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We investigate squeezing flow between two large parallel plates by transforming the basic gov-
erning equations of the first grade fluid to an ordinary nonlinear differential equation using the
stream functions ur(r, z, t) = (1/r)(∂ψ/∂z) and uz(r, z, t) = −(1/r)(∂ψ/∂r) and a transformation
ψ(r, z) = r2F(z). The velocity profiles are investigated through various analytical techniques
like Adomian decomposition method, new iterative method, homotopy perturbation, optimal
homotopy asymptotic method, and differential transform method.

1. Introduction

The study of squeezing flows haswidespread applications in chemical engineering, industrial
engineering, mechanical engineering, biomechanics, and food industry. Valves and diarthro-
dial joints are also the examples for squeeze flows relevant in biology and bioengineering.
The first application to squeeze flow problem was made by Stefan in 1874 [1]. The motion
of a thin film of lubricant, squeezed flow between two stationary parallel plane surfaces
were reported by Tichy and Winner [2] and Wang and Watson [3]. The theoretical and
experimental studies of squeezing flows have been conducted by many researchers [4–
11]. The mathematical studies of these flows are concerned primarily with the nonlinear
partial differential equations which arise from the Navier-Stokes equations. These equations
have no general solutions, and only a few exact solutions have been attained by confining
some physical aspects of the original problem [12]. To solve these nonlinear differential
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equations, different perturbation and analytical techniques have been extensively used in
fluid mechanics and engineering [13].

In the literature only a few papers deal with the comparison of different analytical
methods. In this paper we study the squeezed flow between two large parallel plates with
slip boundary conditions. The velocity profile is obtained using various analytical techniques
like Adomian decomposition method (ADM), new iterative method (NIM), homotopy
perturbation (HPM), optimal homotopy asymptotic method (OHAM), and differential
transform method (DTM) [14–23]. The residual of each technique is computed and a
comparison is made to assess the efficiency of the above techniques. We select DTM for
analyzing the velocity profile under different flow parameters.

Squeezing flows are produced by vertical movements of boundaries or by applying
external normal forces. Commonly two types of boundary conditions are employed. For
a viscous fluid at a solid wall, it is generally accepted that the fluid velocity matches the
velocity of the solid boundary, and it is known as no slip boundary condition. While the no-
slip condition is experimentally proven to be accurate for a number of macroscopic flows.
Navier [24] proposed a general boundary condition that incorporates the possibility of fluid
slip at a solid boundary. He assumed that the velocity ux at a solid surface is proportional
to the shear rate at the surface, that is, ux = β∂ux/∂y, where β is the slip length or slip
coefficient. If β = 0, the generally assumed no-slip boundary condition is obtained, and if
β a finite constant, fluid is slip occurs at the wall. Its effect depends upon the length scale of
the flow [25–28].

2. Basic Equation

We consider a steady axisymmetric flow where the velocity vector, ũ is represented by

ũ = [ur(r, z), 0, uz(r, z)]. (2.1)

In the absence of body forces, the Navier-Stokes equations are obtained for the first grade
fluid by using equations of continuity and momentum,

˜∇ · ũ = 0,

−ρ(ũ × w̃) + ˜∇
(ρ

2
|ũ|2 + p

)

= −η ˜∇ × w̃,
(2.2)

where ρ is the constant density, p is the pressure, η is the viscosity, and w̃ = ˜∇ × ũ is the
vorticity vector.

Substituting (2.1) into (2.2), we get the following Continuity equation:

∂ur
∂r

+
ur
r

+
∂uz
∂z

= 0. (2.3)

r-component of N.S equation:

∂

∂r

(ρ

2

(

u2r + u
2
z

)

+ p
)

− ρuzΩ(r, z) = −η∂Ω(r, z)
∂z

. (2.4)



Abstract and Applied Analysis 3

z-component of N.S equation:

∂

∂z

(ρ

2

(

u2r + u
2
z

)

+ p
)

− ρuzΩ(r, z) = η
1
r

∂(rΩ(r, z))
∂r

, (2.5)

where Ω(r, z) = ∂ur/∂z − ∂uz/∂r is the vorticity function.
Now we define a function which is known as generalized pressure,

p̂ =
ρ

2

(

u2r + u
2
z

)

+ p. (2.6)

Using (2.6), (2.4) and (2.5) take the following form:

∂

∂r
p̂ − ρuzΩ(r, z) = −η∂Ω(r, z)

∂z
,

∂

∂z
p̂ − ρuzΩ(r, z) = η

1
r

∂(rΩ(r, z))
∂r

.

(2.7)

We now introduce the stream functions, ur(r, z, t) = (1/r)(∂ψ/∂z), uz(r, z, t) = (−1/r)×
(∂ψ/∂r), and obtain the following results:

Ω(r, z) = −1
r
E2ψ, (2.8)

where E2 = ∂2/∂r2 − (1/r)(∂/∂r) + ∂2/∂z2,

∂

∂r
p̂ − ρ 1

r2
∂ψ

∂r
E2ψ = −η

r

∂

∂z
E2ψ,

∂

∂z
p̂ − ρ 1

r2
∂ψ

∂z
E2ψ = −η

r

∂

∂r
E2ψ.

(2.9)

Eliminating p̂, from (2.9), we obtain

−ρ∂
(

ψ, E2ψ/r2
)

∂(r, z)
=
η

r
E4ψ. (2.10)

We consider viscous incompressible fluid, squeezed between two large planar and parallel
plates, separated by a distance 2d. The plates are moving towards each other with velocityU.
The surfaces of both plates are covered by special material with slip length (slip coefficient) β.
For small values of U the gape distance 2d between the plates varies slowly with the time t,
so the flow can be taken as quasisteady [29–32]. See Figures 1, 2, 3, and 4.
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−U

U

z

r

z = d

z = −d

The boundary conditions are as follows:

(i) At z = d, ur = β
∂ur
∂z

, uz = −U.

(ii) At z = 0, uz = 0,
∂ur
∂z

= 0.
(2.11)

Now we use the transformation

ψ(r, z) = r2f(z). (2.12)

By virtue of E2 = ∂2/∂r2 − (1/r)(∂/∂r) + ∂2/∂z2 and (2.12), the compatibility equation
(2.10) and the boundary conditions equation (2.11) become

Fiv(z) + 2
ρ

η
F(z)F ′′′(z) = 0,

F(0) = 0, F ′′(0) = 0, F(d) =
U

2
, F ′(d) = βF ′′(d).

(2.13)

Now by introducing dimensionless parameters

F∗ =
F

U/2
, z∗ =

z

d
, γ =

β

d
, R =

ρdU

η
, (2.14)

and dropping “∗” for simplicity, the boundary value problem (2.13) become,

d4F

dz4
+ RF

d3F

dz3
= 0, (2.15)

with boundary conditions

F(0) = 0, F ′′(0) = 0, F(1) = 1, F ′(1) = γF ′′(1). (2.16)
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Figure 1: Plots of the residuals, blue: ADM, green: NIM, red: HPM, black: OHAM and dashed: DTM. In
this figure, a comparison of the residuals is shown graphically, and it reveals that OHAM is more suitable
technique for this problem. One can easily observe that the curve of the OHAM residual is approximately
normally distributed while the curves of the residuals of other methods are J-shaped and highly skewed.
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Figure 2: z-component uz(r, θ, z) = (−1/r)(∂ψ/∂r) of the velocity profile given by OHAM, when R = 1, γ =
1.

3. Analytical Techniques

In this section, we give the basic idea of various analytical techniques and evaluate the veloc-
ity profile of our problem by considering R = 1, γ = 1. The residuals of all the techniques are
computed and the results are displayed in Table 2.

3.1. Adomian Decomposition Method

According to [13, 14], we consider the differential equation

L(F(z)) +M(F(z)) +N(F(z)) = g(z), (3.1)
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Figure 3: r-component ur(r, θ, z) = (1/r)(∂ψ/∂z) of the velocity profile given by OHAM, when R = 1,
γ = 1.
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Figure 4: Vorticity function Ω(r, z) = ∂ur/∂z − ∂uz/∂r where the velocity components have been obtained
by OHAM, for R = 1, γ = 1.

where L is the operator of the highest order derivative with respect to z, L = d4/dz4, R is the
reminder of the linear term, and the nonlinear term is represented by N(F(z)). Operating L−1

on both sides of (3.1)we get the following:

F(z) = α0 + α1z + α2
z2

2!
+ α3

z3

3!
+ L−1(g(z)

) − L−1M(F(z)) − L−1N(F(z)), (3.2)

where αi: i = 0, 1, 2, 3, the constants can be determined by using initial or boundary
conditions.
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The unknown function F(z) can be expressed by an infinite series of the form

F(z) =
∞
∑

n=0

Fn(z), (3.3)

where F0(z) = α0 + α1z + α2z2/2! + α3z3/3! + L−1(g(z)) and Fn+1 = −L−1M(Fn(z)) − L−1(An),
n = 0, 1, 2, . . .. The nonlinear termN(F(z)) is decomposed by an infinite series of polynomial
given by

N(F(z)) =
∞
∑

n=0

An, (3.4)

where An are the so-called Adomian polynomials that can be determined by the formula

An =
1
n!

dn

dλn

[

N

(

n
∑

i=0

λiFi

)]

λ=0

. (3.5)

It has been observed that these polynomials can be constructed for a wide class of
nonlinear functions.

The solution F(z) =
∑∞

n=0 Fn(z) is approximated by the truncated series of order K,
that is,

˜F(z) =
K
∑

n=0

Fn(z). (3.6)

In our case g(z) = 0,M(F(z)) = 0.
Now appling ADM on (2.15) and (2.16), for n = 0, 1, . . . , 5.
We obtain

F0(z) = A
z3

6
+ Bz

F1(z) = −
(

1
120

ABz5 +
A2z7

5040

)

F2(z) =
AB2z7

1680
+
A2Bz9

22680
+

A3z11

1108800
....

(3.7)

Considering the Adomian 5th-order solution,

˜F(z) = F0(z) + F1(z) + · · · + F5(z) +O
(

z20
)

. (3.8)
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The boundary conditions at z = 1 are used to get the following values of A and B.

A = 1.74911, B = 0.71896. (3.9)

By substituting these values our solution is

˜F(z) = 0.718965z + 0.291518z3 − 0.0104795z5 − 0.0000688452z7 + 0.0000701133z9

− 3.49247 × 10−6z11 − 4.73949 × 10−7z13 + 5.95015 × 10−8z15

− 8.90909 × 10−10z17 − 1.65991 × 10−9z19 +O
(

z20
)

.

(3.10)

3.2. New Iterative Method

The basic idea of new iterative method [15, 16]. Consider the following nonlinear general
differential equation:

L(F(z)) +M(F(z)) +N(F(z)) = g(z), (3.11)

where L is the operator of the highest order derivative with respect to z, L = d4/dz4, M is
the reminder of the linear term, and the nonlinear term is represented by N(F(z)). Operating
L−1 on both sides of (3.11) we get,

F(z) = α0 + α1z + α2
z2

2!
+ α3

z3

3!
+ L−1(g(z)

) − L−1M(F(z)) − L−1N(F(z)), (3.12)

where αi: i = 0, 1, 2, 3, are constants to be determined by using initial or boundary conditions.
The unknown function F(z) can be expressed by an infinite series of the form

F(z) =
∞
∑

n=0

Fn(z), (3.13)

where F0(z) = α0 + α1z + α2z2/2! + α3z3/3! + L−1g(z) and Fn+1 = −L−1M(Fn(z)) − L−1(Gn),
n = 0, 1, 2, . . . . The nonlinear termN(F(z)) is decomposed by an infinite series of polynomials
given by

N(F(z)) =
∞
∑

n=0

Gn, (3.14)

where Gn =N(
∑n

k=0 Fk) −N(
∑n−1

k=0 Fk) and G0 =N(F0(z)).
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The solution F(z) =
∑∞

n=0 Fn(z), is approximated by the truncated series of order K,
that is,

˜F(z) =
K
∑

n=0

Fn(z). (3.15)

In our case g(z) = 0 andM(F(z)) = 0.
Now using NIM on (2.15) and (2.16), for n = 0, 1, . . . , 5.
We obtain the following:

F0(z) = A
z3

6
+ Bz

F1(z) = −
(

1
120

ABz5 +
A2z7

5040

)

F2(z) = −AB
2z7

1680
+
A2Bz9

22680
+

A3z11

1108800
− A2B2z11

1900800
− A3Bz13

38438400
− A4z15

3962649600
....

(3.16)

Considering the NIM 5th-order solution,

˜F(z) = F0(z) + F1(z) + F3(z) + F4(z) + F5(z) +O
(

z20
)

, (3.17)

we have the following:

˜F(z) = Bz +
Az3

6
− 1
120

ABz5 +

(

− A2

5040
+
AB2

1680

)

z7 +

(

A2B

22680
− AB3

24192

)

z9

+

(

A3

1108800
− 241A2B2

39916800
+

AB4

380160

)

z11 +

(

− 71A3B

239500800
+

131A2B3

207567360
− AB5

6589440

)

z13

+

(

− 1051A4

217945728000
+

1357A3B2

25147584000
− 4759A2B4

87178291200

)

z15

+

(

2243A4B

1140023808000
− 359A3B3

50523782400
+

179A2B5

130288435200

)

z17

+

(

21919A5

844757641728000
− 71999A4B2

167094918144000
+

104977A3B4

300358272614400
− 31A2B6

649813570560

)

z19

+O
(

z20
)

.

(3.18)

Using the boundary conditions at z = 1, we get the following value of A and B

A = 1.74911, B = 0.71897. (3.19)
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The approximate solution is as follows:

˜F(z) = 0.718965z + 0.291518z3 − 0.0104795z5 − 0.0000688448z7 + 0.0000701132z9

− 3.49247 × 10−6z11 − 4.73948 × 10−7z13 + 5.95015 × 10−8z15

− 8.34647 × 10−11z17 − 1.18034 × 10−9z19 +O
(

z20
)

.

(3.20)

3.3. HPM

To illustrate the basic idea of homotopy perturbation method [17–21], we consider the fol-
lowing nonlinear differential equation:

A(F) = f(r). (3.21)

A is a general differential operator, the operator A can usually be divided into two parts
L andN, where L is linear, andN is nonlinear:

A = L +N. (3.22)

so

L(F) +N(F) − f(r) = 0, r ∈ Ω. (3.23)

f(r) is a known analytic function.
With the boundary condition B(F, ∂F/∂n) = 0, r ∈ Γ.
B is a boundary operator, and Γ is the boundary of the domain Ω.
Now we construct the following homotopy:

H
(

v, p
)

=
(

1 − p)[L(v) − L(F0)] + p
[

Av − f(r)], (3.24)

where p ∈ [0, 1] is an embedding parameter and F0 is the first approximation that satisfied
the boundary condition. To get an approximate solution, we expand F(r, p) in Taylor’s series
about p in the following manner:

F(r) = v0(r)+
∞
∑

m=1

vm(r)pm. (3.25)

Plugging (3.25) into (3.24) and then equating the coefficient of like powers of p, we get the
following problems which are directly integrable.

Zeroth-order problem:

F
(iv)
0 (z) = 0,

F0(0) = 0, F ′′
0(0) = 0, F0(1) = 1, F ′

0(1) = F ′′
0(1).

(3.26)



Abstract and Applied Analysis 11

First-order problem:

Fiv1 (z) = −F0(z)F ′′′
0 (z),

F1(0) = 0, F ′′
1(0) = 0, F1(1) = 0, F ′

1(1) = F
′′
1(1).

(3.27)

Second-order problem:

Fiv2 (z) = −F1(z)F ′′′
0 (z) − F0(z)F ′′′

1 (z),

F2(0) = 0, F ′′
2(0) = 0, F2(1) = 0, F ′

2(1) = F ′′
2(1)

....

(3.28)

We consider the following 5th-order solution,

˜F(z) = F0(z) + F1(z) + F3(z) + F4(z) + F5(z) +O
(

z20
)

,

˜F(z) =
2379640217780939164049z
3309814671645081600000

+
723651501050808628889z3

2482361003733811200000
− 43087465806546383z5

4111571020677120000

− 1652256496336207z7

23984164287283200000
+

121738793951z9

1735816642560000
− 31017787z11

8879270400000

− 430067207z13

909237288960000
+

74925133z15

1223973273600000
+

30859z17

15429481267200

− 16191589z19

18688959184896000
+O

(

z20
)

.

(3.29)

3.4. OHAM

According to [22–24], we consider the following differential equation:

A(F(z)) = f(r), r ∈ Ω, (3.30)

with the boundary conditions

B

(

F,
∂F(z)
∂n

)

= 0, r ∈ Γ, (3.31)

where A is a differential operator, B is a boundary operator, and f(r) is a known function of
r: r ∈ Ω. The operator A can be written as A = L +N, where L is linear andN is a nonlinear
operator. In OHAM we first construct a homotopy equation,

(

1 − p)L(F(r, p)) − h(p)[L(F(r, p)) +N(

F
(

r, p
)) − f(r)] = 0, (3.32)
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where p ∈ [0, 1] is an embedding parameter, h(p) is a nonzero auxiliary function for p /= 0
and h(0) = 0

L(F(z)) = 0, for p = 0 A(F(z)) = f(r), for p = 1. (3.33)

The solution F(r, 0) = v0(r) of L(F(z)) = 0 traces the solution curve v(r) continuously as p
approaches to 1, where v0 is the solution of the zeroth-order problem that will come in the
next few lines. We next choose the auxiliary function h(p) in the following form:

h
(

p
)

=
m
∑

i=1

piCi, (3.34)

where C1, C2 , . . . are the convergence controlling constants which are to be determined. To
get an approximate solution, we expand F(r, p) in Taylor’s series about p in the following
manner:

F
(

r, p, Ci

)

= v0(r)+
∞
∑

m=1

(r, C1, C1, . . . , Cm)pm. (3.35)

Now after substituting the auxiliary function h(p) and F(r, p, Ci) in homotopy equation we
compare the coefficient of like powers of p, to obtain the following linear equations.

Zeroth-order problem:

Lv0 = 0, B

(

v0,
∂v0
∂n

)

= 0. (3.36)

First-order problem:

Lv1 − (1 + C1v0)L + C1f(r) = C1N0v0, B

(

v1,
∂v1
∂n

)

= 0. (3.37)

Second-order problem:

Lv2 − (1 + C1)Lv1 − C2Lv0 − C2f(r) = C2N0v0 + C1N1v1, B

(

v2,
∂v2
∂n

)

= 0, (3.38)

and so on.
If the series is convergent at p = 1 for suitable auxiliary constants C1, C2 , . . ., then

v(r) = F(r, Ci) = v0(r)+
∞
∑

m=1

vm(r, C1, C1, . . . , Cm). (3.39)
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The result of the mth-order approximations are given by

v̆(r) = v0(r)+
m
∑

i=1

vi(r, C1, C1, . . . , Ci). (3.40)

Residual of the solution is

R(r, C1, C2, . . . , Cm) = Av̆ − f(r). (3.41)

If R = 0, v̆ will be the exact solution, but it does not happen specially in nonlinear problems.
To find the optimal values of Ci, many methods can be applied. We follow the method of
least squares. According to the method of least squares, we first construct the functional

J(r, C1, C2, . . . , Cm) =
∫b

a

R2dr, (3.42)

and then minimizing it, we have

∂J

∂C1
=

∂J

∂C2
= · · · = ∂J

∂Cm
= 0, (3.43)

where a and b are in the domain of the problem. With these constants known, the approxi-
mate solution (of order m) is well determined.

Now applying OHAM to (2.15) and (2.16), we obtain the following problems which
are directly integrable.

Zeroth-order problem:

F
(iv)
0 (z) = 0,

F0(0) = 0, F ′′
0(0) = 0, F0(1) = 1, F ′

0(1) = F
′′
0(1).

(3.44)

First-order problem:

Fiv1 (z) = C1F0(z)F ′′′
0 (z) + F

iv
0 (z) + C1F

iv
0 (z),

F1(0) = 0, F ′′
1(0) = 0, F1(1) = 0, F ′

1(1) = F ′′
1(1).

(3.45)

Second-order problem:

Fiv2 (z) = C1F1(z)F ′′′
0 (z) + C1F0(z)F ′′′

1 (z) + F
iv
1 (z) + C1F

iv
1 (z),

F2(0) = 0, F ′′
2(0) = 0, F2(1) = 0, F ′

2(1) = F ′′
2(1)

....

(3.46)
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Considering the OHAM 5th-order solution and using the method of least squares, we obtain
C1 = −0.93281. Hence the solution is

˜F(z) = 0.718965z + 0.291517z3 − 0.0104795z5 − 0.0000688407z7 + 0.0000700828z9

− 3.4536 × 10−6z11 − 4.87073 × 10−7z13 + 5.80616 × 10−8z15

+ 3.31269 × 10−9z17 − 5.61766 × 10−10z19 +O
(

z20
)

.

(3.47)

3.5. NDSolve

NDSolve is a mathematica code, utilized for solution of ordinary and partial differential
equations. This code is also used for differential-algebraic equations and system of ordinary
differential equation. NDSolve gives solution on discrete points rather than for the function
F itself. List interpolation is used for the construction of approximating polynomial.

Apply NDSolve to (2.15) and (2.16), the following approximate solution is obtained:

F(z) = 0.718965z − 2.5833 × 10−6z2 + 0.291529z3 − 0.000025575z4 − 0.0104737z5

+ 0.0000970056z6 − 0.000294814z7 + 0.000231011z8 − 0.0000378459z9

+ 0.0000122062z10.

(3.48)

3.6. DTM

According to [33, 34], the basic idea of differential transforms method (DTM) starts from the
following definition.

If F(z) is a given function, its differential transform is defined as follows:

F(r) =
1
r!
drF(z)
dzr

∣

∣

∣

∣

z=0
. (3.49)

The inverse transform of F(r) is defined by

F(z) =
∞
∑

r=0

zrF(r). (3.50)

In actual application, the function F(z) is expressed by a finite series

F(z) =
N
∑

r=0

zrF(r). (3.51)

Equation (3.51) implies that F(z) =
∑∞

r=N+1 z
rF(r). is negligibly small.

The fundamental operations of the DTM are given in Table 1.
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Table 1

Function Transformed function

K(z) = αK1(z) ± βK2(z) K(r) = αK1(r) ± βK2(r)

K(z) = F(m)(z) K(r) =
(m + r)!

r!
F(m + r)

K(z) = K1(z)K2(z) K(r) =
r
∑

n=0
K1(n)K2(r − n)

K(z) = zm K(r) = δ(r −m), δ(p) =
{

1, p=0
0, p /= 0

K(z) = K1(z)K2(z) · · ·Km(z) G(r) =
∑r

lm−1=0

∑lm−1
lm−2=0

· · ·∑l3
l2=0

∑l2
l1=0

{K1(l1) K2(l2 − l1) · · ·Km(r − lm−1)}

3.6.1. Analysis of the Method

Consider a fourth-order boundary value problem

F(4)(z) = G(z, F), 0 < z < H, (3.52)

with the boundary conditions:

F(0) = α0, F(H) = α1, F(1)(H) = α2 , F(2)(0) = α3, (3.53)

where αi: i = 0, 1, 2, 3 are given values.
The differential transform of (3.52) is as follows:

F(r + 4) =
G(r)

∏4
i=1(r + i)

, (3.54)

where G(r) is the differential transform of G(z, F).
The transformed boundary conditions (3.53) are given by

F(0) = α0,
N
∑

r=0

HrF(r) = α1,
N
∑

r=0

rHrF(r) = α2, F(2) =
α3
2
. (3.55)

Using (3.54) and (3.55) values of F(i) : i = 4, 5, . . . are obtained which give the following
series solution up to O(zN+1),

F(z) =
N
∑

r=0

zrF(r) +O
(

zN+1
)

, (3.56)
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Table 2: Comparison of residuals. In this table residuals of all the techniques at the different domain points
are displayed. We observe that OHAM provides more stable solution.

z ADM NIM HPM OHAM NDSolve DTM

0 0 0 0 0 −6.14E − 4 0

0.1 −6.66E − 16 −6.94E − 16 −3.28E − 7 2.18E − 7 −3.47E − 4 2.22E − 16

0.2 −1.40E − 12 −1.36E − 12 −8.73E − 7 4.31E − 7 −7.35E − 5 −1.26E − 14

0.3 −1.35E − 10 −1.27E − 10 −1.79E − 6 5.72E − 7 1.70E − 5 −1.26E − 11

0.4 −3.66E − 9 −3.30E − 9 −3.09E − 6 5.64E − 7 −5.16E − 7 −1.65E − 9

0.5 −5.05E − 8 −4.34E − 8 −4.60E − 6 5.17E − 7 −1.14E − 5 −7.20E − 8

0.6 −4.55E − 7 −3.72E − 7 −5.78E − 6 9.07E − 7 1.16E − 5 −1.56E − 6

0.7 −3.06E − 6 −2.38E − 6 −5.56E − 6 2.35E − 6 2.11E − 6 −2.09E − 5

0.8 −1.66E − 5 −1.24E − 5 −1.74E − 6 4.55E − 6 −5.40E − 5 −1.97E − 4

0.9 −7.68E − 5 −5.48E − 5 9.89E − 6 5.08E − 6 2.23E − 4 −1.41E − 3

1.0 −3.11E − 4 −2.13E − 4 3.60E − 5 1.99E − 6 2.20E − 3 −8.15E − 3

applying DTM on (2.15) and (2.16), the transformed boundary conditions and differential are
as follows:

F(0) = 0, F(1) = a, F(2) = 0, F(3) = b,

F(r + 4) =
r!

(r + 4)

{

−R
r
∑

k=0

(k + 1)(k + 2)(k + 3)F(k + 3)F(r − k)
}

.
(3.57)

Using (3.57), we obtain the following values of F(i) : i = 1, 2, 3 . . . , 19.
For these values, the unknowns a and b are determined by the following system:

19
∑

r=0

˜F(r) = 1,
19
∑

r=0

r ˜F(r) =
19
∑

r=0

r(r − 1) ˜F(r). (3.58)

We find, a = 1.53266 and b = −0.570353.
Now using the inverse differential transform, the following approximate solution of

O(z20) is obtained:

˜F(z) = 1.53266z − 0.570353z3 + 0.043708z5 − 0.00710856z7 + 0.00130068z9

− 0.000251907z11 + 0.0000492109z13 − 9.6216 × 10−6z15

+ 1.86893 × 10−6Z17 − 3.60367 × 10−7z19 +O
(

z20
)

.

(3.59)

4. Conclusion

In this paper we have used Adomian’s decomposition method, new iterative method,
homotopy perturbation method, optimal homotopy asymptotic method, and differential
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transform method to an axisymmetric squeezing flow problem. Though all the methods are
based on Taylor’s series expansion, they produce different results because each one has its
own environment. Homotopy methods combine homotopy from topology and perturbation
method. It has been observed that homotopy perturbation method may suffer convergence
in many problems while OHAM controls the convergence region by employing the aux-
iliary function. Differential transform method, Adomian decomposition method, and new
iterative method are the straightforward application of Taylor’s series, and they suffer from
divergence in general and particularly in initial value problems. Besides all these facts, ADM,
HPM, and DTM can lead easily to closed-form solutions of many problems.
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