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This paper is concerned with a stochastic ratio-dependent predator-prey model with varible
coefficients. By the comparison theorem of stochastic equations and the Itô formula, the global
existence of a unique positive solution of the ratio-dependent model is obtained. Besides, some
results are established such as the stochastically ultimate boundedness and stochastic permanence
for this model.

1. Introduction

Ecological systems are mainly characterized by the interaction between species and
their surrounding natural environment [1]. Especially, the dynamic relationship between
predators and their preys has long been and will continue to be one of the dominant themes
in both ecology and mathematical ecology, due to its universal existence and importance [2–
4]. The interaction mechanism of predators and their preys can be described as differential
equations, such as Lotaka-Volterra models [5].

Recently, many researchers pay much attention to functional and numerical responses
over typical ecological timescales, which depend on the densities of both predators and their
preys (most likely and simply on their ration) [6–8]. Such a functional response is called a
ratio-dependent response function, and these hypotheses have been strongly supported by
numerous and laboratory experiments and observations [9–11].

It is worthy to note that, based on the Michaelis-Menten or Holling type II function,
Arditi and Ginzburg [6] firstly proposed a ratio-dependent function of the form

P

(
x

y

)
=

cx/y

m + x/y
=

cx

my + x
(1.1)
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and a ratio-dependent predator-prey model of the form

ẋ(t) = x(t)
[
a − bx(t) − cy(t)

my(t) + x(t)

]
,

ẏ(t) = y(t)
[
−d +

fx(t)
my(t) + x(t)

]
.

(1.2)

Here, x(t) and y(t) represent population densities of the prey and the predator at time t,
respectively. Parameters a, b, c, d, f , andm are positive constants in which a/b is the carrying
capacity of the prey, a, c, m, f , and d stand for the prey intrinsic growth rate, capturing rate,
half capturing saturation constant, conversion rate, and the predator death rate, respectively.
In recent years, several authors have studied the ratio-dependent predator-prey model (1.2)
and its extension, and they have obtained rich results [12–19].

It is well known that population systems are often affected by environmental noise.
Hence, stochastic differential equation models play a significant role in various branches
of applied sciences including biology and population dynamics as they provide some
additional degree of realism compared to their deterministic counterpart [20, 21]. Recall
that the parameters a and −d represent the intrinsic growth and death rate of x(t) and
y(t), respectively. In practice we usually estimate them by an average value plus errors. In
general, the errors follow normal distributions (by the well-known central limit theorem),
but the standard deviations of the errors, known as the noise intensities, may depend on the
population sizes. We may therefore replace the rates a and −d by

a −→ a + αḂ1(t), −d −→ −(d + β
)
Ḃ2(t), (1.3)

respectively, where B1(t) and B2(t) are mutually independent Brownian motions and α and β
represent the intensities of the white noises. As a result, (1.2) becomes a stochastic differential
equation (SDE, in short):

dx(t) = x(t)
[
a − bx(t) − cy(t)

my(t) + x(t)

]
dt + αx(t)dB1(t),

dy(t) = y(t)
[
−d +

fx(t)
my(t) + x(t)

]
dt − βy(t)dB2(t).

(1.4)

By the Itô formula, Ji et al. [3] showed that (1.4) is persistent or extinct in some conditions.
The predator-prey model describes a prey population x that serves as food for a

predator y. However, due to the varying of the effects of environment and such as weather,
temperature, food supply, the prey intrinsic growth rate, capturing rate, half capturing
saturation constant, conversion rate, and predator death rate are functions of time t [22–26].
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Therefore, Zhang and Hou [27] studied the following general ratio-dependent predator-prey
model of the form:

ẋ(t) = x(t)
[
a(t) − b(t)x(t) − c(t)y(t)

m(t)y(t) + x(t)

]
,

ẏ(t) = y(t)
[
−d(t) + f(t)x(t)

m(t)y(t) + x(t)

]
,

(1.5)

which is more realistic. Motivated by [3, 27], this paper is concerned with a stochastic ratio-
dependent predator-prey model of the following form:

dx(t) = x(t)
[
a(t) − b(t)x(t) − c(t)y(t)

m(t)y(t) + x(t)

]
dt + α(t)x(t)dB1(t),

dy(t) = y(t)
[
−d(t) + f(t)x(t)

m(t)y(t) + x(t)

]
dt − β(t)y(t)dB2(t),

(1.6)

where a(t), b(t), c(t), d(t), f(t), andm(t) are positive bounded continuous functions on [0,∞)
and α(t), β(t) are bounded continuous functions on [0,∞), and B1(t) and B2(t) are defined
in (1.4). There would be some difficulties in studying this model since the parameters are
changed by time t. Under some suitable conditions, we obtain some results such as the
stochastic permanence of (1.6).

Throughout this paper, unless otherwise specified, let (Ω,F, {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all P -null sets). Let B1(t) and B2(t) be mutually independent
Brownian motions, R2

+ the positive cone in R2, X(t) = (x(t), y(t)), and |X(t)| = (x2(t) +
y2(t))1/2.

For convenience and simplicity in the following discussion, we use the notation

ϕu = sup
t∈[0,∞)

ϕ(t), ϕl = inf
t∈[0,∞)

ϕ(t), (1.7)

where ϕ(t) is a bounded continuous function on [0,∞).
This paper is organized as follows. In Section 2, by the Itô formula and the comparison

theorem of stochastic equations, the existence and uniqueness of the global positive solution
are established for any given positive initial value. In Section 3, we find that both the prey
population and predator population of (1.6) are bounded in mean. Finally, we give some
conditions that guarantee that (1.6) is stochastically permanent.

2. Global Positive Solution

As x(t) and y(t) in (1.6) are population densities of the prey and the predator at time
t, respectively, we are only interested in the positive solutions. Moreover, in order for a
stochastic differential equation to have a unique global (i.e., no explosion in a finite time)
solution for any given initial value, the coefficients of equation are generally required
to satisfy the linear growth condition and local Lipschitz condition [28]. However, the
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coefficients of (1.6) satisfy neither the linear growth condition nor the local Lipschitz
continuous. In this section, by making the change of variables and the comparison theorem of
stochastic equations [29], we will show that there is a unique positive solution with positive
initial value of system (1.6).

Lemma 2.1. For any given initial value X0 ∈ R2
+, there is a unique positive local solution X(t) to

(1.6) on t ∈ [0, τe) a.s.

Proof. We first consider the equation

du(t) =

[
a(t) − α2(t)

2
− b(t)eu(t) − c(t)ev(t)

m(t)ev(t) + eu(t)

]
dt + α(t)dB1(t),

dv(t) =

[
−d(t) − β2(t)

2
+

f(t)eu(t)

m(t)ev(t) + eu(t)

]
dt − β(t)dB2(t)

(2.1)

on t ≥ 0 with initial value u(0) = lnx0, v(0) = lny0. Since the coefficients of system (2.1)
satisfy the local Lipschitz condition, there is a unique local solution (u(t), v(t)) on t ∈ [0, τe),
where τe is the explosion time [28]. Therefore, by the Itô formula, it is easy to see that x(t) =
eu(t), y(t) = ev(t) is the unique positive local solution of system (2.1) with initial value X0 =
(x0, y0) ∈ R2

+. Lemma 2.1 is finally proved.

Lemma 2.1 only tells us that there is a unique positive local solution of system (1.6).
Next, we show that this solution is global, that is, τe = ∞.

Since the solution is positive, we have

dx(t) ≤ x(t)[a(t) − b(t)x(t)]dt + α(t)x(t)dB1(t). (2.2)

Let

Φ(t) =
exp

{∫ t
0

[
a(s) − (

α2(s)/2
)]
ds +

∫ t
0 α(s)dB1(s)

}

x−1
0 +

∫ t
0 b(s) exp

{∫s
0 [a(τ) − (α2(τ)/2)]dτ +

∫s
0 α(τ)dB1(τ)

}
ds

. (2.3)

Then, Φ(t) is the unique solution of equation

dΦ(t) = Φ(t)[a(t) − b(t)Φ(t)]dt + α(t)Φ(t)dB1(t),

Φ(0) = x0,
(2.4)

x(t) ≤ Φ(t) a.s. t ∈ [0, τe) (2.5)

by the comparison theorem of stochastic equations. On the other hand, we have

dx(t) ≥ x(t)
[
a(t) − c(t)

m(t)
− b(t)x(t)

]
dt + α(t)x(t)dB1(t). (2.6)
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Similarly,

φ(t) =
exp

{∫ t
0

[
a(s) − (c(s)/m(s)) − (

α2(s)/2
)]
ds +

∫ t
0 α(s)dB1(s)

}

x−1
0 +

∫ t
0 b(s) exp

{∫s
0 [a(τ) − (c(τ)/m(τ)) − (α2(τ)/2)]dτ +

∫s
0 α(τ)dB1(τ)

}
ds

(2.7)

is the unique solution of equation

dφ(t) = φ(t)
[
a(t) − c(t)

m(t)
b(t) − φ(t)

]
dt + α(t)φ(t)dB1(t),

φ(0) = x0,

x(t) ≥ φ(t) a.s. t ∈ [0, τe).

(2.8)

Consequently,

φ(t) ≤ x(t) ≤ Φ(t) a.s. t ∈ [0, τe). (2.9)

Next, we consider the predator population y(t). As the arguments above, we can get

dy(t) ≤ y(t)
[−d(t) + f(t)

]
dt − β(t)y(t)dB2(t),

dy(t) ≥ −d(t)y(t)dt − β(t)y(t)dB2(t).
(2.10)

Let

y(t) := y0 exp

{
−
∫ t

0

[
d(s) +

β2(s)
2

]
ds −

∫ t

0
β(s)dB2(s)

}
,

y(t) := y0 exp

{∫ t

0

[
−d(s) + f(s) − β2(s)

2

]
ds −

∫ t

0
β(s)dB2(s)

}
.

(2.11)

By using the comparison theorem of stochastic equations again, we obtain

y(t) ≤ y(t) ≤ y(t) a.s. t ∈ [0, τe). (2.12)

From the representation of solutions φ(t), Φ(t), y(t), and y(t), we can easily see that
they exist on t ∈ [0,∞), that is, τe = ∞. Therefore, we get the following theorem.

Theorem 2.2. For any initial valueX0 ∈ R2
+, there is a unique positive solutionX(t) to (1.6) on t ≥ 0

and the solution will remain in R2
+ with probability 1, namely, X(t) ∈ R2

+ for all t ≥ 0 a.s. Moreover,
there exist functions φ(t), Φ(t), y(t), and y(t) defined as above such that

φ(t) ≤ x(t) ≤ Φ(t), y(t) ≤ y(t) ≤ y(t), a.s. t ≥ 0. (2.13)
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3. Asymptotic Bounded Properties

In Section 2, we have shown that the solution of (1.6) is positive, which will not explode
in any finite time. This nice positive property allows to further discuss asymptotic bounded
properties for the solution of (1.6) in this section.

Lemma 3.1 (see [30]). Let Φ(t) be a solution of system (2.4). If bl > 0, then

lim sup
t→∞

E[Φ(t)] ≤ au

bl
. (3.1)

Now we show that the solution of system (1.6) with any positive initial value is
uniformly bounded in mean.

Theorem 3.2. If bl > 0 and dl > 0, then the solution X(t) of system (1.6) with any positive initial
value has the following properties:

lim sup
t→∞

E[x(t)] ≤ au

bl
, lim sup

t→∞
E

[
x(t) +

cl
fu

y(t)
]
≤ (au + du)2

4bldl
, (3.2)

that is, it is uniformly bounded in mean. Furthermore, if cl > 0, then

lim sup
t→∞

E
[
y(t)

] ≤ fu(au + du)2

4blcldl
. (3.3)

Proof. Combining x(t) ≤ Φ(t) a.s. with (3.1), it is easy to see that

lim sup
t→∞

E[x(t)] ≤ au

bl
. (3.4)

Next, we will show that y(t) is bounded in mean. Denote

G(t) = x(t) +
cl
fu

y(t). (3.5)
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Calculating the time derivative of G(t) along system (1.6), we get

dG(t) = x(t)
[
a(t) − b(t)x(t) − c(t)y(t)

m(s)y(t) + x(t)

]
dt + α(t)x(t)dB1(t)

+ y(t)
[
− cl
fu

d(t) +
cl
fu

f(t)x(t)
m(s)y(t) + x(t)

]
dt − cl

fu
β(t)y(t)dB2(t)

=
{
[a(t) + d(t)]x(t) − b(t)x2(t) − d(t)G(t) +

[
−c(t) + cl

fu
f(t)

]
x(t)y(t)

m(s)y(t) + x(t)

}
dt

+ α(t)x(t)dB1(t) − cl
fu

β(t)y(t)dB2(t).

(3.6)

Integrating it from 0 to t yields

G(t) = G(0) +
∫ t

0

{
[a(s) + d(s)]x(s) − b(s)x2(s) − d(s)G(s)

+
[
−c(s) + cl

fu
f(s)

]
x(s)y(s)

m(s)y(s) + x(s)

}
ds

+
∫ t

0
α(s)x(s)dB1(s) −

∫ t

0

cl
fu

β(s)dB2(s),

(3.7)

which implies

E[G(t)] = G(0) + E

∫ t

0

{
[a(s) + d(s)]x(s) − b(s)x2(s) − d(s)G(s)

+
[
−c(s) + cl

fu
f(s)

]
x(s)y(s)

m(s)y(s) + x(s)

}
ds,

dE[G(t)]
dt

= [a(t) + d(t)]E[x(t)] − b(t)E
[
x2(t)

]
− d(t)E[G(t)]

+
[
−c(t) + cl

fu
f(t)

]
E

[
x(t)y(t)

m(t)y(t) + x(t)

]

≤ [a(t) + d(t)]E[x(t)] − b(t)E
[
x2(t)

]
− d(t)E[G(t)]

≤ (au + du)E[x(t)] − bl(E[x(t)])2 − dlE[G(t)].

(3.8)

Obviously, the maximum value of (au + du)E[x(t)] − blE
2[x(t)] is (au + du)2/4bl, so

dE[G(t)]
dt

≤ (au + du)2

4bl
− dlE[G(t)]. (3.9)
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Thus, we get by the comparison theorem that

0 ≤ lim sup
t→∞

E[G(t)] ≤ (au + du)2

4bldl
. (3.10)

Since the solution of system (1.6) is positive, it is clear that

lim sup
t→∞

E
[
y(t)

] ≤ fu(au + du)2

4blcldl
. (3.11)

Remark 3.3. Theorem 3.2 tells us that the solution of (1.6) is uniformly bounded in mean.

Remark 3.4. If a, b, c, d, and f are positive constant numbers, we will get Theorem 2.1 in [3].

4. Stochastic Permanence of (1.6)

For population systems, permanence is one of the most important and interesting
characteristics, which mean that the population system will survive in the future. In this
section, we firstly give two related definitions and some conditions that guarantee that (1.6)
is stochastically permanent.

Definition 4.1. Equation (1.6) is said to be stochastically permanent if, for any ε ∈ (0, 1), there
exist positive constants H = H(ε), δ = δ(ε) such that

lim inf
t→+∞

P{|X(t)| ≤ H} ≥ 1 − ε, lim inf
t→+∞

P{|X(t)| ≥ δ} ≥ 1 − ε, (4.1)

where X(t) = (x(t), y(t)) is the solution of (1.6) with any positive initial value.

Definition 4.2. The solutions of (1.6) are called stochastically ultimately bounded, if, for any
ε ∈ (0, 1), there exists a positive constant H = H(ε) such that the solutions of (1.6) with any
positive initial value have the property

lim sup
t→+∞

P{|X(t)| > H} < ε. (4.2)

It is obvious that if a stochastic equation is stochastically permanent, its solutions must be
stochastically ultimately bounded.

Lemma 4.3 (see [30]). One has

E

[
exp

{∫ t

t0

α(s)dB(s)

}]
= exp

{
1
2

∫ t

t0

α2(s)ds

}
, 0 ≤ t0 ≤ t. (4.3)
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Theorem 4.4. If bl > 0, cl > 0, and dl > 0, then solutions of (1.6) are stochastically ultimately
bounded.

Proof. Let X(t) = (x(t), y(t)) be an arbitrary solution of the equation with positive initial. By
Theorem 3.2, we know that

lim sup
t→∞

E[x(t)] ≤ au

bl
, lim sup

t→∞
E
[
y(t)

] ≤ fl(au + du)2

4blcldl
. (4.4)

Now, for any ε > 0, let H1 > au/blε and H2 > (au + du)2fu/4blcldlε. Then, by Chebyshev’s
inequality, it follows that

P{x(t) > H1} ≤ E[x(t)]
H1

< ε,

P
{
y(t) > H2

} ≤ E
[
y(t)

]
H2

< ε.

(4.5)

Taking H = 3max{H1,H2}, we have

P{|X(t)| > H} ≤ P
{
x(t) + y(t) > H

} ≤ E
[
x(t) + y(t)

]
H

<
2
3
ε. (4.6)

Hence,

lim sup
t→∞

P{|X(t)| > H} < ε. (4.7)

This completes the proof of Theorem 4.4.

Lemma 4.5. Let X(t) be the solution of (1.6) with any initial value X0 ∈ R2
+. If rl > 0, then

lim sup
t→+∞

E

[
1

x(t)

]
≤ bu

rl
, (4.8)

where r(t) = a(t) − c(t)/m(t) − α2(t).
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Proof. Combing (2.7)with Lemma 4.3, we have

E

[
1

φ(t)

]
= x−1

0 E

[
exp

{
−
∫ t

0

[
a(s) − c(s)

m(s)
− α2(s)

2

]
ds −

∫ t

0
α(s)dB1(s)

}]

+ E

[∫ t

0
b(s) exp

{
−
∫ t

s

[
a(τ) − c(τ)

m(τ)
− α2(τ)

2

]
dτ −

∫ t

s

α(τ)dB1(τ)

}
ds

]

= x−1
0 exp

{
−
∫ t

0

[
a(s) − c(s)

m(s)
− α2(s)

2

]
ds

}
E

[
exp

{
−
∫ t

0
α(s)dB1(s)

}]

+
∫ t

0
b(s) exp

{
−
∫ t

s

[
a(τ) − c(τ)

m(τ)
− α2(τ)

2

]
dτ

}
E

[
exp

{
−
∫ t

s

α(τ)dB1(τ)

}]
ds

= x−1
0 exp

{
−
∫ t

0
r(s)ds

}
+
∫ t

0
b(s) exp

{
−
∫ t

s

r(τ)dτ

}
ds

≤ x−1
0 e−rlt + bu

∫ t

0
e−rl(t−s)ds ≤ x−1

0 e−rlt +
bu

rl
.

(4.9)

From (2.9), it has

E

[
1

x(t)

]
≤ E

[
1

φ(t)

]
≤ x−1

0 e−rlt. +
bu

rl
. (4.10)

This completes the proof of Lemma 4.3.

Theorem 4.6. Let X(t) be the solution of (1.6) with any initial value X0 ∈ R2
+. If bl > 0 and rl > 0,

then, for any ε > 0, there exist positive constants δ = δ(ε) and H = H(ε) such that

lim inf
t→+∞

P{x(t) ≤ H} ≥ 1 − ε, lim inf
t→+∞

P{x(t) ≥ δ} ≥ 1 − ε. (4.11)

Proof. By Theorem 3.2, there exists a positive constant M such that E[x(t)] ≤ M. Now, for
any ε > 0, let H = M/ε. Then, by Chebyshev’s inequality, we obtain

P{x(t) > H} ≤ E[x(t)]
H

≤ ε, (4.12)

which implies

P{x(t) ≤ H} ≥ 1 − ε. (4.13)
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By Lemma 4.3, we know that

lim sup
t→+∞

E

[
1

x(t)

]
≤ bu

rl
. (4.14)

For any ε > 0, let δ = εrl/b
u; then

P{x(t) < δ} = P

{
1

x(t)
>

1
δ

}
≤ E[1/x(t)]

1/δ
≤ δE[1/x(t)], (4.15)

which yields

lim sup
t→+∞

P[x(t) < δ] ≤ δbu

rl
= ε. (4.16)

This implies

lim inf
t→+∞

P[x(t) ≥ δ] ≥ 1 − ε. (4.17)

This completes the proof of Theorem 4.6

Remark 4.7. Theorem 4.6 shows that if we guarantee bl > 0 and rl > 0, then the prey species x
must be permanent. Otherwise, the prey species x may be extinct. Thus the predator species
y will be extinct too whose survival is absolutely dependent on x. However, if y becomes
extinct, then x will not turn to extinct when the noise intensities α(t) are sufficiently small in
the sense that bl > 0 and rl > 0.

Theorem 4.8. If bl > 0, cl > 0, dl > 0, and rl > 0, then (1.6) is stochastically permanent.

Proof. Assume that X(t) is an arbitrary solution of the equation with initial value X0 ∈ R2
+. By

Theorem 4.6, for any ε > 0, there exists a positive constant δ such that

lim inf
t→+∞

P{x(t) ≥ δ} ≥ 1 − ε. (4.18)

Hence,

lim inf
t→+∞

P{|X(t)| ≥ δ} ≥ lim inf
t→+∞

P{x(t) ≥ δ} ≥ 1 − ε. (4.19)

For any ε > 0, we have by Theorem 4.4 that

lim inf
t→+∞

P{|X(t)| ≤ H} ≥ 1 − ε. (4.20)

This completes the proof of Theorem 4.8
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Remark 4.9. Theorem 4.8 shows that if we guarantee bl > 0, cl > 0, dl > 0, and rl > 0, (1.6) is
permanent in probability, that is, the total number of predators and their preys is bounded in
probability.

Lemma 4.10. Assume that X(t) is the solution of (1.6) with any initial value X0 ∈ R2
+. If ρl > 0 and

σl > 0, then

lim sup
t→+∞

E

[
1

y(t)

]
≤ y−1

0 + fumu
[
2x−1

0 + 2(bu)2ρ−2l
]1/2

, (4.21)

where ρ(t) = a(t) − c(t)/m(t) − 3/2α2(t), σ(t) = f(t) − d(t) − 3/2β2(t).

Proof. By (2.9), it is easy to have

dy(t) = y(t)
(
−d(t) + f(t) − f(t)m(t)y(t)

m(t)y(t) + x(t)

)
dt − β(t)y(t)dB2(t)

≥ y(t)
(
−d(t) + f(t) − f(t)m(t)y(t)

x(t)

)
dt − β(t)y(t)dB2(t)

≥ y(t)
(
−d(t) + f(t) − f(t)m(t)y(t)

φ(t)

)
dt − β(t)y(t)dB2(t).

(4.22)

Let Ψ(t) be the unique solution of equation

dΨ(t) = Ψ(t)
(
−d(t) + f(t) − f(t)m(t)

φ(t)
Ψ(t)

)
dt − β(t)Ψ(t)dB2(t),

Ψ(0) = y0.

(4.23)

Then, by the comparison theorem of stochastic equations, we have

y(t) ≥ Ψ(t), (4.24)

Ψ(t) =
exp

{∫ t
0

[−d(s) + f(s) − (1/2)β2(s)
]
ds − ∫ t

0 β(s)dB2(s)
}

y−1
0 +

∫ t
0

(
f(s)m(s)/φ(s)

)
exp

{∫s
0

[−d(τ) + f(τ) − (1/2)β2(τ)
]
dτ − ∫s

0 β(τ)dB2(τ)
}
ds

.

(4.25)

So,

Ψ−1(t) = y−1
0 exp

{∫ t

0

[
d(s) − f(s) +

1
2

∫ t

0
β2(s)

]
ds + β(s)dB2(s)

}

+
∫ t

0

f(s)m(s)
φ(s)

exp

{∫ t

s

[
d(τ) − f(τ) +

1
2
β2(τ)

]
dτ +

∫ t

s

β(τ)dB2(τ)

}
ds.

(4.26)
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Denote

λ(t) = d(t) − f(t) +
1
2
β2(t), ν(t) = a(t) − α2(t)

2
− c(t)
m(t)

. (4.27)

By Lemma 4.3 and Hölder’s inequality, it is easy to get that

E
[
Ψ−1(t)

]
= y−1

0 exp

{∫ t

0

[
d(s) − f(s) + β2(s)

]
ds

}

+
∫ t

0
f(s)m(s) exp

{∫ t

s

λ(τ)dτ

}
E

[
φ−1(s) exp

{∫ t

s

β(τ)dB2(τ)

}]
ds

≤ y−1
0 exp

{∫ t

0

[
d(s) − f(s) + β2(s)

]
ds

}

+
∫ t

0
f(s)m(s) exp

{∫ t

s

λ(τ)dτ

}{
E
[
φ−2(s)

]
E

[
exp

{
2
∫ t

s

β(τ)dB2(τ)

}]}1/2

ds

≤ y−1
0 exp

{∫ t

0

[
d(s) − f(s) + β2(s)

]
ds

}

+
∫ t

0
f(s)m(s) exp

{∫ t

s

[
d(τ) − f(τ) +

3
2
β2(τ)

]
dτ

}{
E
[
φ−2(s)

]}1/2

ds.

(4.28)

Combing (a + b)2 ≤ 2(a2 + b2) with (2.7), it follows that

E
[
φ−2(t)

]
= E

{
x−1
0 exp

{
−
∫ t

0
ν(s)ds −

∫ t

0
α(s)dB1(s)

}

+
∫ t

0
b(s) exp

{
−
∫ t

s

ν(τ)dτ −
∫ t

s

α(τ)dB1(τ)

}
ds

}2

≤ 2x−2
0 E

{
exp

{
−2

∫ t

0
ν(s)ds − 2

∫ t

0
α(s)dB1(s)

}}

+ 2E

{∫ t

0
b(s) exp

{
−
∫ t

s

ν(τ)dτ −
∫ t

s

α(τ)dB1(τ)

}
ds

}2

.

(4.29)
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It is easy to compute that

E

{∫ t

0
b(s) exp

{
−
∫ t

s

ν(τ)dτ −
∫ t

s

α(τ)dB1(τ)

}
ds

}2

= E

[∫ ∫ t

0
b(s)b(u) exp

{
−
∫ t

s

ν(τ)dτ −
∫ t

s

α(τ)dB1(τ)

}

· exp
{
−
∫ t

u

ν(τ)dτ −
∫ t

u

α(τ)dB1(τ)

}
duds

]

=
∫ ∫ t

0
b(s)b(u) exp

{
−
∫ t

s

ν(τ)dτ

}
exp

{
−
∫ t

u

ν(τ)dτ

}

· E
[
exp

{
−
∫ t

s

α(τ)dB1(τ)

}
exp

{
−
∫ t

u

α(τ)dB1(τ)

}]
duds.

(4.30)

By Hölder’s inequality again,

E

[
exp

{
−
∫ t

s

α(τ)dB1(τ)

}
exp

{
−
∫ t

u

α(τ)dB1(τ)

}]

≤
{
E

[
exp

{
−2

∫ t

s

α(τ)dB1(τ)

}]
E

[
exp

{
−2

∫ t

u

α(τ)dB1(τ)

}]}1/2

= exp

{∫ t

s

α2(τ)dτ

}
exp

{∫ t

u

α2(τ)dτ

}
.

(4.31)

Substituting (4.31) into (4.30) yields

E

{∫ t

0
b(s) exp

{
−
∫ t

s

ν(τ)dτ −
∫ t

s

α(τ)dB1(τ)

}
ds

}2

=

{∫ t

0
b(s) exp

{
−
∫ t

s

ν(τ)dτ +
∫ t

s

α2(τ)dτ

}
ds

}2

=

{∫ t

0
b(s) exp

{
−
∫ t

s

[
a(τ) − c(τ)

m(τ)
− 3
2
α2(τ)

]
dτ

}
ds

}2

.

(4.32)
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On the other hand, by (4.29) and (4.32), we get

E
[
φ−2(t)

]
≤ 2x−2

0 exp

{
−2

∫ t

0
ρ(s)ds

}
+ 2

{∫ t

0
b(s) exp

{
−
∫ t

s

ρ(τ)dτ

}
ds

}2

≤ 2x−1
0 exp

{−2ρlt} + 2
(
bu

ρl

)2

≤ 2x−1
0 + 2

(
bu

ρl

)2

.

(4.33)

Finally, substituting (4.33) into (4.28) and noting from (4.24), we obtain the required assertion
(4.21).

By Theorem 3.2 and Lemma 4.10, similar to the proof of Theorem 4.6, we obtain the
following result.

Theorem 4.11. Let X(t) be the solution of (1.6) with any initial value X0 ∈ R2
+. If bl > 0, cl > 0,

dl > 0, ρl > 0, and σl > 0, then, for any ε > 0, there exist positive constants δ = δ(ε), H = H(ε)
such that

lim inf
t→+∞

P
{
y(t) ≤ H

} ≥ 1 − ε, lim inf
t→+∞

P
{
y(t) ≥ δ

} ≥ 1 − ε. (4.34)

Remark 4.12. Theorem 4.11 shows that if bl > 0, cl > 0, dl > 0, ρl > 0, and σl > 0, then the
predator species y must be permanent in probability. This implies that species prey x and
(1.6) are permanent in probability. In other words, the predator species y and species prey x
in (1.6) are both permanent in probability.

Remark 4.13. Obviously, system (1.4) is a special case of system (1.6). If a− (3/2)α2 − (c/m) >
0 and f − d − (3/2)β2 > 0, then, by Theorem 3.3 in [3], (1.4) is persistent in mean, but, by
our Theorem 4.11, the predator species y and species prey x in (1.4) are both stochastically
permanent.

5. Conclusions

In this paper, by the comparison theorem of stochastic equations and the Itô formula,
some results are established such as the stochastically ultimate boundedness and stochastic
permanence for a stochastic ratio-dependent predator-prey model with variable coefficients.
It is seen that several results in this paper extend and improve the earlier publications (see
Remark 3.4).
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