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We study fractional variational problems in terms of a generalized fractional integral with
Lagrangians depending on classical derivatives, generalized fractional integrals and derivatives.
We obtain necessary optimality conditions for the basic and isoperimetric problems, as well
as natural boundary conditions for free-boundary value problems. The fractional action-like
variational approach (FALVA) is extended and some applications to physics discussed.

1. Introduction

The calculus of variations is a beautiful and useful field of mathematics that deals with
problems of determining extrema (maxima or minima) of functionals [1–3]. It starts with the
simplest problem of finding a function extremizing (minimizing or maximizing) an integral

J(y) =
∫b

a

F
(
t, y(t), y′(t)

)
dt (1.1)

subject to boundary conditions y(a) = ya and y(b) = yb. In the literature, many gen-
eralizations of this problem were proposed, including problems with multiple integrals,
functionals containing higher-order derivatives, and functionals depending on several
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functions [4–6]. Of our interest is an extension proposed by Riewe in 1996-1997, where
fractional derivatives (real or complex order) are introduced in the Lagrangian [7, 8].

During the last decade, fractional problems have increasingly attracted the attention
of many researchers. As mentioned in [9], Science Watch of Thomson Reuters identified
the subject as an Emerging Research Front area. Fractional derivatives are nonlocal operators
and are historically applied in the study of nonlocal or time-dependent processes [10]. The
first and well-established application of fractional calculus in physics was in the framework
of anomalous diffusion, which is related to features observed in many physical systems.
Here we can mention the report [11] demonstrating that fractional equations work as
a complementary tool in the description of anomalous transport processes. Within the
fractional approach, it is possible to include external fields in a straightforward manner. As
a consequence, in a short period of time, the list of applications expanded. Applications
include chaotic dynamics [12], material sciences [13], mechanics of fractal and complex
media [14, 15], quantum mechanics [16, 17], physical kinetics [18], long-range dissipation
[19], and long-range interaction [20, 21], just to mention a few. One of the most remarkable
applications of fractional calculus appears, however, in the fractional variational calculus,
in the context of classical mechanics. Riewe [7, 8] shows that a Lagrangian involving
fractional time derivatives leads to an equation of motion with nonconservative forces such
as friction. It is a remarkable result since frictional and nonconservative forces are beyond
the usual macroscopic variational treatment and, consequently, beyond the most advanced
methods of classical mechanics [22]. Riewe generalizes the usual variational calculus, by
considering Lagrangians that are dependent on fractional derivatives, in order to deal
with nonconservative forces. Recently, several different approaches have been developed to
generalize the least action principle and the Euler-Lagrange equations to include fractional
derivatives. Results include problems depending on Caputo fractional derivatives and
Riemann-Liouville fractional derivatives [23–35].

A more general unifying perspective to the subject is, however, possible, by consid-
ering fractional operators depending on general kernels [36–38]. In this work, we follow
such an approach, developing a generalized fractional calculus of variations. We consider
very general problems, where the classical integrals are substituted by generalized fractional
integrals, and the Lagrangians depend not only on classical derivatives but also on gener-
alized fractional operators. Problems of the type considered here, for particular kernels, are
important in physics [39]. Here, we obtain general necessary optimality conditions, for sev-
eral types of variational problems, which are valid for rather arbitrary operators and kernels.
By choosing particular operators and kernels, one obtains the recent results available in the
literature of mathematical physics [39–44].

The paper is organized as follows. In Section 2, we introduce the generalized fractional
operators and prove some of their basic properties. Section 3 is dedicated to prove integration
by parts formulas for the generalized fractional operators. Such formulas are then used in
later sections to prove necessary optimality conditions (Theorems 4.2 and 6.3). In Sections
4, 5, and 6 we study three important classes of generalized variational problems: we
obtain fractional Euler-Lagrange conditions for the fundamental (Section 4) and generalized
isoperimetric problems (Section 6), as well as fractional natural boundary conditions for
generalized free-boundary value problems (Section 5). Finally, two illustrative examples
are discussed in detail in Section 7, while applications to physics are given in Section 8: in
Section 8.1, we obtain the damped harmonic oscillator in quantum mechanics; in Section 8.2,
we show how results from FALVA physics can be obtained. We end with Section 9 of
conclusion, pointing out an important direction of future research.
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2. Preliminaries

In this section, we present definitions and properties of generalized fractional operators. As
particular cases, by choosing appropriate kernels, these operators are reduced to standard
fractional integrals and fractional derivatives. Other nonstandard kernels can also be
considered as particular cases. For more on the subject of generalized fractional calculus
and applications, we refer the reader to [37]. Throughout the text, α denotes a real number
between zero and one. Following [45], we use round brackets for the arguments of functions
and square brackets for the arguments of operators. By definition, an operator receives and
returns a function.

Definition 2.1 (generalized fractional integral). The operator Kα
P is given by

Kα
P

[
f
]
(x) = Kα

P

[
t �−→ f(t)

]
(x) = p

∫x

a

kα(x, t)f(t)dt + q

∫b

x

kα(t, x)f(t)dt, (2.1)

where P = 〈a, x, b, p, q〉 is the parameter set (p-set for brevity), x ∈ [a, b], p, q are real
numbers, and kα(x, t) is a kernel which may depend on α. The operator Kα

P is referred to
as the operator K (K-op for simplicity) of order α and p-set P , while Kα

P [f] is called the
operation K (or K-opn) of f of order α and p-set P .

Note that if we define

G(x, t) :=

⎧
⎨

⎩

pkα(x, t), if t < x,

qkα(t, x), if t ≥ x,
(2.2)

then the operator Kα
P can be written in the form

Kα
P

[
f
]
(x) = Kα

P

[
t �−→ f(t)

]
(x) =

∫b

a

G(x, t)f(t)dt. (2.3)

This is a particular case of one of the oldest and most respectable class of operators, the so-
called Fredholm operators [46, 47].

Theorem 2.2 (cf. Example 6 of [46]). Let α ∈ (0, 1) and P = 〈a, x, b, p, q〉. If kα is a square
integrable function on the square Δ = [a, b] × [a, b], then Kα

P : L2([a, b]) → L2([a, b]) is well-
defined, linear, and bounded operator.

Theorem 2.3. Let kα be a difference kernel, that is, let kα ∈ L1([a, b]) with kα(x, t) = kα(x − t).
Then, Kα

P : L1([a, b]) → L1([a, b]) is a well defined bounded and linear operator.

Proof. Obviously, the operator is linear. Let α ∈ (0, 1), P = 〈a, t, b, p, q〉, and f ∈ L1([a, b]).
Define

F(τ, t) :=

⎧
⎨

⎩

∣∣pkα(t − τ)
∣∣ · ∣∣f(τ)∣∣, if τ ≤ t,

∣∣qkα(τ − t)
∣∣ · ∣∣f(τ)∣∣, if τ > t,

(2.4)
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for all (τ, t) ∈ Δ = [a, b] × [a, b]. Since F is measurable on the square Δ, we have

∫b

a

(∫b

a

F(τ, t)dt

)

dτ =
∫b

a

[
∣
∣f(τ)

∣
∣
(∫b

τ

∣
∣pkα(t − τ)

∣
∣dt +

∫ τ

a

∣
∣qkα(τ − t)

∣
∣dt

)]

dτ

≤
∫b

a

∣
∣f(τ)

∣
∣
∣
∣
∣
∣p
∣
∣ − ∣∣q∣∣∣∣‖kα‖dτ

=
∣
∣
∣
∣p
∣
∣ − ∣∣q∣∣∣∣ · ‖kα‖ ·

∥
∥f
∥
∥.

(2.5)

It follows from Fubini’s theorem that F is integrable on the square Δ. Moreover,

∥
∥Kα

P

[
f
]∥∥ =

∫b

a

∣
∣
∣
∣∣
p

∫ t

a

kα(t − τ)f(τ)dτ + q

∫b

t

kα(τ − t)f(τ)dτ

∣
∣
∣
∣∣
dt

≤
∫b

a

(
∣∣p
∣∣
∫ t

a

|kα(t − τ)| · ∣∣f(τ)∣∣dτ +
∣∣q
∣∣
∫b

t

|kα(τ − t)| · ∣∣f(τ)∣∣dτ
)

dt

=
∫b

a

(∫b

a

F(τ, t)dτ

)

dt

≤ ∣∣∣∣p∣∣ − ∣∣q∣∣∣∣ · ‖kα‖ ·
∥∥f
∥∥.

(2.6)

Hence, Kα
P : L1([a, b]) → L1([a, b]) and ‖Kα

P‖ ≤ ||p| − |q|| · ‖kα‖.

Remark 2.4. The K-op reduces to the left and the right Riemann-Liouville fractional integrals
from a suitably chosen kernel kα(x, t) and p-set P . Let kα(x, t) = kα(x−t) = (1/Γ(α))(x−t)α−1:

(i) if P = 〈a, x, b, 1, 0〉, then

Kα
P

[
f
]
(x) =

1
Γ(α)

∫x

a

(x − t)α−1f(t)dt =: aI
α
x

[
f
]
(x) (2.7)

is the standard left Riemann-Liouville fractional integral of f of order α;

(ii) if P = 〈a, x, b, 0, 1〉, then

Kα
P

[
f
]
(x) =

1
Γ(α)

∫b

x

(t − x)α−1f(t)dt =: xI
α
b

[
f
]
(x) (2.8)

is the standard right Riemann-Liouville fractional integral of f of order α.

Corollary 2.5. Operators aI
α
x , xI

α
b
: L1([a, b]) → L1([a, b]) are well defined, linear and bounded.

The generalized fractional derivatives Aα
P and Bα

P are defined in terms of the gener-
alized fractional integral K-op.
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Definition 2.6 (generalized Riemann-Liouville fractional derivative). Let P be a given
parameter set and 0 < α < 1. The operator Aα

P is defined by Aα
P = D ◦K1−α

P , where D denotes
the standard derivative operator, and is referred to as the operator A (A-op) of order α and
p-set P , while Aα

P [f], for a function f such that K1−α
P [f] ∈ AC([a, b]), is called the operation

A (A-opn) of f of order α and p-set P .

Definition 2.7 (generalized Caputo fractional derivative). Let P be a given parameter set and
α ∈ (0, 1). The operator Bα

P is defined by Bα
P = K1−α

P ◦ D, where D denotes the standard
derivative operator, and is referred to as the operator B (B-op) of order α and p-set P , while
Bα
P [f], for a function f ∈ AC([a, b]), is called the operation B (B-opn) of f of order α and

p-set P .

Remark 2.8. The standard Riemann-Liouville and Caputo fractional derivatives are easily
obtained from the generalized operators Aα

P and Bα
P , respectively. Let k1−α(x, t) = k1−α(x−t) =

(x − t)−α/Γ(1 − α):

(i) if P = 〈a, x, b, 1, 0〉, then

Aα
P

[
f
]
(x) =

1
Γ(1 − α)

D

[

ξ �−→
∫ ξ

a

(ξ − t)−αf(t)dt

]

(x) =:aDα
x

[
f
]
(x) (2.9)

is the standard left Riemann-Liouville fractional derivative of f of order α, while

Bα
P

[
f
]
(x) =

1
Γ(1 − α)

∫x

a

(x − t)−αD
[
f
]
(t)dt =:CaD

α
x

[
f
]
(x) (2.10)

is the standard left Caputo fractional derivative of f of order α;

(ii) if P = 〈a, x, b, 0, 1〉, then

−Aα
P

[
f
]
(x) =

−1
Γ(1 − α)

D

[

ξ �−→
∫b

ξ

(t − ξ)−αf(t)dt

]

(x) =:xDα
b

[
f
]
(x) (2.11)

is the standard right Riemann-Liouville fractional derivative of f of order α, while

−Bα
P

[
f
]
(x) =

−1
Γ(1 − α)

∫b

x

(t − x)−αD
[
f
]
(t)dt =:CxD

α
b

[
f
]
(x) (2.12)

is the standard right Caputo fractional derivative of f of order α.

3. On Generalized Fractional Integration by Parts

We now prove integration by parts formulas for generalized fractional operators.
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Theorem 3.1 (fractional integration by parts for the K-op). Let α ∈ (0, 1), P = 〈a, t, b, p, q〉, kα
be a square-integrable function onΔ = [a, b]×[a, b], and f, g ∈ L2([a, b]). The generalized fractional
integral Kα

P satisfies the integration by parts formula

∫b

a

g(x)Kα
P

[
f
]
(x)dx =

∫b

a

f(x)Kα
P ∗
[
g
]
(x)dx, (3.1)

where P ∗ = 〈a, t, b, q, p〉.

Proof. Define

F(τ, t) :=

⎧
⎪⎨

⎪⎩

∣
∣pkα(t, τ)

∣
∣ · ∣∣g(t)∣∣ · ∣∣f(τ)∣∣, if τ ≤ t,

∣∣qkα(τ, t)
∣∣ · ∣∣g(t)∣∣ · ∣∣f(τ)∣∣, if τ > t,

(3.2)

for all (τ, t) ∈ Δ. Applying Holder’s inequality, we obtain

∫b

a

(∫b

a

F(τ, t)dt

)

dτ =
∫b

a

[
∣∣f(τ)

∣∣
(∫b

τ

∣∣pkα(t, τ)
∣∣ · ∣∣g(t)∣∣dt +

∫ τ

a

∣∣qkα(τ, t)
∣∣ · ∣∣g(t)∣∣dt

)]

dτ

≤
∫b

a

[
∣∣f(τ)

∣∣
(∫b

a

∣∣pkα(t, τ)
∣∣ · ∣∣g(t)∣∣dt +

∫b

a

∣∣qkα(τ, t)
∣∣ · ∣∣g(t)∣∣dt

)]

dτ

≤
∫b

a

⎧
⎨

⎩

∣∣f(τ)
∣∣

⎡

⎣

(∫b

a

∣∣pkα(t, τ)
∣∣2dt

)1/2(∫b

a

∣∣g(t)
∣∣2dt

)1/2

+

(∫b

a

∣∣qkα(τ, t)
∣∣2dt

)1/2(∫b

a

∣∣g(t)
∣∣2dt

)1/2
⎤

⎦

⎫
⎬

⎭
dτ.

(3.3)

By Fubini’s theorem, functions kα,τ(t) := kα(t, τ) and k̂α,τ(t) := kα(τ, t) belong to L2([a, b]) for
almost all τ ∈ [a, b]. Therefore,

∫b

a

⎧
⎨

⎩

∣∣f(τ)
∣∣

⎡

⎣

(∫b

a

∣∣pkα(t, τ)
∣∣2dt

)1/2(∫b

a

∣∣g(t)
∣∣2dt

)1/2

+

(∫b

a

∣∣qkα(τ, t)
∣∣2dt

)1/2(∫b

a

∣∣g(t)
∣∣2dt

)1/2
⎤

⎦

⎫
⎬

⎭
dτ

=
∥∥g
∥∥
2

∫b

a

[∣∣f(τ)
∣∣
(∥∥pkα,τ

∥∥
2 +
∥∥∥qk̂α,τ

∥∥∥
2

)]
dτ
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≤ ∥∥g∥∥2
(∫b

a

∣
∣f(τ)

∣
∣2dτ

)1/2(∫b

a

∣∣
∣
∥
∥pkα,τ

∥
∥
2 +
∥∥
∥qk̂α,τ

∥∥
∥
2

∣∣
∣
2
dτ

)1/2

≤ ∥∥g∥∥2 ·
∥
∥f
∥
∥
2

(∥∥pkα
∥
∥
2 +
∥
∥qkα

∥
∥
2

)
< ∞.

(3.4)

Hence, we can use again Fubini’s theorem to change the order of integration:

∫b

a

g(t)Kα
P

[
f
]
(t)dt = p

∫b

a

g(t)dt
∫ t

a

f(τ)kα(t, τ)dτ + q

∫b

a

g(t)dt
∫b

t

f(τ)kα(τ, t)dτ

= p

∫b

a

f(τ)dτ
∫b

τ

g(t)kα(t, τ)dt + q

∫b

a

f(τ)dτ
∫ τ

a

g(t)kα(τ, t)dt

=
∫b

a

f(τ)Kα
P ∗
[
g
]
(τ)dτ.

(3.5)

Theorem 3.2. Let 0 < α < 1 and P = 〈a, x, b, p, q〉. If kα(x, t) = kα(x − t), kα, f ∈ L1([a, b]), and
g ∈ C([a, b]), then the operator Kα

P satisfies the integration by parts formula (3.1).

Proof. Define

F(t, x) :=

⎧
⎪⎨

⎪⎩

∣∣pkα(x − t)
∣∣ · ∣∣g(x)∣∣ · ∣∣f(t)∣∣, if t ≤ x,

∣∣qkα(t − x)
∣∣ · ∣∣g(x)∣∣ · ∣∣f(t)∣∣, if t > x,

(3.6)

for all (t, x) ∈ Δ = [a, b] × [a, b]. Since g is a continuous function on [a, b], it is bounded on
[a, b], that is, there exists a real number C > 0 such that |g(x)| ≤ C for all x ∈ [a, b]. Therefore,

∫b

a

(∫b

a

F(t, x)dt

)

dx =
∫b

a

[
∣∣f(t)

∣∣
(∫b

t

∣∣pkα(x − t)
∣∣ · ∣∣g(x)∣∣dx +

∫ t

a

∣∣qkα(t − x)
∣∣ · ∣∣g(x)∣∣dx

)]

dt

≤
∫b

a

[
∣∣f(t)

∣∣
(∫b

a

∣∣pkα(x − t)
∣∣ · ∣∣g(x)∣∣dx +

∫b

a

∣∣qkα(t − x)
∣∣ · ∣∣g(x)∣∣dx

)]

dt

≤ C

∫b

a

[
∣∣f(t)

∣∣
(∫b

a

∣∣pkα(x − t)
∣∣dx +

∫b

a

∣∣qkα(t − x)
∣∣dx

)]

dt

= C
∣∣∣∣p
∣∣ − ∣∣q∣∣∣∣‖kα‖

∥∥f
∥∥ < ∞.

(3.7)

Hence, we can use Fubini’s theorem to change the order of integration in iterated integrals.
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Theorem 3.3 (generalized fractional integration by parts). Let α ∈ (0, 1) and P = 〈a, t, b, p, q〉.
If functions f, K1−α

P ∗ [g] ∈ AC([a, b]), and we are in conditions to use formula (3.1) (Theorem 3.1 or
Theorem 3.2), then

∫b

a

g(x)Bα
P

[
f
]
(x)dx = f(x)K1−α

P ∗
[
g
]
(x)
∣
∣
∣
b

a
−
∫b

a

f(x)Aα
P ∗
[
g
]
(x)dx, (3.8)

where P ∗ = 〈a, t, b, q, p〉.

Proof. From Definition 2.7, we know that Bα
P [f](x) = K1−α

P [D[f]](x). It follows that

∫b

a

g(x)Bα
P

[
f
]
(x)dx =

∫b

a

g(x)K1−α
P

[
D
[
f
]]
(x)dx. (3.9)

By relation (3.1),

∫b

a

g(x)Bα
P

[
f
]
(x)dx =

∫b

a

D
[
f
]
(x)K1−α

P ∗
[
g
]
(x)dx, (3.10)

and the standard integration by parts formula implies (3.8):

∫b

a

g(x)Bα
P

[
f
]
(x)dx = f(x)K1−α

P ∗ [g](x)
∣∣∣
b

a
−
∫b

a

f(x)D
[
K1−α

P ∗
[
g
]]
(x)dx. (3.11)

Corollary 3.4 (cf. [48]). Let 0 < α < 1. If f,xI1−αb [g] ∈ AC([a, b]), then

∫b

a

g(x)CaD
α
x

[
f
]
(x)dx = f(x)xI

1−α
b

[
g
]
(x)
∣∣∣
x=b

x=a
+
∫b

a

f(x)xD
α
b

[
g
]
(x)dx. (3.12)

4. The Generalized Fundamental Variational Problem

By ∂iF, we denote the partial derivative of a function F with respect to its ith argument. We
consider the problem of finding a function y = t �→ y(t), t ∈ [a, b], that gives an extremum
(minimum or maximum) to the functional

J(y) = Kα
P1

[
t �−→ F

(
t, y(t), y′(t), Bβ

P2

[
y
]
(t), Kγ

P3

[
y
]
(t)
)]

(b) (4.1)

subject to the boundary conditions

y(a) = ya, y(b) = yb, (4.2)
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where α, β, γ ∈ (0, 1), P1 = 〈a, b, b, 1, 0〉, and Pj = 〈a, t, b, pj , qj〉, j = 2, 3. For simplicity of

notation, we introduce the operator {·}β,γP2,P3
defined by

{
y
}β,γ
P2,P3

(t) =
(
t, y(t), y′(t), Bβ

P2

[
τ �−→ y(τ)

]
(t), Kγ

P3

[
τ �−→ y(τ)

]
(t)
)
. (4.3)

With the new notation, one can write (4.1) simply as J(y) = Kα
P1
[F{y}β,γP2,P3

](b). The operator

Kα
P1

has kernel kα(x, t), and operators B
β

P2
and K

γ

P3
have kernels h1−β(t, τ) and hγ(t, τ),

respectively. In the sequel, we assume the following:

(H1) Lagrangian F ∈ C1([a, b] × R
4;R),

(H2) functions Aβ

P ∗
2
[τ �→ kα(b, τ)∂4F{y}β,γP2,P3

(τ)], Kγ

P ∗
3
[τ �→ kα(b, τ)∂5F{y}β,γP2,P3

(τ)], D[t �→
∂3F{y}β,γP2,P3

(t)kα(b, t)], and t �→ kα(b, t)∂2F{y}β,γP2,P3
(t) are continuous on (a, b),

(H3) functions t �→ ∂3F{y}β,γP2,P3
(t)kα(b, t), K

1−β
P ∗
2
[τ �→ kα(b, τ)∂4F{y}β,γP2,P3

(τ)] ∈ AC([a, b]);

(H4) kernels kα(x, t), h1−β(t, τ), and hγ(t, τ) are such that we are in conditions to use
Theorems 3.1 or 3.2, and Theorem 3.3.

Definition 4.1. A function y ∈ C1([a, b];R) is said to be admissible for the fractional variational
problem (4.1)-(4.2), if functions Bβ

P2
[y] and K

γ

P3
[y] exist and are continuous on the interval [a, b],

and y satisfies the given boundary conditions (4.2).

Theorem 4.2. If y is a solution to problem (4.1)-(4.2), then y satisfies the generalized Euler-Lagrange
equation

kα(b, t)∂2F
{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3F

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4F

{
y
}β,γ
P2,P3

(τ)
]
(t) +K

γ

P ∗
3

[
τ �−→ kα(b, τ)∂5F

{
y
}β,γ
P2,P3

(τ)
]
(t) = 0

(4.4)

for all t ∈ (a, b).

Proof. Suppose that y is an extremizer of J. Consider the value of J at a nearby function
ŷ = y + εη, where ε ∈ R is a small parameter, and η ∈ C1([a, b];R) is an arbitrary function
with continuous B-op and K-op. We require that η(a) = η(b) = 0. Let

J(ŷ) = J(ε) = Kα
P1

[
t �−→ F

(
t, ŷ(t), ŷ′(t), Bβ

P2

[
ŷ
]
(t), Kγ

P3

[
ŷ
]
(t)
)]

(b)

=
∫b

a

kα(b, t)F
(
t, y(t) + εη(t),

d

dt

(
y(t) + εη(t)

)
, B

β

P2

[
y + εη

]
(t), Kγ

P3

[
y + εη

]
(t)
)
dt.

(4.5)
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A necessary condition for y to be an extremizer is given by

dJ

dε

∣
∣
∣
∣
ε=0

= 0 ⇐⇒ Kα
P1

[
∂2F

{
y
}β,γ
P2,P3

η + ∂3F
{
y
}β,γ
P2,P3

D
[
η
]

+ ∂4F
{
y
}β,γ
P2,P3

B
β

P2

[
η
]
+ ∂5F

{
y
}β,γ
P2,P3

K
γ

P3

[
η
]]
(b) = 0

⇐⇒
∫b

a

(
∂2F

{
y
}β,γ
P2,P3

(t)η(t) + ∂3F
{
y
}β,γ
P2,P3

(t)
d

dt
η(t)

+ ∂4F
{
y
}β,γ
P2,P3

(t)Bβ

P2

[
η
]
(t) + ∂5F

{
y
}β,γ
P2,P3

(t)Kγ

P3

[
η
]
(t)
)
kα(b, t)dt = 0.

(4.6)

Using classical and generalized fractional integration by parts formulas (Theorems 3.1 or 3.2,
and Theorem 3.3),

∫b

a

∂3F
{
y
}β,γ
P2,P3

(t)kα(b, t)
d

dt
η(t)dt = ∂3F

{
y
}β,γ
P2,P3

(t)kα(b, t)η(t)
∣∣∣
b

a

−
∫b

a

d

dt

(
∂3F

{
y
}β,γ
P2,P3

(t)kα(b, t)
)
η(t)dt,

∫b

a

∂4F
{
y
}β,γ
P2,P3

(t)kα(b, t)B
β

P2

[
η
]
(t)dt = K

1−β
P ∗
2

[
τ �−→ kα(b, τ)∂4F

{
y
}β,γ
P2,P3

(τ)
]
(t)η(t)

∣∣∣
b

a

−
∫b

a

A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4F

{
y
}β,γ
P2,P3

(τ)
]
(t)η(t)dt,

∫b

a

kα(b, t)∂5F
{
y
}β,γ
P2,P3

(t)Kγ

P3

[
η
]
(t)dt =

∫b

a

K
γ

P ∗
3

[
τ �−→ kα(b, τ)∂5F

{
y
}β,γ
P2,P3

(τ)
]
(t)η(t)dt,

(4.7)

where P ∗
j = 〈a, t, b, qj , pj〉, j = 2, 3. Because η(a) = η(b) = 0, (4.6) simplifies to

∫b

a

{
kα(b, t)∂2F

{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3F

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4F

{
y
}β,γ
P2,P3

(τ)
]
(t) +K

γ

P ∗
3

[
τ �−→ kα(b, τ)∂5F

{
y
}β,γ
P2,P3

(τ)
]
(t)
}
η(t)dt = 0.

(4.8)

We obtain (4.4) by application of the fundamental lemma of the calculus of variations (see,
e.g., [49, Section 2.2]).

The following corollary gives an extension of the main result of [28].

Corollary 4.3. If y is a solution to the problem of minimizing or maximizing

J(y)=aI
α
b

[
t �−→ F

(
t, y(t), y′(t), C

aD
β
t

[
y
]
(t)
)]

(b) (4.9)
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in the class y ∈ C1([a, b];R) subject to the boundary conditions

y(a) = ya, y(b) = yb, (4.10)

where α, β ∈ (0, 1), F ∈ C1([a, b] × R
3;R), and τ �→ (b − τ)α−1∂4F(τ, y(τ), y′(τ), C

aD
β
τ [y](τ)) has

continuous Riemann-Liouville fractional derivative tD
β

b
, then

∂2F
(
t, y(t), y′(t), C

aD
β
t

[
y
]
(t)
)
· (b − t)α−1 − d

dt

{
∂3F

(
t, y(t), y′(t), C

aD
β
t

[
y
]
(t)
)
· (b − t)α−1

}

+ tD
β

b

[
τ �−→ (b − τ)α−1∂4F

(
τ, y(τ), y′(τ), C

aD
β
τ

[
y
]
(τ)
)]

(t) = 0

(4.11)

for all t ∈ (a, b).

Proof. Choose kα(x, t) = (1/Γ(α))(x − t)α−1, h1−β(t, τ) = (1/Γ(1 − β))(t − τ)−β, and P2 =
〈a, t, b, 1, 0〉. Then, the K-op, the A-op, and the B-op reduce to the left fractional integral,
the left Riemann-Liouville, and the left Caputo fractional derivatives, respectively. Therefore,
problem (4.9)-(4.10) is a particular case of problem (4.1)-(4.2) and (4.11) follows from (4.4)
with ∂5F = 0.

The following result is the Caputo analogous to the main result of [50] done for the
Riemann-Liouville fractional derivative.

Corollary 4.4. Let β, γ ∈ (0, 1). If y is a solution to the problem

∫b

a

F
(
t, y(t), y′(t),CaD

β
t

[
y
]
(t),aI

γ
t

[
y
]
(t)
)
dt −→ extr,

y ∈ C1([a, b];R),

y(a) = ya, y(b) = yb,

(4.12)

then

∂2F
(
t, y(t), y′(t),CaD

β
t

[
y
]
(t),aI

γ
t

[
y
]
(t)
)
− d

dt
∂3F

(
t, y(t), y′(t),CaD

β
t

[
y
]
(t),aI

γ
t

[
y
]
(t)
)

+
t
D

β

b

[
τ �−→ ∂4F

(
τ, y(τ), y′(τ),CaD

β
τ

[
y
]
(τ),aI

γ
τ

[
y
]
(τ)
)]

(t)

+
t
I
β

b

[
τ �−→ ∂5F

(
τ, y(τ), y′(τ),CaD

β
τ

[
y
]
(τ),aI

γ
τ

[
y
]
(τ)
)]

(t) = 0

(4.13)

holds for all t ∈ (a, b).

Proof. The Euler-Lagrange equation (4.13) follows from (4.4) by choosing p-sets P1 =
〈a, b, b, 1, 0〉, P2 = P3 = 〈a, t, b, 1, 0〉, and kernels kα(x, t) = 1, h1−β(t, τ) = (1/Γ(1 − β))(t − τ)−β,
and hγ(t, τ) = (1/Γ(γ))(t − τ)γ−1.
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Remark 4.5. In the particular case when the Lagrangian F of Corollary 4.4 does not depend on
the fractional integral and the classical derivative, one obtains from (4.13) the Euler-Lagrange
equation of [51].

5. Generalized Free-Boundary Variational Problems

Assume now that, in problem (4.1)-(4.2), the boundary conditions (4.2) are substituted by

y(a) is free and y(b) = yb. (5.1)

Theorem 5.1. If y is a solution to the problem of extremizing functional (4.1) with (5.1) as boundary
conditions, then y satisfies the Euler-Lagrange equation (4.4). Moreover, the extra natural boundary
condition

∂3F
{
y
}β,γ
P2,P3

(a)kα(b, a) +K
1−β
P ∗
2

[
τ �−→ ∂4F

{
y
}β,γ
P2,P3

(τ)kα(b, τ)
]
(a) = 0 (5.2)

holds.

Proof. Under the boundary conditions (5.1), we do not require η in the proof of Theorem 4.2
to vanish at t = a. Therefore, following the proof of Theorem 4.2, we obtain

∂3F
{
y
}β,γ
P2,P3

(a)kα(b, a)η(a) + η(a)K1−β
P ∗
2

[
τ �−→ ∂4F

{
y
}β,γ
P2,P3

(τ)kα(b, τ)
]
(a)

+
∫b

a

η(t)
(
∂2F

{
y
}β,γ
P2,P3

(t)kα(b, t) − d

dt

(
∂3F

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−A
β

P ∗
2

[
τ �−→ ∂4F

{
y
}β,γ
P2,P3

(τ)kα(b, τ)
]
(t) +K

γ

P ∗
3

[
τ �−→ ∂5F

{
y
}β,γ
P2,P3

(τ)kα(b, τ)
]
(t)
)
dt = 0

(5.3)

for every admissible η ∈ C1([a, b];R) with η(b) = 0. In particular, condition (5.3) holds for
those η that fulfill η(a) = 0. Hence, by the fundamental lemma of the calculus of variations,
(4.4) is satisfied. Now, let us return to (5.3) and let η again be arbitrary at point t = a. Inserting
(4.4), we obtain the natural boundary condition (5.2).

Corollary 5.2. Let J be the functional given by

J(y)=aI
α
b

[
t �−→ F

(
t, y(t),CaD

β
t

[
y
]
(t)
)]

(b). (5.4)

Let y be a minimizer of J satisfying the boundary condition y(b) = yb. Then, y satisfies the Euler-
Lagrange equation

(b − t)α−1∂2F
(
t, y(t),CaD

α
t

[
y
]
(t)
)
+

t
Dα

b

[
τ �−→ (b − τ)α−1∂3F

(
τ, y(τ),CaD

β
τy(τ)

)]
(t) = 0

(5.5)
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and the natural boundary condition

aI
1−β
b

[
τ �−→ (b − τ)α−1∂3F

(
τ, y(τ),CaD

β
τy(τ)

)]
(a) = 0. (5.6)

Proof. Let functional (4.1) be such that it does not depend on the classical (integer) derivative
y′(t) and on the K-op. If P2 = 〈a, t, b, 1, 0〉, h1−β(t − τ) = (1/Γ(1 − β))(t − τ)−β, and kα(x −
t) = (1/Γ(α))(x − t)α−1, then the B-op reduces to the left fractional Caputo derivative and we
deduce (5.5) and (5.6) from (4.4) and (5.2), respectively.

Corollary 5.3 (cf. Theorem 3.17 of [38]). Let J be the functional given by

J(y) =
∫b

a

F
(
t, y(t), y′(t), Bβ

P2

[
y
]
(t), Kγ

P3

[
y
]
(t)
)
dt. (5.7)

If y is a minimizer to J satisfying the boundary condition y(b) = yb, then y satisfies the Euler-
Lagrange equation

∂2F
{
y
}β,γ
P2,P3

(t) − d

dt
∂3F

{
y
}β,γ
P2,P3

(t) −A
β

P ∗
2

[
∂4F

{
y
}β,γ
P2,P3

]
(t) +K

γ

P ∗
3

[
∂5F

{
y
}β,γ
P2,P3

]
(t) = 0 (5.8)

and the natural boundary condition

∂3F
{
y
}β,γ
P2,P3

(a) +K
1−β
P ∗
2

[
∂4F

{
y
}β,γ
P2,P3

]
(a) = 0. (5.9)

Proof. Choose, in the problem defined by (4.1) and (5.1), kα(x, t) ≡ 1. Then, (5.8) and (5.9)
follow from (4.4) and (5.2), respectively.

6. Generalized Isoperimetric Problems

Let ξ ∈ R. Among all functions y : [a, b] → R satisfying boundary conditions

y(a) = ya, y(b) = yb, (6.1)

and an isoperimetric constraint of the form

I(y) = Kα
P1

[
G
{
y
}β,γ
P2,P3

]
(b) = ξ, (6.2)

we look for the one that extremizes (i.e., minimizes or maximizes) a functional

J(y) = Kα
P1

[
F
{
y
}β,γ
P2,P3

]
(b). (6.3)

Operators Kα
P1
, Bβ

P2
, and K

γ

P3
, as well as function F, are the same as in problem (4.1)-(4.2).

Moreover, we assume that functional (6.2) satisfies hypotheses (H1)–(H4).
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Definition 6.1. A function y : [a, b] → R is said to be admissible for problem (6.1)–(6.3)
if functions B

β

P2
[y] and K

γ

P3
[y] exist and are continuous on [a, b], and y satisfies the given

boundary conditions (6.1) and the given isoperimetric constraint (6.2).

Definition 6.2. An admissible function y ∈ C1([a, b],R) is said to be an extremal for I if it
satisfies the Euler-Lagrange equation (4.4) associated with functional in (6.2), that is,

kα(b, t)∂2G
{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3G

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4G

{
y
}β,γ
P2,P3

(τ)
]
(t) +K

γ

P ∗
3

[
τ �−→ kα(b, τ)∂5G

{
y
}β,γ
P2,P3

(τ)
]
(t) = 0,

(6.4)

where P ∗
j = 〈a, t, b, qj , pj〉, j = 2, 3, and t ∈ (a, b).

Theorem 6.3. If y is a solution to the isoperimetric problem (6.1)–(6.3) and is not an extremal for I,
then there exists a real constant λ such that

kα(b, t)∂2H
{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3H

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4H

{
y
}β,γ
P2,P3

(τ)
]
(t) +K

γ

P ∗
3

[
τ �−→ kα(b, τ)∂5H

{
y
}β,γ
P2,P3

(τ)
]
(t) = 0

(6.5)

for all t ∈ (a, b), whereH(t, y, u, v,w) = F(t, y, u, v,w)−λG(t, y, u, v,w) and P ∗
j = 〈a, t, b, qj , pj〉,

j = 2, 3.

Proof. Consider a two-parameter family of the form ŷ = y + ε1η1 + ε2η2, where, for each
i ∈ {1, 2}, we have ηi(a) = ηi(b) = 0. First, we show that we can select ε2η2 such that ŷ satisfies
(6.2). Consider the quantity I(ŷ) = Kα

P1
[G{ŷ}β,γP2,P3

](b). Looking to I(ŷ) as a function of ε1, ε2,

we define Î(ε1, ε2) = I(ŷ) − ξ. Thus, Î(0, 0) = 0. On the other hand, applying integration by
parts formulas (Theorems 3.1 or 3.2, and Theorem 3.3), we obtain that

∂Î

∂ε2

∣∣∣∣∣
(0,0)

=
∫b

a

η2(t)
(
kα(b, t)∂2G

{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3G

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

− A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4G

{
y
}β,γ
P2,P3

(τ)
]
(t)

+K
γ

P ∗
3

[
τ �−→ kα(b, τ)∂5G

{
y
}β,γ
P2,P3

(τ)
]
(t)
)
dt,

(6.6)

where P ∗
j = 〈a, t, b, qj , pj〉, j = 2, 3. We assume that y is not an extremal for I. Hence,

the fundamental lemma of the calculus of variations implies that there exists a function η2
such that ∂Î/∂ε2|(0,0) /= 0. According to the implicit function theorem, there exists a function
ε2(·) defined in a neighborhood of 0 such that Î(ε1, ε2(ε1)) = 0. Let Ĵ(ε1, ε2) = J(ŷ).
Function Ĵ has an extremum at (0, 0) subject to Î(0, 0) = 0, and we have proved that
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∇Î(0, 0)/= 0. The Lagrange multiplier rule asserts that there exists a real number λ such that
∇(Ĵ(0, 0) − λÎ(0, 0)) = 0. Because

∂Ĵ

∂ε1

∣
∣
∣
∣
∣
(0,0)

=
∫b

a

(
kα(b, t)∂2F

{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3F

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4F

{
y
}β,γ
P2,P3

(τ)
]
(t)

+K
γ

P ∗
3

[
τ �−→ kα(b, τ)∂5F

{
y
}β,γ
P2,P3

(τ)
]
(t)
)
η1(t)dt,

∂Î

∂ε1

∣
∣
∣
∣
∣
(0,0)

=
∫b

a

(
kα(b, t)∂2G

{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3G

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4G

{
y
}β,γ
P2,P3

(τ)
]
(t)

+K
γ

P ∗
3

[
τ �−→ kα(b, τ)∂5G

{
y
}β,γ
P2,P3

(τ)
]
(t)
)
η1(t)dt,

(6.7)

one has

∫b

a

{
kα(b, t)∂2F

{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3F

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4F

{
y
}β,γ
P2,P3

(τ)
]
(t) +K

γ

P ∗
3

[
τ �−→ kα(b, τ)∂5F

{
y
}β,γ
P2,P3

(τ)
]
(t)

− λ

(
kα(b, t)∂2G

{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3G

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4G

{
y
}β,γ
P2,P3

(τ)
]
(t)

+K
γ

P ∗
3

[
τ �−→ kα(b, τ)∂5G

{
y
}β,γ
P2,P3

(τ)
]
(t)
)}

η1(t)dt = 0.

(6.8)

From the fundamental lemma of the calculus of variations (see, e.g., [49], Section 2.2), it
follows

kα(b, t)∂2F
{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3F

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4F

{
y
}β,γ
P2,P3

(τ)
]
(t) +K

γ

P ∗
3

[
τ �−→ kα(b, τ)∂5F

{
y
}β,γ
P2,P3

(τ)
]
(t)

− λ

(
kα(b, t)∂2G

{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3G

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−Aβ

P ∗
2

[
τ �−→ kα(b, τ)∂4G

{
y
}β,γ
P2,P3

(τ)
]
(t) +K

γ

P ∗
3

[
τ �−→ kα(b, τ)∂5G

{
y
}β,γ
P2,P3

(τ)
]
(t)
)

= 0,

(6.9)
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that is,

kα(b, t)∂2H
{
y
}β,γ
P2,P3

(t) − d

dt

(
∂3H

{
y
}β,γ
P2,P3

(t)kα(b, t)
)

−A
β

P ∗
2

[
τ �−→ kα(b, τ)∂4H

{
y
}β,γ
P2,P3

(τ)
]
(t) +K

γ

P ∗
3

[
τ �−→ kα(b, τ)∂5H

{
y
}β,γ
P2,P3

(τ)
]
(t) = 0

(6.10)

withH = F − λG.

Corollary 6.4. Let y be a minimizer to the isoperimetric problem

J(y)=aI
α
b

[
t �−→ F

(
t, y(t),CaD

β
t

[
y
]
(t)
)]

(b) −→ min,

I(y)=aI
α
b

[
t �−→ G

(
t, y(t),CaD

β
t

[
y
]
(t)
)]

(b) = ξ,

y(a) = ya, y(b) = yb.

(6.11)

If y is not an extremal of I, then there exists a constant λ such that y satisfies

(b − t)α−1∂2H
(
t, y(t),CaD

α
t

[
y
]
(t)
)
+ tD

β

b

[
τ �−→ (b − τ)α−1∂3H

(
τ, y(τ),CaD

β
τ

[
y
]
(τ)
)]

(t) = 0

(6.12)

for all t ∈ (a, b), whereH(t, y, v) = F(t, y, v) − λG(t, y, v).

Proof. Let kα(x, t) = (1/Γ(α))(x − t)α−1, h1−β(t, τ) = (1/Γ(1−β))(t−τ)−β, P1 = 〈a, b, b, 1, 0〉, and
P2 = 〈a, t, b, 1, 0〉. Then, the K-op and the B-op reduce to the left fractional integral and the
left fractional Caputo derivative, respectively. Therefore, problem (6.11) is a particular case
of problem (6.1)–(6.3), and (6.12) follows from (6.5)with ∂3H = ∂5H = 0.

Corollary 6.5 (cf. Theorem 3.22 of [38]). Let y be a minimizer to

J(y) =
∫b

a

F
(
t, y(t), y′(t), Bβ

P2

[
y
]
(t), Kγ

P3

[
y
]
(t)
)
dt −→ min,

I(y) =
∫b

a

G
(
t, y(t), y′(t), Bβ

P2

[
y
]
(t), Kγ

P3

[
y
]
(t)
)
dt = ξ,

y(a) = ya, y(b) = yb.

(6.13)

If y is not an extremal of I, then there exists a constant λ such that y satisfies

∂2H
{
y
}β,γ
P2,P3

(t) − d

dt
∂3H

{
y
}β,γ
P2,P3

(t) −A
β

P ∗
2

[
∂4H

{
y
}β,γ
P2,P3

]
(t) +K

γ

P ∗
3

[
∂5H

{
y
}β,γ
P2,P3

]
(t) = 0

(6.14)

for all t ∈ (a, b), whereH(t, y, u, v,w) = F(t, y, u, v,w) − λG(t, y, u, v,w).
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Proof. Let, in problem (6.1)–(6.3), P1 = 〈a, b, b, 1, 0〉 and kernel kα(x, t) ≡ 1. Then, the
generalized fractional integral Kα

P1
becomes the classical integral and (6.14) follows from

(6.5).

7. Illustrative Examples

We illustrate our results through two examples with different kernels: one of a funda-
mental problem (4.1)–(4.2) (Example 7.1), the other an isoperimetric problem (6.1)–(6.3)
(Example 7.2).

Example 7.1. Let α, β ∈ (0, 1), ξ ∈ R, P1 = 〈0, 1, 1, 1, 0〉, and P2 = 〈0, t, 1, 1, 0〉. Consider the
following problem:

J(y) = Kα
P1

[

t �−→ tK
β

P2

[
y
]
(t) +

√

1 −
(
K

β

P2

[
y
]
(t)
)2
]

(1) −→ min,

y(0) = 1, y(1) =
√
2
4

+
∫1

0
rβ(1 − τ)

1

(1 + τ2)3/2
dτ,

(7.1)

with kernel hβ such that hβ(t, τ) = hβ(t − τ) and hβ(0) = 1. Here, the resolvent rβ(t) is related
to the kernel hβ(t) by rβ(t) = L−1[s �→ (1/sh̃β(s)) − 1](t), h̃β(s) = L[t �→ hβ(t)](s), where L
and L−1 are the direct and the inverse Laplace operators, respectively. We apply Theorem 4.2
with Lagrangian F given by F(t, y, u, v,w) = tw +

√
1 −w2. Because

y(t) =
1

(1 + t2)3/2
+
∫ t

0
rβ(t − τ)

1

(1 + τ2)3/2
dτ (7.2)

is the solution to the Volterra integral equation of first kind (see, e.g., Equation 16, page 114
of [47])

K
β

P2

[
y
]
(t) =

t
√
1 + t2

1 + t2
, (7.3)

it satisfies our generalized Euler-Lagrange equation (4.4), that is,

K
β

P ∗
2

⎡

⎢⎢
⎣τ �−→ kα(b, τ)

⎛

⎜⎜
⎝

−Kβ

P ∗
2

[
y
]
(τ)

√

1 −
(
K

β

P ∗
2

[
y
]
(τ)
)2

+ τ

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦(t) = 0. (7.4)

In particular, for the kernel hβ(t − τ) = cosh(β(t − τ)), the boundary conditions are y(0) = 1

and y(1) = 1 + β2(1 − √
2), and the solution is y(t) = (1/(1 + t2)3/2) + β2(1 −

√
1 + t2) (cf. [47],

page 22).
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In the next example, we make use of the Mittag-Leffler function of two parameters: if
α, β > 0, then the Mittag-Leffler function is defined by

Eα,β(z) =
∞∑

k=0

zk

Γ
(
αk + β

) . (7.5)

This function appears naturally in the solution of fractional differential equations, as a
generalization of the exponential function [52].

Example 7.2. Let α, β ∈ (0, 1), ξ ∈ R, and ξ /∈ {±1/4}. Consider the following problem:

J(y) = 0I
α
1

[√

1 +
(
y′ + C

0D
β
t

[
y
])2
]

(1) −→ min,

I(y)=0I
α
1

[(
y′ + C

0D
β
t

[
y
])2
]
(1) = ξ,

y(0) = 0, y(1) =
∫1

0
E1−β,1

(
−(1 − τ)1−β

)√1 − 16ξ2

4ξ
dτ,

(7.6)

which is an example of (6.1)–(6.3) with p-sets P1 = 〈0, 1, 1, 1, 0〉 and P2 = 〈0, t, 1, 1, 0〉 and
kernels kα(x − t) = (1/Γ(α))(x − t)α−1 and h1−β(t − τ) = (1/Γ(1 − β))(t − τ)−β. Function H of

Theorem 6.3 is given byH(t, y, u, v,w) =
√
1 + (u + v)2 − λ(u + v)2. One can easily check (see

[52], page 324) that

y(t) =
∫ t

0
E1−β,1

(
−(t − τ)1−β

)√1 − 16ξ2

4ξ
dτ (7.7)

(i) is not an extremal for I,
(ii) satisfies y′ + C

0D
β
t [y] =

√
1 − 16ξ2/4ξ.

Moreover, (7.7) satisfies (6.5) for λ = 2ξ, that is,

− d

dt

⎛

⎜⎜
⎝(1 − t)α−1

(
y′(t) + C

0D
β
t

[
y
]
(t)
)

⎛

⎜⎜
⎝

1
√

1 +
(
y′(t) + C

0D
β
t

[
y
]
(t)
)2

− 4ξ

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠

+
t
D

β

1

⎡

⎢⎢
⎣τ �−→ (1 − τ)α−1

(
y′(τ) + C

0D
β
τ

[
y
]
(τ)
)

⎛

⎜⎜
⎝

1
√

1 +
(
y′(τ) + C

0D
β
τ

[
y
]
(τ)
)2

− 4ξ

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦(t) = 0

(7.8)

for all t ∈ (0, 1). We conclude that (7.7) is an extremal for problem (7.6).
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8. Applications to Physics

If the functional (4.1) does not depend on B-op and K-op, then Theorem 4.2 gives the
following result: if y is a solution to the problem of extremizing

J(y) =
∫b

a

F
(
t, y(t), y′(t)

)
kα(b, t)dt (8.1)

subject to y(a) = ya and y(b) = yb, where α ∈ (0, 1), then

∂2F
(
t, y(t), y′(t)

) − d

dt
∂3F

(
t, y(t), y′(t)

)
=

1
kα(b, t)

· d

dt
kα(b, t)∂3F

(
t, y(t), y′(t)

)
. (8.2)

We recognize on the right hand side of (8.2) the generalized weak dissipative parameter

δ(t) =
1

kα(b, t)
· d

dt
kα(b, t). (8.3)

8.1. Quantum Mechanics of the Damped Harmonic Oscillator

As a first application, let us consider kernel kα(b, t) = eα(b−t) and the Lagrangian

L
(
y, ẏ

)
=

1
2
mẏ2 − V

(
y
)
, (8.4)

where V (y) is the potential energy andm stands for mass. The Euler-Lagrange equation (8.2)
gives the following second-order ordinary differential equation:

ÿ(t) − αẏ(t) = − 1
m
V ′(y(t)

)
. (8.5)

Equation (8.5) coincides with (14) of [44], obtained by modification of Hamilton’s principle.

8.2. Fractional Action-Like Variational Approach (FALVA)

We now extend some of the recent results of [39, 41–43], where the fractional action-
like variational approach (FALVA) was proposed to model dynamical systems. FALVA
functionals are particular cases of (8.1), where the fractional time integral introduces only
one parameter α. Let us consider the Caldirola-Kanai Lagrangian [39, 40, 42]

L
(
t, y, ẏ

)
= m(t)

(
ẏ2

2
−ω2y

2

2

)

, (8.6)

which describes a dynamical oscillatory system with exponentially increasing time-depend-
ent mass, where ω is the frequency and m(t) = m0e−γbeγt = m0eγt, m0 = m0e−γb. Using our
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generalized FALVA Euler-Lagrange equation (8.2) with kernel kα(b, t) to Lagrangian (8.6),
we obtain

ÿ(t) +
(
δ(t) + γ

)
ẏ(t) +ω2y(t) = 0. (8.7)

We study two particular kernels.

(1) If we choose kernel

kα(b, t) =

(
ρ + 1

)1−α

Γ(α)

(
bρ+1 − tρ+1

)
tρ, (8.8)

defined in [53], then the Euler-Lagrange equation is

∂2F
(
t, y(t), y′(t)

) − d

dt
∂3F

(
t, y(t), y′(t)

)
=

(
(1 − α)

(
ρ + 1

)
tρ

bρ+1 − tρ+1

)

∂3F
(
t, y(t), y′(t)

)
. (8.9)

In particular, when ρ → 0, (8.8) becomes the kernel of the Riemann-Liouville
fractional integral, and equation (8.9) gives

∂2F
(
t, y(t), y′(t)

) − d

dt
∂3F

(
t, y(t), y′(t)

)
=

1 − α

b − t
∂3F

(
t, y(t), y′(t)

)
, (8.10)

which is the Euler-Lagrange equation proved in [42]. For ρ /= 0, we have

δ(t) =
(1 − α)

(
ρ + 1

)
tρ

bρ+1 − tρ+1
−→ 0, if t −→ ∞ or t −→ 0. (8.11)

Therefore, both at the very early time and at very large time, dissipation disappears.
Moreover, if ρ → 0, then

δ(t) =
1 − α

b − t
−→

⎧
⎪⎨

⎪⎩

0, if t −→ ∞,

1 − α

b
, if t −→ 0.

(8.12)

This shows that, at the origin of time, the time-dependent dissipation becomes
stationary and that, at very large time, no dissipation, of any kind, exists.

(2) If we choose kernel kα(b, t) = (cosh b − cosh t)α−1, then

∂2F
(
t, y(t), y′(t)

) − d

dt
∂3F

(
t, y(t), y′(t)

)
= −(α − 1)

sinh t
cosh b − cosh t

∂3F
(
t, y(t), y′(t)

)
,

δ(t) = −(α − 1)
sinh t

cosh b − cosh t
−→

⎧
⎨

⎩

α − 1, if t −→ ∞,

0, if t −→ 0.

(8.13)
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In contrast with previous case, item 1, here dissipation does not disappear at late-
time dynamics.

We note that there is a small inconsistence in [42], regarding the coefficient of ẏ(t) in
(8.7), and a small inconsistence in [39], regarding a sign of (8.13).

9. Conclusion

In this paper, we unify, subsume, and significantly extend the necessary optimality conditions
available in the literature of the fractional calculus of variations. It should be mentioned,
however, that since fractional operators are nonlocal, it can be extremely challenging to find
analytical solutions to fractional problems of the calculus of variations, and, in many cases,
solutions may not exist. In our paper, we give two examples with analytic solutions, and
many more can be found borrowing different kernels from [47]. On the other hand, one
can easily choose examples for which the fractional Euler-Lagrange differential equations
are hard to solve, and, in that case, one needs to use numerical methods [54–57]. The
question of existence of solutions to fractional variational problems is a complete open area
of research. This needs attention. Indeed, in the absence of existence, the necessary conditions
for extremality are vacuous: one cannot characterize an entity that does not exist in the first
place. For solving a problem of the fractional calculus of variations, one should proceed
along the following three steps: (i) first, prove that a solution to the problem exists; (ii)
second, verify the applicability of necessary optimality conditions; (iii) finally, apply the
necessary conditions which identify the extremals (the candidates). Further elimination, if
necessary, identifies the minimizer(s) of the problem. All three steps in the above procedure
are crucial. As mentioned by Young in [58], the calculus of variations has born from the
study of necessary optimality conditions, but any such theory is “naive” until the existence
of minimizers is verified. The process leading to the existence theorems was introduced by
Tonelli in 1915 by the so-called direct method [59]. During two centuries, mathematicians
were developing “the naive approach to the calculus of variations”. There were, of course,
good reasons why the existence problem was only solved in the beginning of XX century,
two hundred years after necessary optimality conditions began to be studied: see [60, 61] and
references therein. Similar situation happens now with the fractional calculus of variations:
the subject is only fifteen years old and is still in the “naive period”. We believe time has come
to address the existence question, and this will be considered in a forthcoming paper.
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