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We present and investigate a method of chaotic pulse-time modulation (PTM) named
chaotic pulse-width-position modulation (CPWPM) which is the combination of pulse-position-
modulation (PPM) and pulse-width modulation (PWM) with the inclusion of chaos technique for
digital communications. CPWPM signal is in the pulse train format, in which binary information
is modulated onto chaotically-varied intervals of position and width of pulses, and therefore two
bits are encoded on a single pulse. The operation of the method is described and the theoretical
evaluation of bit-error rate (BER) performance in the presence of additive white Gaussian noise
(AWGN) is provided. In addition, the chaotic behavior with tent map and its effect on average
parameters of the system are investigated. Theoretical estimation and numerical simulation of a
CPWPM system with specific parameters are carried out in order to verify the performance of the
proposed method.

1. Introduction

In recent years, chaotic behavior has been investigated in various research fields such as
physics, biology, chemistry, and engineering [1]. Chaos-based digital communication has
been receiving significant attention [2] due to its potentials in improving the privacy of
information [3]. Many chaos-based modulation methods have been proposed using different
modulation schemes [3, 4]. Each method has its own advantages and disadvantages but most
of them use the chaotic carrier created by a chaotic dynamical system to convey information,
so they are sensitive to distortion and noise that can strongly affect the synchronization [5–7]
and cause errors in recovering information.

Pulse-time modulation (PTM) technique was reported in the last 1940s [8] and it has
received significant attention for the development of digital communication, especially with
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optical fiber transmission system. In PTM, the binary information is modulated onto one
of time-dependent parameters such as position, width, interval, or frequency in order to
create the corresponding methods which are pulse-position modulation (PPM), pulse-width
modulation (PWM), pulse-interval modulation (PIM) or pulse-frequency modulation (PFM)
[9].

A chaotic PTM method named chaotic-pulse-position modulation (CPPM) was
proposed [10, 11] to reduce the effect of the channel on chaos synchronization. Since binary
information is only modulated onto the interpulse intervals, the impact of distortion and
noise on the pulse shape does not seriously affect the synchronization process. The principal
advantage of CPPM is the automatic synchronization with the noncoherent demodulation
type and without the need of specific hand-shaking protocols [12].

In this research, we present and investigate a method named chaotic-pulse-position-
width modulation (CPWPM) which is the combination of PPM and PWM with the inclusion
of chaos technique. In which, the binary information is modulated onto two chaotically-
varied intervals that are position and width of pulses. The position and width of a pulse
are determined by time intervals from its rising edge to the previous rising edge and to its
falling edge, respectively. With each received pulse, the binary information of two bits are
recovered and thus transmission rate can be improved. Since the CPWPM signal also has the
pulse train format which guides the synchronization in an automatic way, so this method
performs well in distortion- and noise-affected channels as well as achieves a high level of
information privacy.

The rest of this paper is organized as follows: the operation of the CPWPM method is
described in Section 2. Section 3 presents the theoretical evaluation of the BER performance
in AWGN channel. In Section 4, we investigate the chaotic behavior of CPWPM with tent
map, from that average parameters of the system are determined. A CPWPM system with
specific parameters is calculated and simulated, and their results are shown in Section 5.
Finally, concluding remarks are given in Section 6.

2. Description of CPWPM

In this section we describe operation of the CPWPM method by means of the analysis
of modulation and demodulation schemes which are illustrated in Figures 1(a) and 1(b),
respectively. Basically, each scheme is built around a chaotic pulse regenerator (CPRG) as
shown in Figure 2.

2.1. CPRG

In the CPRG, a counter operates in free running mode to produce a linearly increasing signal,
C(t) = K1t, where t is the time duration from the reset instance and K1 is count-step (the
slope of the signal). This linearly increasing signal is reset to zero by the input pulse. Before
the reset time, tn, the output value of the counter, X1

n = K1ΔTn, is stored in the sample-and-
hold circuit (S +H) whose output is fed to the nonlinear converter, F(·). An amplifier with a
gain-factor, K > 1, is used to produce another linearly increasing signal, A(t) = KK1t = K2t,
which has a higher slope compared with that of the input signal. When the magnitude of the
output signal of the amplifier and that of counter reach the same value F(X1

n) at the output of
the F(·), two narrow pulses at Outputs 2 and 1 are generated at the times, t2n = tn + F(X1

n)/K2

and t1n = tn + F(X1
n)/K1, respectively. It is easy to see that the time t2n is earlier than t1n and
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Figure 1: (a) Modulation scheme, (b) demodulation scheme.
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these times can be controlled by the values of the gain-factor K and count-step K1. With a
proper choice of parameters, when Output 1 is connected back to the input to form a closed
loop, CPRG will generate two chaotic pulse trains at its two outputs.

2.2. Modulation

In the modulation scheme, the binary information is modulated separately onto the
interpulse intervals of two consecutive pulses at the outputs of CPRG by using delay
modulators in the corresponding feedback loops. At the delay modulators, the input pulses
trigger data source to get the next binary bits S2

n and S1
n+1. Depending on the values of these

binary bits, the input pulses, O2(t) and O1(t), are delayed by time durations, d2 +m2S
2
n and

d1 +m1S
1
n+1, respectively. Note that d1 and d2 are constant time delays inserted to guarantee

the synchronization of the system, m1 and m2 are modulation depths which are delayed-
time differences between “0” and “1” bits. Therefore, the delayed pulses M2(t) and M1(t) at
the outputs of the delay modulators 2 and 1 are generated at the times, t∗n = t2n + d2 + m2S

2
n

and tn+1 = t1n + d1 + m1S
1
n+1, respectively. After that, the modulated chaotic pulse trains are
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applied to a pulse-triggered edge generator (PTEG) whose output will switch to high and
low levels as triggering by the inputs, M1(t) and M2(t), to define the position and width of
pulses, respectively. The pulse train at the output of PTEG is the CPWPM signal which is
mathematically expressed as follows:

UCPWPM(t) =
∞∑

n=0

A[u(t − tn) − u(t − tn −Δτn)], (2.1)

where u(t) is the unit-step function, tn is the time to generate the nth pulse, and A and Δτn
are the amplitude and width of pulses, respectively. It is clear that the width of the nth pulse
and the position of the (n + 1)th pulse are determined by the following intervals:

Δτn =
F(K1ΔTn)

K2
+ d2 +m2S

2
n ,

ΔTn+1 =
F(K1ΔTn)

K1
+ d1 +m1S

1
n+1.

(2.2)

The comparison between the PPM, PWM, and CPWPM signals in the time domain
is illustrated in Figure 3. In the conventional PPM, the binary information is modulated onto
interpulse interval (interval of inter-rising edge) which determines the position of the current
pulse compared to the previous pulse, while the width of pulses Δτ is fixed. In contrast, in
the PWM method, the interpulse intervals ΔT are fixed, and the information is modulated
onto the pulse widths (interval of rising and falling edges of a same pulse). With the PPM
and PWM methods, time difference between modulated intervals of “0” and “1” bits is a
constant Δc. In our proposed method CPWPM, both the interpulse interval ΔTn and the
width Δτn of pulses convey the binary information and their variation is controlled by the
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nonlinear function F(·). This can be seen from the expression in (2.2). Values of parameters
m1, m2, d1, d2, K1, K, and F(·) are chosen so that chaotic behavior exhibits in (2.2), in other
words, the position and width of CPWPM pulses vary chaotically.

2.3. Demodulation

In the demodulation scheme, the received signal is applied to an edge-triggered pulse
generator (ETPG). ETPG is triggered by the rising and falling edges of input pulses to
produce narrow pulses at Outputs 1 and 2, respectively. Output 1 of ETPG is connected
to CPRG which is identical as in the modulation scheme. As the synchronization state is
maintained, the reproduced chaotic pulse trains at the outputs of CPRG are identical to those
in the modulation scheme. At Delay detectors 1 and 2, these pulses are compared with the
corresponding ones from ETPG to determine the delayed-time durations, Δτn − F(Cn)/K2

and ΔTn+1 − F(Cn)/K1, respectively. Consequently, data bits are recovered as follows:

S2
n =

(Δτn − (F(K1ΔTn)/K2) − d2)
m2

,

S1
n+1 =

(ΔTn+1 − (F(K1ΔTn)/K1) − d1)
m1

.

(2.3)

Like CPPM, the CPWPM system can automatically synchronize due to its pulse train
format. Equation (2.3) points out that the demodulation scheme only needs to correctly
detect three consecutive intervals, ΔTn,Δτn and ΔTn+1, in order to resynchronize and decode
correctly. Note that the set of values of m1, m2, d1, d2, K1, K and F(·) is considered as a secret
key. The binary information is only correctly recovered when a receiver has full information
on these parameters.

Since two data bits are recovered with each received pulse, the bit rate of transmission
is twice improved in comparison with PPM, PWM, and CPPM. Furthermore, data bits at
the inputs (i.e., Data ins 1 and 2) in the modulation scheme are recovered separately at
their corresponding outputs (i.e., Data outs 1 and 2) in the demodulation scheme. Therefore,
CPWPM can provide a multiaccess method of two users.

3. Theoretical Evaluation of BER Performance

The analytical method to evaluate the CPPM error probability reported in [11] is employed
for evaluating the BER of CPWPM in this research. For simplicity, let us consider a system
model presented in Figure 4. The input signal of the threshold detector, y(t), is the sum of the
transmitted signal and channel noise (AWGN), and it is compared with a threshold value H.
When the magnitude of y(t) changes over H, corresponding edges are produced and thus a
rectangular pulse p(t) with an amplitude A is regenerated at the output. The resulting pulse
train of p(t) is put into the CPWPM demodulator for recovering the data information.

The detection windows of the rising and falling edges of the nth pulse in the
demodulator are defined as in Figure 5. Assumed that the demodulator maintains the
synchronization at all times, the reproduced pulse trains at the outputs of CPRG are identical
to those in the modulator, and therefore the instances t1n−1 and t2n are determined. The rising
and falling edge detection durations are taken from (t1n−1 + d1) to (t1n−1 + d1 + m1) and from
(t2n + d2) to (t2n + d2 + m2), respectively. The width of each detection duration is equal to the
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corresponding modulation depth and it is divided into “0” and “1” windows, both have
the same width. Due to the effect of noise on the signal y(t), bit error will occur when the
shifted pulse edges of the pulse train p(t) fall into unexpected windows in the corresponding
detection durations. It means that the pulse edges of the pulse p(t) of transmitted “0” bits fall
into “1” windows and vice versa. Here, we divide each window into bins; each bin has the
width τ which is also the fundamental sampling period of the system. It is noted that 1/τ is
frequency of clock pulse supplying to Counter in CPRG at the demodulator. The signal y(t)
is sampled once at the end of every bin with sampling cycle τ .

Each CPWPM pulse is equivalent to one symbol from S00, S01, S10, or S11 which carries
the binary information of two bits from “00”, “01”, “10” or “11”, respectively. We consider the
case that the symbol S11 is transmitted and the correct detection probability of this symbol is

P

(
c

S11

)
= P11/11 = PR1/1 × PF1/1, (3.1)

where PR1/1 and PF1/1 are the probabilities to detect “1” bit when “1” bit is transmitted in the
rising and falling edge detection durations, respectively. Let us first evaluate PR1/1 which is
the probability of the signal y(t) from any bin in the “0” window not exceeding the threshold
value H. Using the statistical independence of the measurements for each window in the case
of AWGN, we have

PR1/1 =
m1/2τ∏

i=1

[
Pi

(
yi < H

)]
=
[
P
(
y < H

)]m1/2τ
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−∞
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− x2
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=
[

1
2

erfc
(
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2

erfc

⎛

⎝−h
√

Eb

No

⎞

⎠

⎤

⎦
m1/2τ

.

(3.2)

Secondly, we evaluate PF1/1 which is the probability of the signal y(t) from any bin in
the “0” window which remains higher than the threshold value H. Thus, it is determined as
follows:

PF1/1 =
m2/2τ∏

i=1

[
Pi

(
yi > H

)]
=
[
P
(
y > H

)]m2/2τ

=

[
1√

2πσ2

∫+∞

H

exp

(
− (x −A)2

2σ2

)
dx

]m2/2τ

=
[

1
2

erfc
(
H −A√

2σ2

)]m2/2τ

=

⎡

⎣1
2

erfc

⎛

⎝(h − 1)

√
Eb

No

⎞

⎠

⎤

⎦
m2/2τ

.

(3.3)

In (3.2) and (3.3), m1/2 and m2/2 are the window widths in the rising and falling
edge detection durations, respectively; the rate h = H/A; Eb = A2τ and No = 2σ2τ are the
energy per bit and the spectrum power density of noise, respectively.

The recovery will be unsuccessful if at least one of four symbols is decoded incorrectly.
From (3.1), (3.2), and (3.3), the error probability of CPWPM can be estimated by the following
equation:

BERCPWPM = 1 − P

(
c

S11

)
= 1 − PR1/1×PF1/1

= 1 −
⎡

⎣1
2

erfc

⎛

⎝−h
√

Eb

No

⎞

⎠

⎤

⎦
m1/2τ

×
⎡

⎣ 1
2

erfc

⎛

⎝(h − 1)

√
Eb

No

⎞

⎠

⎤

⎦
m2/2τ

.

(3.4)

4. Chaotic Behavior with Tent Map and Average Parameters

Tent map is a discrete-time and one-dimension nonlinear function with the piecewise-
linear I/O characteristic curve [13] and it is used for generating chaotic values seen as
pseudorandom numbers [14]. In the communication, the tent map is proposed for application
in chaotic modulation [15] with such advantages as the simplified calculation and the robust
regime of chaos generation for rather broad range of modulation parameters. Here, the
utilization of tent map for chaotic behavior of CPWPM is investigated. Based on average fixed
point of the map, average parameters of the CPWPM system are determined theoretically.
These are very important for design process to guarantee the chaotic behavior in the system.
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4.1. CPWPM Tent Map

The conventional tent map is iteratively generated through a transformation function F(·) :
[0, 1] → [0, 1] as given by

xn = F(xn) = Fn−1(x0) =

{
axn−1, 0 ≤ xn−1 ≤ 0.5,
a(1 − xn−1), 0.5 < xn−1 ≤ 1.

(4.1)

In this equation, n represents the time step; x0 is the initial value; xn−1 is the output
value at the nth step, and the parameter a controls the chaotic behavior of the map.

In CPWPM, from (2.2), the position and width of the nth pulse are rewritten as follows:

ΔTn =
F(K1ΔTn − 1)

K1
+ d1 +m1S

1
n,

Δτn =
F(K1ΔTn)

K2
+ d2 +m2S

2
n,

(4.2)

then these intervals can be converted to the following:

K1ΔTn︸ ︷︷ ︸
X1

n

= F(K1ΔTn−1)︸ ︷︷ ︸
X1

n−1

+ K1d1︸︷︷︸
d∗

1

+K1m1︸︷︷︸S
1
n

m∗
1

,

K2Δτn︸ ︷︷ ︸
X2

n

= F(K1ΔTn)︸ ︷︷ ︸
X1

n

+ K2d2︸︷︷︸
d∗

2

+K2m2︸︷︷︸
m∗

2

S2
n,

(4.3)

here, K1ΔTn−1, F(K1ΔTn−1), and K1ΔTn, F(K1ΔTn) are the input and output values of the
nonlinear converter F(·) at the (n − 1)th and nth steps, respectively. After that, we have

X1
n = F

(
X1

n−1

)
+ d∗

1 +m∗
1S

1
n,

X2
n = F

(
X1

n

)
+ d∗

2 +m∗
2S

2
n.

(4.4)

From (4.1) and (4.4), the tent map for the CPWPM system, called the CPWPM ten map, is
derived as

X1
n = F1

(
X1

n−1

)
=

{
aX1

n−1 + d∗
1 +m∗

1S
1
n, 0 ≤ X1

n−1 ≤ 0.5,
a
(
1 −X1

n−1

)
+ d∗

1 +m∗
1S

1
n, 0.5 < X1

n−1 ≤ 1,

X2
n = F2

(
X1

n

)
=

{
aX1

n + d∗
2 +m∗

2S
2
n , 0 ≤ X1

n ≤ 0.5,

a
(
1 −X1

n

)
+ d∗

2 +m∗
2S

2
n, 0.5 < X1

n ≤ 1.

(4.5)

4.2. Chaotic Behavior

The equation of the CPWPM tent map above points out that its chaotic behavior depends on
not only the control parameter a, but also on the parameters δ1 = d∗

1+m
∗
1S

1
n and δ2 = d∗

2+m
∗
2S

2
n.
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The chaos of X1
n depends on a and δ1; the chaos of X2

n depends on the chaos of X1
n with a

difference, X2
n − X1

n+1 = δ2 − δ1. In other words, the chaos of X1
n leads to the chaos of the

system.
The Lyapunov exponent of the map is determined by

λ = lim
k→∞

(
1
k

k−1∑

n=0

ln

∣∣∣∣∣
dF1

(
X1

n

)

dX1
n

∣∣∣∣∣

)
= lim

k→∞

(
1
k

k−1∑

n=0

lna

)
= lna. (4.6)

Based on (4.5) and (4.6), the behavior of the CPWPM tent map becomes chaotic in [0, 1] with
the following condition:

δ1 ≥ 0,

0.5a + δ1 ≤ 1

λ = lna > 0,

, (4.7)

which is equivalent to

0 ≤ δ1 ≤ 0.5,

1 < a ≤ 2(1 − δ1).
(4.8)

Figure 6 shows the bifurcation diagram of the CPWPM tent map according to a and
δ1, δ2. Here, δ1 = 0 is as the conventional tent map; the more the value of δ1 increases, the
smaller the chaotic area is. And, in the δ1 > 0.5 the chaotic area disappears. It is easy to find
that the bifurcation diagram of X2

n is also the bifurcation diagram of X1
n after being shifted

vertically with a distance, δ2 − δ1.



10 Abstract and Applied Analysis

In the modulation process, the binary bit S1
n varies between “0” or “1” and thus δ1

has two values, d∗
1 and d∗

1 +m∗
1. Based on (4.8), the condition in order to guarantee the chaotic

behavior in the CPWPM method are

0 ≤ m∗
1 + d∗

1 ≤ 0.5,

1 ≤ a ≤ 2
(
1 − (m∗

1 + d∗
1

))
,

(4.9)

or

0 ≤ K1(m1 + d1) ≤ 0.5,
1 ≤ a ≤ 2(1 −K1(m1 + d1)).

(4.10)

4.3. Average Parameters

In the iteration process, the CPWPM tent map varies chaotically around a fixed point [1]
(X1

fp, X
2
fp) determined by

X1
fp = F1

(
X1

fp

)
=

a + δ1

1 + a
,

X2
fp = F2

(
X1

fp

)
=

a(1 − δ1)
1 + a

+ δ2.

(4.11)

In the modulation process, due to the variation between “0” or “1” of input binary bits
S1
n and S2

n, this fixed point is shifted around an average fixed point (X1
av, X

2
av) as follows:

X1
av =

a + (d1 +m1/2)
1 + a

,

X2
av =

a(1 − (d1 +m1/2))
1 + a

+ d2 +
m2

2
.

(4.12)

Due to this feature, the intervals of position and width of the CPWPM signal vary
chaotically around average intervals:

ΔTav = lim
k→∞

(
1
k

k∑

n=0

ΔTn

)
≈ X1

av

K1
,

Δτav = lim
k→∞

(
1
k

k∑

n=0

Δτn

)
≈ X2

av

K2
,

(4.13)

and its spectrum therefore has an average fundamental harmonic fav−fund and an average
bandwidth BWav which are

fav−fund =
1

ΔTav
≈ K1

X1
av
,

BWav =
1

Δτav
≈ K2

X2
av
.

(4.14)
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The value of the average fundamental harmonic is equal to the average number of
pulses transmitted in one second. Since each CPWPM pulse conveys two bits, the average
bit-rate BRav of the system is evaluated as follows:

BRav = 2 × fav−fund ≈ 2K1

X1
av

. (4.15)

5. Calculation and Simulation Results

In this section, the CPWPM system as the model in Figure 4 with specific parameters
is calculated theoretically and simulated numerically in order to verify the analysis and
performance of the presented method. The estimation and simulation results as well as
comparison are provided. The specific parameters of the CPWPM system are chosen as
follows: the fundamental sampling period τ = 1μs, K1 = 0.002/μs, K = 2.5, d1 = 20μs, d2 =
10μs, m1 = 50μs, m2 = 30μs, H = 0.5, A = 1; the nonlinear converter F(·) uses the tent map
with a = 1.5.

5.1. Theoretical Calculation

Based on (4.3), the CPWPM tent map is determined by the following parameters:

K2 = KK1 =
(
0.002/μs

) × 2.5 = 0.005/μs, d∗
1 = K1d1 =

(
0.002/μs

) × 20μs = 0.04,

d∗
2 = K2d2 =

(
0.005/μs

) × 10μs = 0.05, m∗
1 = K1m1 =

(
0.002/μs

) × 50μs = 0.1,

m∗
2 = K2m2 =

(
0.005/μs

) × 30μs = 0.15,

K1(d1 +m1) =
(
0.002/μs

) × (20μs + 50μs
)
= 0.14.

(5.1)

With K1(d1 + m1) = 0.14, the condition for the chaos of the method according to
(4.10) becomes 1 < a ≤ 2(1 − 0.14) = 1.72. Therefore, we choose a = 1.5 to guarantee the
chaotic behavior of the CPWPM system. Based on the analysis in the Section 4.3, the average
parameters of the system are calculated as follows:

X1
av =

1.5 + (0.04 + 0.1/2)
1 + 1.5

= 0.636, X2
av =

1.5(1 − (0.04 + 0.1/2))
1 + 1.5

+ 0.05 +
0.15

2
= 0.671,

ΔTav ≈ X1
av

K1
=

0.636
0.002

= 318μs, Δτav ≈ X2
av

K2
=

0.671
0.005

= 134.2μs,

fav−fund =
1

ΔTav
≈ 1

318
= 3.145 kHz, BWav =

1
Δτav

≈ 1
134

= 7.451 kHz,

BRav = 2 × fav−fund ≈ 2 × 3.145 = 6.29 Kbps.
(5.2)

5.2. Numerical Simulation

Numerical simulation of the CPWPM system with the above specific parameters is carried
out in Simulink. Simulated signals in the time domain of the modulator within the duration
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Figure 7: Time-domain signals of the CPWPM modulator.

from starting time 0 to 5000μs are presented in Figure 7. The intervals of position and width
vary chaotically in the ranges 200μs to 500μs and 75μs to 200μs, respectively. When the
synchronization state of the system is maintained, the recovered signals in the demodulator
exactly match their corresponding signals in the modulator. The chaotic behavior of the
system is verified by attractor diagram in Figure 8. In the modulation process, the fixed point
is shifted on the bisector and around the average fixed point, (X1

av, X
2
av) (red point). Average

spectrum of the CPWPM signal is shown in Figure 9. Values of the average fundamental
harmonic and average bandwidth can be determined from this spectrum graph. We can
observe that values of the average parameters in the simulation results are completely
reasonable to that of the theoretical calculation above. This proves the validation of the
theoretical analysis.

BER performance obtained from simulation of CPWPM, CPPM, PPM systems in the
AWGN channel as well as the evaluation BER of the CPWPM system according to (3.4) is
presented in Figure 10. Simulation BERs are calculated as the number of error bits divided
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Figure 8: Attractor diagram with the average fixed point (X1
av, X

2
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Figure 9: Average spectrum of the CPWPM signal.

by the total number of 108 bits transmitted. With the CPWPM system, the simulation BER
is slightly higher than the evaluation one. The cause of these differences is the loss of
synchronization. In the theoretical estimation, we suppose that the synchronization state is
maintained at all times, thus errors in position and width of pulses leading to bit error only
occur due to noise. However, in the numerical simulation, the effect of noise may cause not
only the errors in position and width of pulses, but also the loss of synchronization which also
leads to bit error. It can be observed that as the Eb/No increases, the synchronization of the
system becomes better and thus the simulation results move closer to the estimation results.
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Figure 10: BER performance of CPWPM, CPPM, PPM systems in the AWGN channel.

Both BER performances of the CPWPM and CPPM systems are about 4 dB poorer than that
of the conventional PPM system. This is due to simple demodulation of PPM, in which the
information recovery does not depend on previous received intervals, data bit is determined
by comparing current interval with a reference interval. The BER simulation results also point
out that the CPWPM system performs slightly worse than the CPPM system, but in return the
bit rate of the CPWPM system is twice as high as that of the CPPM system with equivalent
parameters.

6. Conclusion

The paper has presented and investigated the chaotic-pulse-position-width modulation
method for chaos-based digital communication. The performance of the method is analyzed
using both theoretical evaluation and numerical simulation in terms of time- and frequency-
domain signals and BER performance. In addition, the chaotic behavior of CPWPM with
tent map is investigated considering the determination of the average parameters of the
system in the modulation process. It can be seen from obtained results that: (1) the CPWPM
system provides a significant improvement of bit rate with a slightly worse performance in
comparison with an equivalent CPPM system; (2) two separate data streams can be conveyed
by the CPWPM pulses and they are recovered separately at two corresponding outputs in the
demodulator, thus CPWPM can be used as a multiaccess method of two users; (3) about the
privacy, the CPWPM method offers an improvement compared with CPPM and a strong
improvement compared with the PPM and PWM. Due to the chaotically-varied intervals
of both the position and width, the CPWPM method can eliminate any trace of periodicity
from the spectrum of the transmitted signal. Moreover, the chaotic variation depends on the
privacy key with several parameters. It is impossible for an intruder to recover correctly the
binary data without having full information on the structure of modulation and the private
key; (4) the CPWPM pulses can be considered as a time-modulated baseband binary signal
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and thus it can be conveyed by conventional binary sinusoidal carrier modulation methods
such as on-off keying (OOK), binary-frequency-shift keying (BFSK) and binary-phase-shift
keying (BPSK). All these features make the CPWPM method attractive for development of
chaos-based digital communications.
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