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By using the coincidence degree theory, we consider the following 2m-point boundary value
problem for fractional differential equationDα

0+u(t) = f(t, u(t), Dα−1
0+ u(t), Dα−2

0+ u(t)) + e(t), 0 < t < 1,
I3−α0+ u(t)|

t=0 = 0, Dα−2
0+ u(1) =

∑m−2
i=1 aiD

α−2
0+ u(ξi), u(1) =

∑m−2
i=1 biu(ηi), where 2 < α ≤ 3, Dα

0+ and Iα0+ are
the standard Riemann-Liouville fractional derivative and fractional integral, respectively. A new
result on the existence of solutions for above fractional boundary value problem is obtained.

1. Introduction

Fractional differential equations have been of great interest recently. This is because of the
intensive development of the theory of fractional calculus itself as well as its applications.
Apart from diverse areas of mathematics, fractional differential equations arise in a variety
of different areas such as rheology, fluid flows, electrical networks, viscoelasticity, chemical
physics, and many other branches of science (see [1–4] and references cited therein). The
research of fractional differential equations on boundary value problems, as one of the focal
topics has attained a great deal of attention from many researchers (see [5–13]).

However, there are few papers which consider the boundary value problem at
resonance for nonlinear ordinary differential equations of fractional order. In [14], Hu and
Liu studied the following BVP of fractional equation at resonance:

Dα
0+x(t) = f

(
t, x(t), x′(t), x′′(t)

)
, 0 ≤ t ≤ 1,

x(0) = x(1), x′(0) = x′′(0) = 0,
(1.1)

where 1 < α ≤ 2, Dα
0+ is the standard Caputo fractional derivative.
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In [15], Zhang and Bai investigated the nonlinear nonlocal problem

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,

u(0) = 0, βu
(
η
)
= u(1),

(1.2)

where 1 < α ≤ 2, they consider the case βηα−1 = 1, that is, the resonance case.
In [16], Bai investigated the boundary value problem at resonance

Dα
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t)
)
+ e(t), 0 < t < 1,

I2−α0+ u(t)|t=0 = 0, Dα−1
0+ u(1) =

m−2∑

i=0

βiD
α−1
0+ u

(
ηi
)

(1.3)

is considered, where 1 < α ≤ 2 is a real number, Dα
0+ and Iα0+ are the standard Riemann-

Liouville fractional derivative and fractional integral, respectively, and f : [0, 1] × R2 → R
is continuous and e(t) ∈ L1[0, 1], m ≥ 2, 0 < ξi < 1, βi ∈ R, i = 1, 2, . . . , m − 2 are given
constants such that

∑m−2
i=1 βi = 1.

In this paper, we study the 2m-point boundary value problem

Dα
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t), Dα−2
0+ u(t)

)
+ e(t), 0 < t < 1, (1.4)

I3−α0+ u(t)|t=0 = 0, Dα−2
0+ u(1) =

m−2∑

i=1

aiD
α−2
0+ u(ξi), u(1) =

m−2∑

i=1

biu
(
ηi
)
, (1.5)

where 2 < α ≤ 3, m ≥ 2, 0 < ξ1 < · · · < ξm < 1, 0 < η1 < · · · < ηm < 1, ai, bi ∈ R, f :
[0, 1] × R3 → R, f satisfies Carathéodory conditions, Dα

0+ and Iα0+ are the standard Riemann-
Liouville fractional derivative and fractional integral, respectively.

Setting

Λ1 =
1

α(α + 1)

(

1 −
m−2∑

i=1

aiξ
α+1
i

)

, Λ2 =
1

α(α − 1)

(

1 −
m−2∑

i=1

aiξ
α
i

)

,

Λ3 =
(Γ(α))2

Γ(2α)

[

1 −
m−2∑

i=1

biη
2α−1
i

]

, Λ4 =
Γ(α)Γ(α − 1)
Γ(2α − 1)

[

1 −
m−2∑

i=1

biη
2α−2
i

]

.

(1.6)

In this paper, we will always suppose that the following conditions hold:

(C1):

m−2∑

i=1

aiξi =
m−2∑

i=1

ai = 1,
m−2∑

i=1

biη
α−1
i =

m−2∑

i=1

biη
α−2
i = 1, (1.7)
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(C2):

Λ = Λ1Λ4 −Λ2Λ3 /= 0. (1.8)

We say that boundary value problem (1.4) and (1.5) is at resonance, if BVP

Dα
0+u(t) = 0,

I3−α0+ u(t)|t=0 = 0, Dα−2
0+ u(1) =

m−2∑

i=1

aiD
α−2
0+ u(ξi), u(1) =

m−2∑

i=1

biu
(
ηi
) (1.9)

has u(t) = atα−1 + btα−2, a, b ∈ R as a nontrivial solution.
The rest of this paper is organized as follows. Section 2 contains some necessary nota-

tions, definitions, and lemmas. In Section 3, we establish a theorem on existence of solutions
for BVP (1.4)-(1.5) under nonlinear growth restriction of f , basing on the coincidence degree
theory due to Mawhin (see [17]).

Now, we will briefly recall some notation and an abstract existence result.
Let Y,Z be real Banach spaces, L : domL ⊂ Y → Z a Fredholm map of index zero,s

and P : Y → Y, Q : Z → Z continuous projectors such that

Y = KerL ⊕ KerP, Z = ImL ⊕Q, ImP = KerL, KerQ = ImL. (1.10)

It follows that L|domL∩KerP : domL ∩KerP → ImL is invertible. We denote the inverse of the
map byKp. IfΩ is an open-bounded subset of Y such that domL∩Ω/= ∅, the mapN : Y → Z

will be called L-compact on Ω if QN(Ω) is bounded and Kp(I −Q)N : Ω → Y is compact.
The lemma that we used is [17, Theorem 2.4].

Lemma 1.1. Let L be a Fredholm operator of index zero and let N be L-compact on Ω. Assume that
the following conditions are satisfied:

(i) Lx/=λNx, for all (x, λ) ∈ [domL \ KerL ∩ ∂Ω] × [0, 1];

(ii) Nx /∈ ImL, for all x ∈ KerL ∩ ∂Ω;

(iii) deg(JQN|KerL, KerL ∩Ω, 0)/= 0,

where Q : Z → Z is a projection as above with KerQ = ImL and J : ImQ → KerL is any
isomorphism. Then the equation Lx = Nx has at least one solution in domL ∩Ω.

2. Preliminaries

For the convenience of the reader, we present here some necessary basic knowledge and
definitions about fractional calculus theory. These definitions can be found in the recent
literature [1–16, 18].
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Definition 2.1. The fractional integral of order α > 0 of a function y : (0,∞) → R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds, (2.1)

provided the right side is pointwise defined on (0,∞), where Γ(·) is the Gamma function.

Definition 2.2. The fractional derivative of order α > 0 of a function y : (0,∞) → R is given
by

Dα
0+y(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0

y(s)

(t − s)α−n+1
ds, (2.2)

where n = [α] + 1, provided the right side is pointwise defined on (0,∞).

Definition 2.3. We say that the map f : [0, 1]×Rn → R satisfies Carathéodory conditions with
respect to L1[0, 1] if the following conditions are satisfied:

(i) for each z ∈ Rn, the mapping t → f(t, z) is Lebesgue measurable;

(ii) for almost every t ∈ [0, 1], the mapping t → f(t, z) is continuous on Rn;

(iii) for each r > 0, there exists ρr ∈ L1([0, 1], R) such that for a.e. t ∈ [0, 1] and every
|z| ≤ r, we have f(t, z) ≤ ρr(t).

Lemma 2.4 (see [15]). Assume that u ∈ C(0, 1)∩L1(0, 1) with a fractional derivative of order α > 0
that belongs to C(0, 1) ∩ L1(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c1t
α−2 + · · · + cNtα−N (2.3)

for some ci ∈ R, i = 1, 2, . . . ,N, whereN is the smallest integer greater than or equal to α.

We use the classical Banach space C[0, 1] with the norm

‖x‖∞= max
t∈[0,1]

|x(t)|, (2.4)

L[0, 1] with the norm

‖x‖1=
∫1

0
|x(t)|dt. (2.5)

Definition 2.5. For n ∈ N, we denote by ACn[0, 1] the space of functions u(t) which have
continuous derivatives up to order n − 1 on [0, 1] such that u(n−1)(t) is absolutely continuous:
ACn[0, 1]={u | [0, 1] → R and (D(n−1))u(t) is absolutely continuous in [0, 1]}.

Lemma 2.6 (see [15]). Given μ > 0 and N = [μ] + 1 we can define a linear space

Cμ[0, 1] =
{
u(t) | u(t) = Iα0+x(t) + c1t

μ−1 + c2t
μ−2 + · · · + cNtμ−(N−1), t ∈ [0, 1]

}
, (2.6)
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where x ∈ [0, 1], ci ∈ R, i = 1, 2, . . . ,N − 1. By means of the linear functional analysis theory, we
can prove that with the

‖u‖Cμ =
∥
∥
∥D

μ

0+u
∥
∥
∥
∞
+ · · · +

∥
∥
∥D

μ−(N−1)
0+ u

∥
∥
∥
∞
+ ‖u‖∞, (2.7)

Cμ[0, 1] is a Banach space.

Remark 2.7. If μ is a natural number, then Cμ[0, 1] is in accordance with the classical Banach
space Cn[0, 1].

Lemma 2.8 (see [15]). f ⊂ Cμ[0, 1] is a sequentially compact set if and only if f is uniformly
bounded and equicontinuous. Here uniformly bounded means there exists M > 0, such that for every
u ∈ f

‖u‖Cμ =
∥
∥
∥D

μ

0+u
∥
∥
∥
∞
+ · · · +

∥
∥
∥D

μ−(N−1)
0+ u

∥
∥
∥
∞
+ ‖u‖∞ < M, (2.8)

and equicontinuous means that ∀ε > 0, ∃δ > 0, such that

|u(t1) − u(t2)| < ε,
(∀t1, t2 ∈ [0, 1], |t1 − t2| < δ, ∀u ∈ f

)
,

∣
∣
∣Dα−i

0+ u(t1) −Dα−i
0+ u(t2)

∣
∣
∣ < ε,

(∀t1, t2 ∈ [0, 1], |t1 − t2| < δ, ∀u ∈ f, ∀i = 1, 2, . . . ,N − 1
)
.

(2.9)

Lemma 2.9 (see [1]). Let α > 0, n = [α]+1. Assume that u ∈ L1(0, 1) with a fractional integration
of order n − α that belongs to ACn[0, 1]. Then the equality

(
Iα0+D

α
0+u
)
(t) = u(t) −

n∑

i=1

((
In−α0+ u

)
(t)
)n−i|t=0

Γ(α − i + 1)
tα−i (2.10)

holds almost everywhere on [0, 1].

Definition 2.10 (see [16]). Let Iα0+(L
1(0, 1)), α > 0 denote the space of functions u(t),

represented by fractional integral of order α of a summable function: u = Iα0+v, v ∈ L1(0, 1).

Let Z = L1[0, 1], with the norm ‖y‖ =
∫1
0 |y(s)|ds, Y = Cα−1[0, 1] defined by Lemma 2.6,

with the norm ‖u‖Cα−1 = ‖Dα−1
0+ u‖∞ + ‖Dα−2

0+ u‖∞ + ‖u‖∞, where Y is a Banach space.
Define L to be the linear operator from domL ⊂ Y to Z with

domL =
{
u ∈ Cα−1[0, 1] | Dα

0+u ∈ L1[0, 1], u satisfies(1.5)
}
, (2.11)

Lu = Dα
0+u, u ∈ domL, (2.12)
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we defineN : Y → Z by setting

Nu(t) = f
(
t, u(t), Dα−1

0+ u(t)Dα−2
0+ u(t)

)
+ e(t). (2.13)

Then boundary value problem (1.4) and (1.5) can be written as Lu = Nu.

3. Main Results

Lemma 3.1. Let L be defined by (2.12), then

KerL =
{
atα−1 + btα−2 | a, b ∈ R

} ∼= R2,

ImL =

{

y ∈ Z |
∫1

0
(1 − s)y(s)ds −

m−2∑

i=1

ai

∫ ξi

0
(ξi − s)y(s)ds = 0,

∫1

0
(1 − s)α−1y(s)ds −

m−2∑

i=1

bi

∫ηi

0

(
ηi − s

)α−1
y(s)ds = 0

}

.

(3.1)

Proof. In the following lemma, we use the unified notation of both for fractional integrals
and fractional derivatives assuming that Iα0+ = D−α

0+ for α < 0.
Let Lu = Dα

0+u, by Lemma 2.9, Dα
0+u(t) = 0 has solution

u(t) =
3∑

i=1

((
I3−α0+ u

)
(t)
)3−i|t=0

Γ(α − i + 1)
tα−i

=

((
I3−α0+ u

)
(t)
)′′|t=0

Γ(α)
tα−1 +

((
I3−α0+ u

)
(t)
)′|t=0

Γ(α − 1)
tα−2 +

((
I3−α0+ u

)
(t)
)|t=0

Γ(α − 2)
tα−3

=
Dα−1

0+ u(t)|t=0
Γ(α)

tα−1 +
Dα−2

0+ u(t)|t=0
Γ(α − 1)

tα−2 +

((
I3−α0+ u

)
(t)
)|t=0

Γ(α − 2)
tα−3.

(3.2)

Combine with (1.5), So,

KerL =
{
atα−1 + btα−2 | a, b ∈ R

} ∼= R2. (3.3)

Let y ∈ Z and let

ut =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds + c1t

α−1 + c2t
α−2 + c3t

α−3. (3.4)
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Then Dα
0+u(t) = y(t) a.e. t ∈ [0, 1] and, if

∫1

0
(1 − s)y(s)ds −

m−2∑

i=1

ai

∫ ξi

0
(ξi − s)y(s)ds = 0,

∫1

0
(1 − s)α−1y(s)ds −

m−2∑

i=1

bi

∫ηi

0

(
ηi − s

)α−1
y(s)ds = 0

(3.5)

hold, then u(t) satisfies the boundary conditions (1.5). That is, u ∈ domL and we have

{
y ∈ Z | y satisfies (3.4)

} ⊆ ImL. (3.6)

Let u ∈ domL. Then for Dα
0+u ∈ ImL, we have

Iα0+y(t) = u(t) − c1t
α−1 − c2t

α−2 − c3t
α−3, (3.7)

where

c1 =
Dα−1

0+ u(t)|t=0
Γ(α)

, c2 =
Dα−2

0+ u(t)|t=0
Γ(α − 1)

, c3 =
I3−α0+ u(t)|t=0
Γ(α − 2)

, (3.8)

which, due to the boundary value condition (1.5), implies that satisfies (3.5). In fact, from
I3−α0+ u(t)|t=0 = 0 we have c3 = 0, from Dα−2

0+ u(1) =
∑m−2

i=1 aiD
α−2
0+ u(ξi), u(1) =

∑m−2
i=1 biu(ηi), we

have

∫1

0
(1 − s)y(s)ds −

m−2∑

i=1

ai

∫ ξi

0
(ξi − s)y(s)ds = 0,

∫1

0
(1 − s)α−1y(s)ds −

m−2∑

i=1

bi

∫ηi

0

(
ηi − s

)α−1
y(s)ds = 0.

(3.9)

Hence,

{
y ∈ Z | y satisfies (3.4)

} ⊇ ImL. (3.10)

Therefore,

{
y ∈ Z | y satisfies (3.4)

}
= ImL. (3.11)

The proof is complete.

Lemma 3.2. The mapping L : domL ⊂ Y → Z is a Fredholm operator of index zero, and

Qy(t) =
(
T1y(t)

)
tα−1 +

(
T2y(t)

)
tα−2, (3.12)
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where

T1y =
1
Λ
(
Λ4Q1y −Λ2Q2y

)
, T2y =

1
Λ
(
Λ3Q1y −Λ1Q2y

)
, (3.13)

define by Kp : ImL → domL ∩ KerP by

Kpy(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds = Iα0+y(t), y ∈ ImL, (3.14)

and for all y ∈ ImL, ‖Kpy‖Cα−1 ≤ ((1/Γ(α)) + 2)‖y‖1.

Proof. Consider the continuous linear mapping Q1 : Z → Z and Q2 : Z → Z defined by

Q1y =
∫1

0
(1 − s)y(s)ds −

m−2∑

i=1

ai

∫ ξi

0
(ξi − s)y(s)ds,

Q2y =
∫1

0
(1 − s)α−1y(s)ds −

m−2∑

i=1

bi

∫ηi

0

(
ηi − s

)α−1
y(s)ds.

(3.15)

Using the above definitions, we construct the following auxiliary maps T1 : Z → Z and
T2 : Z → Z:

T1y =
1
Λ
(
Λ4Q1y −Λ2Q2y

)
,

T2y =
1
Λ
(
Λ3Q1y −Λ1Q2y

)
.

(3.16)

Since the condition (C2) holds, the mapping defined by

Qy(t) =
(
T1y(t)

)
tα−1 +

(
T2y(t)

)
tα−2 (3.17)

is well defined.
Recall (C2) and note that

T1
(
T1yt

α−1
)
=

1
Λ

(
Λ4Q1

(
T1yt

α−1
)
−Λ2Q2

(
T1yt

α−1
))

=
1
Λ

[

Λ4

(
Λ4Λ1

Λ
Q1y − Λ1Λ2

Λ
Q2y

)

−Λ2

(
Λ4Λ3

Λ
Q1y − Λ2Λ3

Λ
Q2y

)]

= T1y,

(3.18)
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and similarly we can derive that

T1
(
T2yt

α−2
)
= 0, T2

(
T1yt

α−1
)
= 0, T2

(
T2yt

α−2
)
= T2y. (3.19)

So, for y ∈ Z, it follows from the four relations above that

Q2y = Q
((

T1y
)
tα−1 +

(
T2y

)
tα−2

)

= T1
((

T1y
)
tα−1 +

(
T2y

)
tα−2

)
tα−1 + T2

((
T1y

)
tα−1 +

(
T2y

)
tα−2

)
tα−2

=
(
T1y

)
tα−1 +

(
T2y

)
tα−2

= Qy,

(3.20)

that is, the map Q is idempotent. In fact Q is a continuous linear projector.
Note that y ∈ ImL implies Qy = 0. Conversely, if Qy = 0, so

Λ4Q1y −Λ2Q2y = 0,

Λ1Q2y −Λ3Q1y = 0,
(3.21)

but

∣
∣
∣
∣
∣

Λ4 −Λ2

−Λ3 Λ1

∣
∣
∣
∣
∣
= Λ4Λ1 −Λ2Λ3 /= 0, (3.22)

then we must have Q1y = Q2y = 0; since the condition (C2) holds, this can only be the case if
Q1y = Q2y = 0, that is, y ∈ ImL. In fact KerQ = ImL, take y ∈ Z in the form y = (y−Qy)+Qy
so that y − Qy ∈ KerQ = ImL,Qy ∈ ImQ, thus, Z = ImL + ImQ, Let y ∈ ImL ∩ ImQ and
assume that y = atα−1 + btα−2 is not identically zero on [0, 1]. Then, since y ∈ ImL, from (3.5)
and the condition (C2), we have

Q1y =
∫1

0
(1 − s)

(
asα−1 + bsα−2

)
ds −

m−2∑

i=1

ai

∫ ξi

0
(ξi − s)

(
asα−1 + bsα−2

)
ds = 0,

Q2y =
∫1

0
(1 − s)α−1

(
asα−1 + bsα−2

)
ds −

m−2∑

i=1

bi

∫ηi

0

(
ηi − s

)α−1(
asα−1 + bsα−2

)
ds = 0.

(3.23)

So

aΛ1 + bΛ2 = 0,

aΛ3 + bΛ4 = 0,
(3.24)
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but

∣
∣
∣
∣
∣

Λ1 Λ2

Λ3 Λ4

∣
∣
∣
∣
∣
= Λ1Λ4 −Λ2Λ3 /= 0, (3.25)

we derive a = b = 0, which is a contradiction. Hence, ImL∩ ImQ = {0}; thus Z = ImL⊕ ImQ.
Now, dimKerL = 2 = codimImL and so L is a Fredholm operator of index zero.
Let P : Y → Y be defined by

Pu(t) =
1

Γ(α)
Dα−1

0+ u(t)|t=0tα−1 + 1
Γ(α − 1)

Dα−2
0+ u(t)|t=0tα−2, t ∈ [0, 1]. (3.26)

Note that P is a continuous linear projector and

KerP =
{
u ∈ Y | Dα−1

0+ u(0) = Dα−2
0+ u(0) = 0

}
. (3.27)

It is clear that Y = KerP ⊕ KerL.
Note that the projectors P and Q are exact. Define by Kp : ImL → domL ∩ KerP by

Kpy(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds = Iα0+y(t), y ∈ ImL. (3.28)

Hence we have

Dα−1
0+

(
Kpy

)
t =

∫ t

0
y(s)ds, Dα−2

0+

(
Kpy

)
t =

∫ t

0
(t − s)y(s)ds, (3.29)

then

∥
∥Kpy

∥
∥
∞ ≤ 1

Γ(α)

∥
∥y
∥
∥
1,

∥
∥
∥Dα−1

0+

(
Kpy

)∥∥
∥
∞
≤ ∥∥y∥∥1,

∥
∥
∥Dα−2

0+

(
Kpy

)∥∥
∥
∞
≤ ∥∥y∥∥1, (3.30)

and thus

∥
∥Kpy

∥
∥
Cα−1 ≤

(
1

Γ(α)
+ 2
)
∥
∥y
∥
∥
1. (3.31)

In fact, if y ∈ ImL, then

(
LKp

)
y(t) = Dα

0+I
α
0+y(t) = y(t). (3.32)

Also, if u ∈ domL ∩ KerP , then

(
KpL

)
u(t) = Iα0+D

α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + c3t

α−3, (3.33)
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where

c1 =
Dα−1

0+ u(t)|t=0
Γ(α)

, c2 =
Dα−2

0+ u(t)|t=0
Γ(α − 1)

, c3 =
I3−α0+ u(t)|t=0
Γ(α − 2)

, (3.34)

and from the boundary value condition (1.5) and the fact that u ∈ domL ∩ KerP , Pu = 0,
Dα−1

0+ u(t)|t=0 = Dα−2
0+ u(t)|t=0 = I3−α0+ u(t)|

t=0 = 0, we have c1 = c2 = c3 = 0, thus

(
KpL

)
u(t) = u(t). (3.35)

This shows that Kp = [L|domL∩KerP ]
−1. The proof is complete. Using (3.16), we write

QNu(t) = (T1Nu)tα−1 + (T2Nu)tα−2,

Kp(I −Q)Nu(t) =
1

Γ(α)

∫ t

0
(t − s)α−1[Nu(s) −QNu(s)]ds.

(3.36)

By Lemma 2.8 and a standard method, we obtain the following lemma.

Lemma 3.3 (see [16]). For every given e ∈ L1[0, 1], Kp(I −Q)N : Y → Y is completely continu-
ous.

Assume that the following conditions on the function f(t, x, y, z) are satisfied.

(H1) There exist functions a(t), b(t), c(t), d(t), r(t) ∈ L1[0, 1], and a constant θ ∈ [0, 1)
such that for all (x, y, z) ∈ R3, t ∈ [0, 1], one of the following inequalities is sat-
isfied:

∣
∣f
(
t, x, y, z

)∣
∣ ≤ a(t)|x| + b(t)

∣
∣y
∣
∣ + c(t)|z| + d(t)|x|θ + r(t), (3.37)

∣
∣f
(
t, x, y, z

)∣
∣ ≤ a(t)|x| + b(t)

∣
∣y
∣
∣ + c(t)|z| + d(t)

∣
∣y
∣
∣θ + r(t), (3.38)

∣
∣f
(
t, x, y, z

)∣
∣ ≤ a(t)|x| + b(t)

∣
∣y
∣
∣ + c(t)|z| + d(t)|z|θ + r(t). (3.39)

(H2) There exists a constantA > 0, such that for x ∈ domL \KerL satisfying |Dα−1
0+ x(t)|+

|Dα−2
0+ x(t)| > A for all t ∈ [0, 1], we have

Q1Nx(t)/= 0, or Q2Nx(t)/= 0. (3.40)

(H3) There exists a constant B > 0 such that for every a, b ∈ R satisfying a2 + b2 > B then
either

aT1N
(
atα−1 + btα−2

)
+ bT2N

(
atα−1 + btα−2

)
< 0, (3.41)
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or

aT1N
(
atα−1 + btα−2

)
+ bT2N

(
atα−1 + btα−2

)
> 0. (3.42)

Remark 3.4. T1N(atα−1+btα−2) and T2N(atα−1+btα−2) from (H3) stand for the images of u(t) =
atα−1 + btα−2 under the maps T1N and T2N, respectively.

Lemma 3.5. Suppose (H1)-(H2) hold, then the set

Ω1 = {x ∈ domL \ KerL : Lx = λNx, λ ∈ [0, 1]} (3.43)

is bounded.

Proof. Take

Ω1 = {x ∈ domL \ KerL : Lx = λNx, λ ∈ [0, 1]}. (3.44)

Then for x ∈ Ω1, Lx = λNx thus λ/= 0, Nx ∈ ImL = KerQ, and hence QNx(t) for all
t ∈ [0, 1]. By the definition of Q, we have Q1Nx(t) = Q2Nx(t) = 0. It follows from (H2) that
there exists t0 ∈ [0, 1], such that |Dα−1

0+ u(t0)| + |Dα−2
0+ u(t0)| ≤ A.

Now

Dα−1
0+ x(t) = Dα−1

0+ x(t0) +
∫ t

t0

Dα
0+x(s)ds,

Dα−2
0+ x(t) = Dα−2

0+ x(t0) +
∫ t

t0

Dα−1
0+ x(s)ds,

(3.45)

and so

∣
∣
∣Dα−1

0+ x(0)
∣
∣
∣ ≤

∥
∥
∥Dα−1

0+ x(t)
∥
∥
∥
∞

≤
∣
∣
∣Dα−1

0+ x(t0)
∣
∣
∣ +
∥
∥
∥Dα−1

0+ x
∥
∥
∥
1

≤ A + ‖Lx‖1 ≤ A + ‖Nx‖1,
∣
∣
∣Dα−2

0+ x(0)
∣
∣
∣ ≤

∥
∥
∥Dα−2

0+ x(t)
∥
∥
∥
∞

≤
∣
∣
∣Dα−2

0+ x(t0)
∣
∣
∣ +
∥
∥
∥Dα−1

0+ x
∥
∥
∥
∞

≤
∣
∣
∣Dα−2

0+ x(t0)
∣
∣
∣ +
∣
∣
∣Dα−1

0+ x(t0)
∣
∣
∣ +
∥
∥Dα

0+x
∥
∥
1

≤ A + ‖Lx‖1 ≤ A + ‖Nx‖1.

(3.46)
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Therefore, we have

‖Px‖Cα−1 =
∥
∥
∥
∥

1
Γ(α)

Dα−1
0+ x(0)tα−1 +

1
Γ(α − 1)

Dα−2
0+ x(0)tα−2

∥
∥
∥
∥
Cα−1

=
∥
∥
∥
∥

1
Γ(α)

Dα−1
0+ x(0)tα−1 +

1
Γ(α − 1)

Dα−2
0+ x(0)tα−2

∥
∥
∥
∥
∞

+
∥
∥
∥Dα−1

0+ x(0)
∥
∥
∥
∞
+
∥
∥
∥Dα−1

0+ x(0)t +Dα−2
0+ x(0)

∥
∥
∥
∞

≤
(

2 +
1

Γ(α)

)∣
∣
∣Dα−1

0+ x(0)
∣
∣
∣ +
(

1 +
1

Γ(α − 1)

)∣
∣
∣Dα−2

0+ x(0)
∣
∣
∣

≤
(

2 +
1

Γ(α)

)

(A + ‖Nx‖1) +
(

1 +
1

Γ(α − 1)

)

(A + ‖Nx‖1).

(3.47)

Note that (I − P)x ∈ domL ∩ KerP for all x ∈ Ω1. Then, by Lemma 3.2, we have

‖(I − P)x‖Cα−1 =
∥
∥KpL(I − P)x

∥
∥
Cα−1 ≤

(

2 +
1

Γ(α)

)

‖Nx‖1, (3.48)

so, we have

‖x‖Cα−1 ≤ ‖(I − P)x‖Cα−1 + ‖Px‖Cα−1

≤
(

2 +
1

Γ(α)

)

(A + ‖Nx‖1) +
(

1 +
1

Γ(α − 1)

)

(A + ‖Nx‖1)

+
(

2 +
1

Γ(α)

)

‖Nx‖1

=
(

2
Γ(α)

+
1

Γ(α − 1)
+ 5
)

‖Nx‖1

+
(

1
Γ(α)

+
1

Γ(α − 1)
+

1
Γ(α − 2)

+ 3
)

A

≤ m‖Nx‖1 + nA,

(3.49)

wherem = ((2/Γ(α)) + (1/Γ(α − 1)) + 5), n = ((1/Γ(α)) + (1/Γ(α − 1)) + (1/(Γ(α − 2)) + 3), A
is a constant. This is for all x ∈ Ω1. If the first condition of (H1) is satisfied, then, we have

‖x‖Cα−1 = max
{
‖x‖∞,

∥
∥
∥Dα−1

0+ x
∥
∥
∥
∞
,
∥
∥
∥Dα−2

0+ x
∥
∥
∥
∞

}

≤ m

[

‖a‖1‖x‖∞ + ‖b‖1
∥
∥
∥Dα−1

0+ x
∥
∥
∥
∞
+ ‖c‖1

∥
∥
∥Dα−2

0+ x
∥
∥
∥
∞

+‖d‖1
∥
∥
∥Dα−2

0+ x
∥
∥
∥
θ

∞
+D

]

,

(3.50)
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where D = ‖r‖1 + ‖e‖1 + n/m, and consequently, for

‖x‖∞ ≤ ‖x‖Cα−1 ,
∥
∥
∥Dα−1

0+ x
∥
∥
∥
∞
≤ ‖x‖Cα−1 ,

∥
∥
∥Dα−2

0+ x
∥
∥
∥
∞
≤ ‖x‖Cα−1 , (3.51)

so

‖x‖∞ ≤ m

1 −m‖a‖1

[

‖b‖1
∥
∥
∥Dα−1

0+ x
∥
∥
∥
∞
+ ‖c‖1

∥
∥
∥Dα−2

0+ x
∥
∥
∥
∞
+ ‖d‖1

∥
∥
∥Dα−2

0+ x
∥
∥
∥
θ

∞
+D

]

,

∥
∥
∥Dα−1

0+ x
∥
∥
∥
∞
≤ m

1 −m‖a‖1 −m‖b‖1

[

‖c‖1
∥
∥
∥Dα−2

0+ x
∥
∥
∥
∞
+ ‖d‖1

∥
∥
∥Dα−2

0+ x
∥
∥
∥
θ

∞
+D

]

,

∥
∥
∥Dα−2

0+ x
∥
∥
∥
∞
≤ m

1 −m‖a‖1 −m‖b‖1 −m‖c‖1

(

‖d‖1
∥
∥
∥Dα−2

0+ x
∥
∥
∥
θ

∞
+D

)

.

(3.52)

But θ ∈ [0, 1) and ‖a‖1 + ‖b‖1 + ‖c‖1 ≤ 1/m, so there exists A1, A2, A3 > 0 such that

∥
∥
∥Dα−2

0+ x
∥
∥
∥
∞
≤ A1,

∥
∥
∥Dα−1

0+ x
∥
∥
∥
∞
≤ A2, ‖x‖∞ ≤ A3. (3.53)

Therefore, for all x ∈ Ω1,

‖x‖Cα−1 = max
{
‖x‖∞,

∥
∥
∥Dα−1

0+ x
∥
∥
∥
∞
,
∥
∥
∥Dα−2

0+ x
∥
∥
∥
∞

}
≤ max{A1, A2, A3}, (3.54)

we can prove that Ω1 is also bounded.
If (3.38) or (3.39) holds, similar to the above argument, we can prove thatΩ1 is bound-

ed too.

Lemma 3.6. Suppose (H3) holds, then the set

Ω2 = {x ∈ KerL : Nx ∈ ImL} (3.55)

is bounded.

Proof. Let

Ω2 = {x ∈ KerL : Nx ∈ ImL}, (3.56)

for x ∈ Ω2, x ∈ KerL = {x ∈ domL : x = atα−1 + btα−2, a, b ∈ R, t ∈ [0, 1]} and QNx(t) = 0;
thus T1N(atα−1+btα−2) = T2N(atα−1+btα−2) = 0. By (H3), a2+b2 ≤ B, that is,Ω2 is bounded.

Lemma 3.7. Suppose (H3) holds, then the set

Ω3 = {x ∈ KerL : −λJx + (1 − λ)QNx = 0, λ ∈ [0, 1]} (3.57)

is bounded.
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Proof. We define the isomorphism J : KerL → ImQ by

J
(
atα−1 + btα−2

)
= atα−1 + btα−2. (3.58)

If the first part of (H3) is satisfied, let

Ω3 = {x ∈ KerL : −λJx + (1 − λ)QNx = 0, λ ∈ [0, 1]}. (3.59)

For every x = atα−1 + btα−2 ∈ Ω3,

λ
(
atα−1 + btα−2

)
= (1 − λ)

[
T1N

(
atα−1 + btα−2

)
tα−1 + T2N

(
atα−1 + btα−2

)
tα−1

]
. (3.60)

If λ = 1, then a = b = 0, and if a2 + b2 > B, then by (H3)

λ
(
a2 + b2

)
= (1 − λ)

[
aT1N

(
atα−1 + btα−2

)
+ bT2N

(
atα−1 + btα−2

)]
< 0, (3.61)

which, in either case, is a contradiction. If the other part of (H3) is satisfied, then we take

Ω3 = {x ∈ KerL : λJx + (1 − λ)QNx = 0, λ ∈ [0, 1]}, (3.62)

and, again, obtain a contradiction. Thus, in either case

‖x‖Cα−1 =
∥
∥
∥atα−1 + btα−2

∥
∥
∥
Cα−1

=
∥
∥
∥atα−1 + btα−2

∥
∥
∥
∞
+ ‖aΓ(α)‖∞ + ‖aΓ(α)t + bΓ(α − 1)‖∞

≤ (1 + 2Γ(α))|a| + (1 + Γ(α − 1))|b|
≤ (2 + 2Γ(α) + Γ(α − 1))B,

(3.63)

for all x ∈ Ω3, that is, Ω3 is bounded.

Remark 3.8. Suppose the second part of (H3) holds, then the set

Ω′
3 = {x ∈ KerL : λJx + (1 − λ)QNx = 0, λ ∈ [0, 1]} (3.64)

is bounded.

Theorem 3.9. If (C1)-(C2) and (H1)–(H3) hold, then the boundary value problem (1.4)-(1.5) has
at least one solution.

Proof. Set Ω to be a bounded open set of Y such that ∪3
i=1Ω ⊂ Ω. It follows from Lemmas 3.2

and 3.3 that L is a Fredholm operator of index zero, and the operatorKp(I −Q)N : Ω → Y is
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compact N, thus, is L-compact on Ω. By Lemmas 3.5 and 3.6, we get that the following two
conditions are satisfied:

(i) Lx/=λNx for every (x, λ) ∈ [domL \ KerL ∩ ∂Ω] × [0, 1];

(ii) Nx /∈ ImL, for every x ∈ KerL ∩ ∂Ω.

Finally, we will prove that (iii) of Lemma 1.1 is satisfied. Let H(x, λ) = ±λJx + (1 −
λ)QNx, where I is the identity operator in the Banach space Y . According to Lemma 3.7 (or
Remark 3.8), we know that H(x, λ)/= 0, for all x ∈ ∂Ω ∩ KerL, and thus, by the homotopy
property of degree,

deg(QN|KerL,KerL ∩Ω, 0) = deg(H(·, 0),KerL ∩Ω, 0)

= deg(H(·, 1),KerL ∩Ω, 0)

= deg(±I,KerL ∩Ω, 0)

= sgn

⎡

⎢
⎣±

∣
∣
∣
∣
∣
∣
∣

Λ4

Λ
−Λ2

Λ
−Λ3

Λ
Λ1

Λ

∣
∣
∣
∣
∣
∣
∣

⎤

⎥
⎦ = sgn

(

±Λ1Λ4 −Λ2Λ3

Λ

)

= ±1/= 0.

(3.65)

Then by Lemma 1.1, Lx = Nx has at least one solution in domL ∩Ω, so the boundary value
problem (1.4) and (1.5) has at least one solution in the space Cα−1[0, 1]. The proof is finished.

4. An Example

Let us consider the following boundary value problem:

D5/2
0+ u(t) = f

(
t, u(t), Dα−1

0+ u(t), Dα−2
0+ u(t)

)
+ e(t), 0 < t < 1,

I3−α0+ u(t)|t=0 = 0, D1/2
0+ u(1) = 2D1/2

0+ u

(
2
3

)

−D1/2
0+ u

(
1
3

)

, u(1) =
64
5
u

(
1
4

)

− 81
5
u

(
1
9

)

,

(4.1)

where

f
(
t, u(t), Dα−1

0+ u(t), Dα−2
0+ u(t)

)
=

1
40

sin(u(t)) +
1
20

D3/2
0+ u(t) +

1
20

D1/2
0+ u(t)

+ 5 cos
(
D1/2

0+ u(t)
)1/5

.

(4.2)
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Corresponding to the problem (1.4)-(1.5), we have that e(t) = 1 + 3sin2t, α = 5/2, a1 = −1,
a2 = 2, ξ1 = 1/3, ξ2 = 2/3, b1 = 64/5, b2 = −81/5, η1 = 1/4, η2 = 1/9 and

f
(
t, x, y, z

)
=

1
40

sinx +
1
20

y +
1
20

z + 5 cos (z)1/5, (4.3)

then there is

a1 + a2 = 1, a1ξ1 + a2ξ2 = 1,

b1η
3/2
1 + b2η

3/2
2 = 1, b1η

1/2
1 + b2η

1/2
2 = 1,

Λ1 =
4
35

(

1 −
2∑

i=1

aiξ
7/2
i

)

, Λ2 =
4
15

(

1 −
2∑

i=1

aiξ
5/2
i

)

,

Λ3 =
(Γ(5/2))2

24

[

1 −
2∑

i=1

biη
4
i

]

, Λ4 =
1
6
Γ(5/2)Γ(3/2)

24

[

1 −
2∑

i=1

biη
3
i

]

,

Λ = Λ1Λ4 −Λ2Λ3 /= 0,

∣
∣f
(
t, x, y, z

)∣
∣ ≤ 1

40
|x| + 1

20
∣
∣y
∣
∣ +

1
20

|z| + 5|z|1/5.

(4.4)

Again, taking a = 1/40, b = c = 1/20, then

‖a‖1 + ‖b‖1 + ‖c‖1 = 1/8,

1
m

=
1

(2/Γ(α)) + (1/Γ(α − 1)) + 5
≈ 0.131,

(4.5)

therefore

‖a‖1 + ‖b‖1 + ‖c‖1 <
1
m
. (4.6)

Take A = 181, B = 81. By simple calculation, we can get that (C1)-(C2) and (H1)–(H3) hold.
By Lemma 1.1, we obtain that (4.1) has at least one solution.

Acknowledgments

This work is sponsored by NNSF of China (10771212) and the Fundamental Research Funds
for the Central Universities (2010LKSX09).

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B. V., Amsterdam, The
Netherland, 2006.



18 Journal of Applied Mathematics

[2] J. Sabatier, O.P. Agrawal, and J. A. T. Machado, Eds., Advances in Fractional Calculus: Theoretical
Developments and Applications in Physics and Engineering, Springer, Dordrecht, The Netherland, 2007.

[3] V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems, Academic
Publishers, Oxford, UK, 2009.

[4] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering,
Academic Press Inc., San Diego, Calif, USA, 1999.

[5] V. Lakshmikantham and A. S. Vatsala, “Theory of fractional differential inequalities and applica-
tions,” Communications in Applied Analysis, vol. 11, no. 3-4, pp. 395–402, 2007.

[6] Z. Bai, “On positive solutions of a nonlocal fractional boundary value problem,” Nonlinear Analysis.
Theory, Methods & Applications, vol. 72, no. 2, pp. 916–924, 2010.
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