these kinds of
problems.
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As for the second subproblem, we make use of dual algorithm, which was first
introduced by Chen et al. [20] for TV regularization and then was extended to the fourth-
order situation for solving model (1.3) [21]. The dual formulas for the w subproblem in the
discrete setting can be briefly depicted as

pk+1i,j =
pki,j − τ

(∇2(div2pn − (
β/2α

)
zk

))
i,j

1 + τ
∣∣∣∇2

(
div2pn − (

β/2α
)
zk

)
i,j

∣∣∣ . (3.7)

Subsequently, for all time steps τ with 0 < τ ≤ 1/64, as n → ∞, we get the minimizer of the
w subproblem

wk = zk − 2α
β
div2p. (3.8)

Then, given the initial value w0, based on the above-mentioned AM approach, we
obtain the sequence given below

z1, w1, z2, w2, . . . , zk,wk, . . . . (3.9)

Thanks to the computationally inexpensive of both the subproblems w and z, the AM
approach occupies advantage in convergence speed so that the calculation time cost is cut
down to a great extent.

4. Convergence Analysis

Let zk = R(wk−1), wk = S(zk), and P = S ◦ R. Then we have wk=P(wk−1). By Opial theorem
[27], firstly, we should show that the operator P is nonexpansive and asymptotically regular.
Recall that for a proper, convex, lower semicontinuous function ϕ, the operator proxϕ : Rn2 →
Rn2

:

proxϕ(x) = arg min
y

1
2
∥∥x − y

∥∥2
2 + ϕ

(
y
)

(4.1)

is called the proximal operator of ϕ. According to the definition of proximal operator, it is
easy to check that the operators R and S are proximal operators of (1/2α)

∫
Ω(e

z − gz)dx and
(β/2α)

∫
Ω |D2w|, respectively. Combining this with Lemma 2.4 [28], we obtain that both R

and S are nonexpansive. Then P is nonexpansive.

Lemma 4.1. The operator P is asymptotically regular.
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Proof. For an initial guess, w0 ∈ Rn2
. To show, P is asymptotically regular, by the definition,

we have to show that the sequence {Pk+1(w0) − Pk(w0)} tends to zero as k → ∞, that is,
limk→∞‖wk+1 −wk‖2 = 0. Let H1(z,w) = ‖z −w‖22 andH2(w) =

∫
Ω |D2w|. Then,

E
(
zk+1, wk

)
−E

(
zk+1, wk+1

)
= α

[
H1

(
zk+1, wk

)
−H1

(
zk+1, wk+1

)]
+β

[
H2

(
wk

)
−H2

(
wk+1

)]
.

(4.2)

By the Taylor expansion of H1(z,w) in the second variable and the fact that ∂2H1/∂w
2 = 2I,

we have

H1

(
zk+1, wk

)
−H1

(
zk+1, wk+1

)
=
(
wk −wk+1

)t ∂H1

∂w

(
zk+1, wk+1

)
+
∥∥∥wk+1 −wk

∥∥∥2

2
. (4.3)

Further, considering the convexity property of H2, we obtain

H2

(
wk

)
−H2

(
wk+1

)
≥
(
wk −wk+1

)t ∂H2

∂w

(
wk+1

)
. (4.4)

(4.2), (4.3), together with (4.4), deduce

E
(
zk+1, wk

)
− E

(
zk+1, wk+1

)
≥ α

∥∥∥wk+1 −wk
∥∥∥2

2
. (4.5)

Notice that α(∂H1/∂w)(zk+1, wk+1) + β(∂H2/∂w)(wk+1) = 0, as wk+1 is the minimizer of
E(zk+1, w). In addition, combining (4.5) with the fact that E(zk+1, wk+1) ≥ E(zk+2, wk+1), we
have

E
(
zk+1, wk

)
− E

(
zk+2, wk+1

)
≥ E

(
zk+1, wk

)
− E

(
zk+1, wk+1

)
≥ α

∥∥∥wk+1 −wk
∥∥∥2

2
. (4.6)

Therefore,

∞∑
k=0

∥∥∥wk+1 −wk
∥∥∥2

2
≤ 1

α
E
(
z1, w0

)
, (4.7)

which guarantees that ‖wk+1 −wk‖2 tends to zero as k → ∞.

Lemma 4.2. The set of fixed points of P is nonempty.

Proof. First of all, similar to [25], we can derive that the function E is coercive. Moreover, as E
is closed and proper, by the Weierstrass’s Theorem [16], we know that the set of minimizers
of E is nonempty. Suppose (z,w) is a minimizer of E(z,w), then we have

∂E

∂z
(z,w) = 0,

∂E

∂w
(z,w) = 0. (4.8)
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Initialization:w0 = 0 and p0 = 0;
While k = 1, 2, 3, . . .N.

Compute zk according to the first equation of (3.5) for fixed wk−1.
Compute wk according to the second equation of (3.5) for fixed zk .

End
Compute u = exp(w).

Algorithm 1: Alternating minimization algorithm for solving the model (3.4).

It follows that

S(z) = w = arg min
w

E(z, ·),

(w) = z = arg min
z

E(·, w).
(4.9)

Therefore, w = S(R(w)) = P(w), which indicates that w is a fixed point of P .

Then, by Opial theorem [27], we conclude that {wk} converges to a fixed point of
P . As E is differentiable with regard to the second variable z and E is strictly convex, then
the unique minimizer of E is just the fixed point of P . Hence, {wk} converges to the unique
minimizer of E.

5. Numerical Experiments

In this section, we pay attention to illustrate the efficiency and superiority of our proposed
scheme. We compare the TV-regularization-based model (1.2) by gradient descent method
with the fourth-order (1.4) by gradient descent method and the fourth-order scheme (3.4) by
alternating minimization method, that is, Algorithm 1, in measuring the convergence speed
and image restoration quality. Let GD-(1.2), GD-(1.4), and AM-(3.4) denote the above three
schemes, respectively. The performance of the three schemes will be tested on three images:
“lenna”, “pepper”, and “panda”. All of our experiments are processed under Windows XP
and MATLAB R2009a. The Poisson noise is added by using the MATLAB library function
imnoise (I, “poisson”). It is worth to mention that the poisson noise magnitude in an image
increases with the intensity of the region of the image, which is different from Gaussian
noise that is signal independent. We choose time step τ = 1/64 for all the following
experiments.

For well assessing the quality of recovered images, the relative error (ReErr) [25] is
adopted as follows:

ReErr =

∥∥u − f
∥∥
2∥∥f∥∥2

, (5.1)

where u and f represent reconstructed image and the original image, respectively. Generally
speaking, the smaller the ReErr value, the better the restored image quality.
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(a) Original image (b) Degenerated image (c) 460 iterations by GD-(1.2)

(d) 280 iterations by GD-(1.4) (e) 45 iterations by AM-(3.4)

Figure 1: Recovered results of different models by different numerical algorithms.

Example 5.1. The first test image “lenna” (Figure 1(a)) is a gray image of size 256 × 256
pixels. The corresponding degraded image corrupted by Poisson noise is demonstrated in
Figure 1(b). Figures 1(c), 1(d), and 1(e) denote the restoration images via 460 iterations
by GD-(1.2), 280 iterations by GD-(1.4), and 45 iterations by AM-(3.4), respectively. Their
corresponding enlarged partial images are displayed in Figures 2(a)–2(e). Table 1 lists the
number of iterations, computational time, and the value of ReErr of the three methods about
this experiment. From Table 1, we can see that the AM-(3.4) scheme can achieve lower value
of ReErr with less time than GD-(1.2) and GD-(1.4). Comparing GD-(1.2) with GD-(1.4),
although GD-(1.2) costs less time per iteration, GD-(1.4) is slightly fast as a whole. In terms of
the restoration result, the results images processed by the fourth-order approaches GD-(1.4)
(see Figure 2(d)) and AM-(3.4) (see Figure 2(e)) are similar, but the one (see Figure 2(c))
processed by second-order approach GD-(1.2) suffers from disgusting staircasing effects just
as the ROF model for Gaussian noise removal. It is turned out that fourth-order approaches
successfully overcome the piecewise constant of the solution and can obtain relative natural
recovered results than the second-order one. The parameters with respect to the above test
are λ = 0.01, α = 100, and β = 1.6.

Example 5.2. To further evaluate the performance of our proposed fourth-order scheme by
AM method, we test the three methods on the 512 × 512 image “pepper” (Figure 3(b)).
The corresponding parameters used in this experiment are set as follows: λ = 0.01, α =
100, and β = 1.24. From Figure 5(c), we can see that the staircasing effects still appears
in the homogeneous flat regions of restoration image by second-order scheme (1.2).
Figures 5(d) and 5(e) denote the results processed by fourth-order PDE, which are more



Abstract and Applied Analysis 9

(a) Original image (b) Degenerated image (c) 460 iterations by GD-(1.2)

(d) 280 iterations by GD-(1.4) (e) 45 iterations by AM-(3.4)

Figure 2: Enlarged partial recovered results by different approaches.

(a) Original image (b) Degenerated (c) 700 iterations by GD-(1.2)

(d) 350 iterations by GD-(1.4) (e) 55 iterations by AM-(3.4)

Figure 3: Recovered results of different models by different numerical algorithms.
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(a) GD-(1.2)

0 50 100 150 200 250 300 350
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

(b) GD-(1.4)
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(c) AM-(3.4)

Figure 4: Relations between number of iterations (abscissa axis) and value of ReErr (vertical axis) by the
three methods for “pepper”.

Table 1:Number of iterations, computational time, and ReErr of the threemethods for the results in Figures
1 and 2.

Lenna Iterations Run time (second) ReErr
GD-(1.2) 45 1.84 0.0785
GD-(1.4) 45 2.46 0.0725
GD-(1.2) 460 17.50 0.0562
GD-(1.4) 280 13.23 0.0543
AM-(3.4) 45 1.87 0.0505

Table 2:Number of iterations, computational time, and ReErr of the threemethods for the results in Figures
3 and 5.

Pepper Iterations Run time (second) ReErr
GD-(1.2) 700 150.15 0.0420
GD-(1.4) 350 113.48 0.0426
AM-(3.4) 55 15.96 0.0410

close to the original one. The number of iterations, computational time, and value of ReErr
of the three methods about this experiment are listed in Table 2, and the relations between
ReErr and the number of iterations are illustrated in Figure 4. Figure 4 indicates that the
AM algorithm for (3.4) converges so fast that 50 iterations are enough to obtain relative
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(a) Original image (b) Degenerated image (c) 700 iterations by GD-(1.2)

(d) 350 iterations by GD-(1.4) (e) 55 iterations by AM-(3.4)

Figure 5: Recovered results by the three methods.

Table 3: Number of iterations, computational time, and ReErr of the three methods for the results in
Figure 6.

Panda Iterations Run time (second) ReErr
GD-(1.2) 450 17.21 0.0541
GD-(1.4) 250 10.04 0.0530
AM-(3.4) 60 2.68 0.0496

ideal result with ReErr = 0.0410, but the numbers of iterations needed by GD-(1.2) (see
Figure 5(a)) and GD-(1.4) (see Figure 5(b)) are about 700 and 350, respectively. As a result,
our proposed scheme, that is, AM-(3.4), can obtain higher quality restoration images with
less time, especially for some larger images.

Example 5.3. We use the 256 × 256 image “panda” (Figure 6(a)) as our third test image.
Unlike “lenna” and “pepper”, the image “panda” has more small details. This experiment
will show that our proposed scheme also performs well on the images with small details.
The degenerated “panda” corrupted by Poisson noise is displayed in Figure 6(b). Parameters
are chosen to be λ = 0.01, α = 110, and β = 1.9. Table 3 lists the number of iterations,
computational time, and ReErr of the three methods about this experiment. The relation
between value of ReErr and the number of iterations can be seen in Figure 7. From Table 3 and
Figure 7, we can see that fourth-order schemes can achieve higher quality images, evaluated
by lower value of ReErr, than the second one. Moreover, our proposed AM-(3.4) outperform
the other both in reducing numerical computational time and image restoration quality.
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(a) Original image (b) Degenerated image (c) 450 iterations by GD-(1.2)

(d) 250 iterations by GD-(1.4) (e) 60 iterations by AM-(3.4)

Figure 6: Recovered results by the three methods.

0 100 200 300 400 500
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

(a) GD-(1.2)
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(c) AM-(3.4)

Figure 7: Relations between number of iterations (abscissa axis) and value of ReErr (vertical axis) by the
three methods for “panda”.
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6. Conclusion

This paper investigates a fourth-order regularization based scheme for restoring corrupted
images by Poisson noise. The existence and uniqueness of the minimizer for the proposed
model are presented in detail. To quickly obtain the optimum solution of our proposed
scheme, the alternating minimization method is employed. Compared with the recovered
results by the TV-regularization-based one, simulation results evidently demonstrate the
competitive superiority of our proposed approach especially in overcoming staircase effects
and improving the computational speed while removing Poisson noise.
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