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This paper is concerned with the stability of analytical and numerical solutions for nonlinear
stochastic delay differential equations (SDDEs)with jumps. A sufficient condition for mean-square
exponential stability of the exact solution is derived. Then, mean-square stability of the numerical
solution is investigated. It is shown that the compensated stochastic θ methods inherit stability
property of the exact solution. More precisely, the methods are mean-square stable for any stepsize
Δt = τ/m when 1/2 ≤ θ ≤ 1, and they are exponentially mean-square stable if the stepsize
Δt ∈ (0,Δt0) when 0 ≤ θ < 1. Finally, some numerical experiments are given to illustrate the
theoretical results.

1. Introduction

Models that incorporate jumps have become increasingly popular in finance and several areas
of science and engineering. In particular, they are used in mathematical finance in order to
simulate asset prices, interest rates, and volatilities [1, 2]. Jump models also arise in many
other application areas and have proved successful at describing unexpected, abrupt changes
of state [3]. So, it is valuable to investigate the properties of the solutions of these problems.

As is well known, explicit solutions of stochastic differential equations can rarely be
obtained. It is necessary to construct efficient numerical methods to solve these equations.
In recent years, many researchers worked on the construction of numerical schemes for
stochastic ordinary differential equations (SODEs) (see [4, 5], and their references) and
stochastic delay differential equations (SDDEs), see, for example, [6–11] and references
therein. For SODEs with jumps, the strong convergence and mean-square stability of some
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semi-implicit numerical methods are investigated in [12–15]. A compensated split-step
backward Euler method for SODEs with jumps is introduced in [12] and proved to satisfy
a better stability property than the split-step backward Euler method.

For SDDEs with jumps, most of the existing work is concerned about convergence
property of numerical methods, see, for example, [16–19]. There are few results on stability
property, which motivates our work. In [20], Tan and Wang investigated the mean-square
stability of the explicit Euler method for linear SDDEs with jumps. The aim of our paper is to
investigate the mean-square stability of the compensated stochastic θ methods for nonlinear
SDDEs with jumps.

This paper is organized as follows. In Section 2, we obtain a stability result for
the analytical solution of (2.1). In Section 3, the compensated stochastic θ methods are
constructed to solve problem (2.1). In Section 4, our main results will be stated and proved.
It is shown that the compensated stochastic θ methods inherit mean-square stability of the
exact solution. More precisely, the methods are mean-square stable for any stepsizeΔt = τ/m
when 1/2 ≤ θ ≤ 1, and they are exponentially mean-square stable if the stepsize Δt ∈ (0,Δt0)
when 0 ≤ θ < 1. Moreover, when θ = 1, the method is exponentially mean-square stable for
every stepsize Δt = τ/m. Finally, some numerical experiments are reported to illustrate the
theoretical results.

2. Stability of the Analytical Solution

Throughout this paper, we let C([−τ ,0]; Rd) denote the family of continuous functions from
[−τ, 0] to Rd equipped with the norm ‖ϕ‖ := sup−τ≤s≤0|ϕ(s)|, where | · | is the Euclidean norm
in R

d. Denoted by Cb
F0
([−τ, 0];Rd) the family of all bounded, F0 measurable, C([−τ ,0]; Rd)

valued stochastic variables. The inner product of x, y in R
d is denoted by 〈x, y〉. If A is a

vector or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is denoted by
|A| =

√
trace(ATA).
We consider the nonlinear SDDEs with jumps in Itô’s sense of the form:

dx(t) =f(x(t), x(t − τ))dt + g(x(t), x(t − τ))dW(t)

+ h
(
x
(
t−
)
, x

(
t− − τ

))
dN(t), t > 0,

(2.1)

with initial data x(t) = ϕ(t), t ∈ [−τ, 0] and τ > 0 is a constant, x(t−) denotes lims→ t−x(s),
f : R

d × R
d → R

d, g : R
d × R

d → R
d×m, h : R

d × R
d → R

d are continuous functions, and
ϕ(t) ∈ Cb

F0
([−τ, 0];Rd). W(t) is an m-dimensional Wiener process defined on the complete

probability space (Ω,F, {Ft}t≥0, P) with a filtration satisfying the usual conditions (i.e., it is
increasing and right continuous while F0 contains all P -null sets). N(t) is a scalar Poisson
process with parameter λ defined on the same probability space. Assume thatW(t) andN(t)
are independent of F0. Moreover, we assume that ϕ(t) isF0-measurable and right continuous
with E‖ϕ‖2 < ∞. We also assume that f(0, 0) = 0, g(0, 0) = 0 and h(0, 0) = 0, so problem (2.1)
admits a zero solution x(t) ≡ 0.

Definition 2.1 (see [21]). The zero solution of (2.1) is said to be pth moment exponentially
stable if there is a pair of positive constants λ and C such that

E|x(t)|p ≤ C
∥∥ϕ

∥∥exp−λ(t−t0), t ≥ t0, (2.2)



Abstract and Applied Analysis 3

for all ϕ(t) ∈ Cb
F0
([−τ, 0];Rd). When p = 2, it is usually said to be exponentially mean-square

stable.

Now, we establish a mean-square stability condition for problem (2.1).

Theorem 2.2. Suppose that there are some constants αi, βi, γi, i = 1, 2, such that

〈
x1 − x2, f

(
x1, y

) − f
(
x2, y

)〉 ≤ α1|x1 − x2|2, (2.3)
∣
∣f
(
x, y1

) − f
(
x, y2

)∣∣ ≤ α2
∣
∣y1 − y2

∣
∣, (2.4)

∣
∣g
(
x1, y1

) − g
(
x2, y2

)∣∣2 ≤ β1|x1 − x2|2 + β2
∣
∣y1 − y2

∣
∣2, (2.5)

∣
∣h
(
x1, y1

) − h
(
x2, y2

)∣∣2 ≤ γ1|x1 − x2|2 + γ2
∣
∣y1 − y2

∣
∣2, (2.6)

for all x1, y1, x2, y2 ∈ R
d. If

α = 2α1 + 2α2 + β1 + β2 + λ
(
1 + 2γ1 + 2γ2

)
< 0, (2.7)

then the zero solution of (2.1) is exponentially mean-square stable.

Proof. Let t ≥ 0, δ > 0, it follows from Itô’s formula that

|x(t + δ)|2 = |x(t)|2 +
∫ t+δ

t

(
2
〈
x(s), f(x(s), x(s − τ))

〉
+
∣∣g(x(s), x(s − τ))

∣∣2
)
ds

+
∫ t+δ

t

2
〈
x(s), g(x(s), x(s − τ))

〉
dW(s)

+
∫ t+δ

t

(
2
〈
x
(
s−
)
, h
(
x
(
s−
)
, x

(
s− − τ

))〉
+
∣∣h
(
x
(
s−
)
, x

(
s− − τ

))∣∣2
)
dÑ(s)

+ λ

∫ t+δ

t

(
2〈x(s), h(x(s), x(s − τ))〉 + |h(x(s), x(s − τ))|2

)
ds,

(2.8)

where Ñ(t) = N(t) − λt. Taking expectation and using the properties of Itô integral give

E|x(t + δ)|2 = E|x(t)|2 + E

∫ t+δ

t

(
2
〈
x(s), f(x(s), x(s − τ))

〉
+
∣∣g(x(s), x(s − τ))

∣∣2
)
ds

+ λE

∫ t+δ

t

(
2〈x(s), h(x(s), x(s − τ))〉 + |h(x(s), x(s − τ))|2

)
ds.

(2.9)
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From (2.3) and (2.4), we have

2E
〈
x(s), f(x(s), x(s − τ))

〉
= 2E

〈
x(s), f(x(s), x(s − τ)) − f(0, x(s − τ))

〉

+ 2E
〈
x(s), f(0, x(s − τ))

〉

≤ 2α1E|x(s)|2 + 2α2E|x(s)‖x(s − τ)|
≤ 2α1E|x(s)|2 + 2α2 sup

s−τ≤u≤s
E|x(u)|2.

(2.10)

Similarly, (2.5) and (2.6) yield

E
∣
∣g(x(s), x(s − τ))

∣
∣2 ≤ (

β1 + β2
)

sup
s−τ≤u≤s

E|x(u)|2,

E|h(x(s), x(s − τ))|2 ≤ (
γ1 + γ2

)
sup

s−τ≤u≤s
E|x(u)|2,

2E〈x(s), h(x(s), x(s − τ))〉 ≤ (
1 + γ1 + γ2

)
sup

s−τ≤u≤s
E|x(u)|2.

(2.11)

Substituting (2.10)-(2.11) into (2.9) yields

E|x(t + δ)|2

≤ E|x(t)|2 +
∫ t+δ

t

(

2α1E|x(s)|2 +
(
2α2 + β1 + β2 + λ

(
1 + 2γ1 + 2γ2

))
sup

s−τ≤u≤s
E|x(u)|2

)

ds.

(2.12)

Let ν(t) = E|x(t)|2, β = 2α2 + β1 + β2 + λ(1 + 2γ1 + 2γ2), we have

D+ν(t) ≤ 2α1ν(t) + β sup
t−τ≤u≤t

ν(u), (2.13)

where

D+ν(t) = lim sup
δ↘0

ν(t + δ) − ν(t)
δ

. (2.14)

Moreover, α < 0 implies −2α1 > β ≥ 0. By Lemma 1.1 in [22], there exist positive constants v
and k such that

ν(t) ≤ ke−vt, t ≥ 0. (2.15)

Hence, the theorem is proven.

Based on the above result, we are going to study the stability of numerical methods
for (2.1) in the following sections.
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3. Compensated Stochastic θ Methods for Nonlinear SDDEs
with Jumps

Since the compensated Poisson process Ñ(t) = N(t) − λt is a martingale satisfying the prop-
erty

E

(
Ñ(t + s) − Ñ(t)

)
= 0, E

∣
∣
∣Ñ(t + s) − Ñ(t)

∣
∣
∣
2
= λs, t, s ≥ 0, (3.1)

we rewrite problem (2.1) in an equivalent form:

dx(t) = f̃(x(t), x(t − τ))dt + g(x(t), x(t − τ))dW(t)

+ h
(
x
(
t−
)
, x

(
t− − τ

))
dÑ(t), t > 0,

(3.2)

where f̃(x, y) is defined as

f̃
(
x, y

)
:= f

(
x, y

)
+ λh

(
x, y

)
. (3.3)

Applying the stochastic θ methods to (3.2) leads to the following compensated stochastic θ
methods:

Xn+1 = Xn + (1 − θ)f̃(Xn,Xn−m)Δt + θf̃(Xn+1, Xn−m+1)Δt

+ g(Xn,Xn−m)ΔWn + h(Xn,Xn−m)ΔÑn.
(3.4)

Here,Xn denotes that the approximation to x(tn), θ is a parameter with 0 ≤ θ ≤ 1,Δt := tn+1−tn
is the stepsize which satisfies τ = mΔt for a positive integer m, ΔWn := W(tn+1) −W(tn) and
ΔÑn := Ñ(tn+1) − Ñ(tn). In particular,

Xl = ϕ(lΔt), l ≤ 0. (3.5)

Note that for θ > 0, the numerical solutions in (3.4) are defined by implicit equations.
However, due to the one-sided Lipschitz condition (2.3), (3.4) has a unique solution, with
probability one, for all θΔt(α1 + λ

√
γ1) < 1, see, for example, [23, Theorem 14.2] and (19) in

[12].

Remark 3.1. Since α < 0 implies α1 + λ
√
γ1 < 0, then the compensated stochastic θ methods

(3.4) produce a well-defined, unique solution if the stability condition α < 0 holds.

Definition 3.2. For a give stepsize Δt = τ/m, a numerical method on the nonlinear SDDEs
with jumps (2.1) is said to be exponentially mean-square stable, if there exist positive
constants N and γ , such that the numerical solution Xn produced by this method satisfies

E|Xn|2 ≤ N
∥∥ϕ

∥∥e−γ(tn−t0), (3.6)

for all initial data ϕ ∈ Cb
F0
([−τ, 0];Rd).
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Definition 3.3. For a give stepsize Δt = τ/m, a numerical method on the nonlinear SDDEs
with jumps (2.1) is said to be mean-square stable if the numerical solution Xn produced by
this method satisfies

lim
n→∞

E|Xn|2 = 0. (3.7)

4. Stability Analysis of the Numerical Solutions

In this section, we studymean-square stability and exponentially mean-square stability of the
compensated stochastic θ methods (3.4). Now, we present the main results of the paper.

Theorem 4.1. Suppose that (2.3)–(2.7) hold. If 1/2 ≤ θ ≤ 1, then the compensated stochastic θ
methods are mean-square stable for every stepsize Δt = τ/m.

Proof. It follows from (3.4) that

∣∣∣Xn+1 − θΔtf̃(Xn+1, Xn−m+1)
∣∣∣
2
=
∣∣∣Xn − θΔtf̃(Xn,Xn−m)

∣∣∣
2
+ 2Δt

〈
Xn, f̃(Xn,Xn−m)

〉

+ (Δt)2(1 − 2θ)
∣∣∣f̃(Xn,Xn−m)

∣∣∣
2
+
∣∣g(Xn,Xn−m)ΔWn

∣∣2

+
∣∣∣h(Xn,Xn−m)ΔÑn

∣∣∣
2
+Mn,

(4.1)

where

Mn = 2
〈
Xn + (1 − θ)Δtf̃(Xn,Xn−m), g(Xn,Xn−m)ΔWn

〉

+ 2
〈
Xn + (1 − θ)Δtf̃(Xn,Xn−m), h(Xn,Xn−m)ΔÑn

〉

+ 2
〈
g(Xn,Xn−m)ΔWn, h(Xn,Xn−m)ΔÑn

〉
.

(4.2)

Thus, for 1/2 ≤ θ ≤ 1, we have

∣∣∣Xn+1 − θΔtf̃(Xn+1, Xn−m+1)
∣∣∣
2 ≤

∣∣∣Xn − θΔtf̃(Xn,Xn−m)
∣∣∣
2
+ 2Δt

〈
Xn, f̃(Xn,Xn−m)

〉

+
∣∣g(Xn,Xn−m)ΔWn

∣∣2 +
∣∣∣h(Xn,Xn−m)ΔÑn

∣∣∣
2
+Mn.

(4.3)

It follows from (2.3), (2.4), and (2.6) that

2
〈
Xn, f̃(Xn,Xn−m)

〉
= 2

〈
Xn, f(Xn,Xn−m)

〉
+ 2λ〈Xn, h(Xn,Xn−m)〉

≤ 2α1|Xn|2 + α2|Xn|2 + α2|Xn−m|2 + λ
(
|Xn|2 + γ1|Xn|2 + γ2|Xn−m|2

)
.

(4.4)
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Note that E(ΔWn) = 0, E(ΔÑn) = 0 and E(ΔÑn)
2 = λΔt. Furthermore, Xn and Xn−m are all

Ftn-measurable. Therefore, we can easily obtain

E
∣
∣g(Xn,Xn−m)ΔWn

∣
∣2 = ΔtE

∣
∣g(Xn,Xn−m)

∣
∣2, (4.5)

E

∣
∣
∣h(Xn,Xn−m)ΔÑn

∣
∣
∣
2
= λΔtE|h(Xn,Xn−m)|2, (4.6)

EMn = 0. (4.7)

Taking expectation on both sides of (4.3) and substituting (4.4)–(4.7) into (4.3), we have

E

∣
∣∣Xn+1 − θΔtf̃(Xn+1, Xn−m+1)

∣
∣∣
2

≤ E

∣∣∣Xn − θΔtf̃(Xn,Xn−m)
∣∣∣
2
+ Δt

(
2α1 + α2 + β1 + λ + 2λγ1

)
E|Xn|2

+ Δt
(
α2 + β2 + 2λγ2

)
E|Xn−m|2.

(4.8)

Consequently, by the recursion of inequality (4.8), we have

E

∣∣∣Xn+1 − θΔtf̃(Xn+1, Xn−m+1)
∣∣∣
2

≤ E

∣∣∣Xn − θΔtf̃(Xn,Xn−m)
∣∣∣
2

+ Δt
(
2α1 + α2 + β1 + λ + 2λγ1

)
E|Xn|2 + Δt

(
α2 + β2 + 2λγ2

)
E|Xn−m|2

≤ E

∣∣∣Xn−1 − θΔtf̃(Xn−1, Xn−m−1)
∣∣∣
2

+ Δt
(
2α1 + α2 + β1 + λ + 2λγ1

) n∑

j=n−1
E
∣∣Xj

∣∣2 + Δt
(
α2 + β2 + 2λγ2

) n∑

j=n−1
E
∣∣Xj−m

∣∣2

≤ · · ·
≤ E

∣∣∣X0 − θΔtf̃(X0, X−m)
∣∣∣
2

+ Δt
(
2α1 + α2 + β1 + λ + 2λγ1

) n∑

j=0

E
∣∣Xj

∣∣2 + Δt
(
α2 + β2 + 2λγ2

) n∑

j=0

E
∣∣Xj−m

∣∣2.

(4.9)

Noting that
∑n

j=0 E|Xj−m|2 =
∑−1

j=−m E|Xj |2 +
∑n−m

j=0 E|Xj |2 and τ = mΔt, we derive from (4.9)
that

E

∣∣∣Xn+1 − θΔtf̃(Xn+1, Xn−m+1)
∣∣∣
2

≤ E

∣∣∣X0 − θΔtf̃(X0, X−m)
∣∣∣
2



8 Abstract and Applied Analysis

+ Δt
(
2α1 + 2α2 + β1 + β2 + λ

(
1 + 2γ1 + 2γ2

)) n∑

j=0

E
∣
∣Xj

∣
∣2 + τ

(
α2 + β2 + 2λγ2

)

× max
−m≤j≤0

E
∣
∣Xj

∣
∣2.

(4.10)

Rearranging (4.10) and using the notation α in (2.7), we obtain

E

∣
∣
∣Xn+1 − θΔtf̃(Xn+1, Xn−m+1)

∣
∣
∣
2 − αΔt

n∑

j=0

E
∣
∣Xj

∣
∣2

≤ E
∣
∣
∣X0 − θΔtf̃(X0, X−m)

∣
∣
∣
2
+
(
α2 + β2 + 2λγ2

)
τ max
−m≤j≤0

E
∣
∣Xj

∣
∣2.

(4.11)

Since E‖ϕ‖2 < ∞ and α < 0, we then derive that the series
∑∞

j=0 E|Xj |2 is convergent, which
implies limn→∞E|Xn|2 = 0. Consequently, for 1/2 ≤ θ ≤ 1, the compensated stochastic θ
methods are mean-square stable for any stepsize Δt = τ/m.

In order to investigate the exponential stability of the numerical methods, we need the
following lemma which is Theorem 1 in [24].

Lemma 4.2 (see [24]). Suppose, for some fixed integer N ≥ 0, that tn = t0 + nΔt for some Δt > 0
and {vn}∞−N is a sequence of positive numbers that satisfies

vn+1 − vn

Δt
≤ −αΔtvn + βΔt max

j∈J
vn+j for n ∈ N (4.12)

withN = 0 if βΔt = 0, where J := {−N, . . . ,−1, 0}. If

0 ≤ βΔt < αΔt, 0 < αΔtΔt < 1, (4.13)

then vn ≤ {maxj∈Jvj} exp{−v+(tn − t0)}, where v+ > 0 is a constant.

Now, we present the result as follows.

Theorem 4.3. Suppose that (2.3)–(2.7) hold and the drift coefficient f satisfies the linear growth
condition, that is, there is a constant D such that

∣∣f
(
x, y

)∣∣2 ≤ D
(
|x|2 + ∣∣y

∣∣2
)
. (4.14)

DefineΔt1 = −α/2(1−θ)2(2D+λ2(γ1+γ2)),Δt2 = −(2α1+α2+β1+λ+2λγ1)/2(1 − θ)2(D+λ2γ1)
andΔt3 = inf{Δt > 0 : P(θ,Δt) < 0}, where P(θ,Δt) = 2(1−θ)2(D+λ2γ1)(Δt)2+((1−θ)(2α1+α2+
λ+λγ1)+β1+λγ1)Δt+1. If 0 ≤ θ < 1, and the stepsizeΔt ∈ (0,Δt0)withΔt0 = min{Δt1,Δt2,Δt3},
then the compensated stochastic θ methods are exponentially mean-square stable.



Abstract and Applied Analysis 9

Proof. We derive from (3.4) that

∣
∣
∣Xn+1 − θΔtf̃(Xn+1, Xn−m+1)

∣
∣
∣
2

=
∣
∣
∣Xn + (1 − θ)Δtf̃(Xn,Xn−m) + g(Xn,Xn−m)ΔWn + h(Xn,Xn−m)ΔÑn

∣
∣
∣
2
.

(4.15)

Hence, we have

|Xn+1|2 ≤ |Xn|2 + (1 − θ)2(Δt)2
∣
∣
∣f̃(Xn,Xn−m)

∣
∣
∣
2
+
∣
∣g(Xn,Xn−m)ΔWn

∣
∣2 +

∣
∣
∣h(Xn,Xn−m)ΔÑn

∣
∣
∣
2

+ 2θΔt
〈
Xn+1, f̃(Xn+1, Xn−m+1)

〉
+ 2(1 − θ)Δt

〈
Xn, f̃(Xn,Xn−m)

〉
+Mn,

(4.16)

where Mn is defined as (4.2). From (2.6), (3.3), and (4.14), we obtain

∣∣∣f̃(Xn,Xn−m)
∣∣∣
2
=
∣∣f(Xn,Xn−m) + λh(Xn,Xn−m)

∣∣2

≤ 2
(
D
(
|Xn|2 + |Xn−m|2

)
+ λ2

(
γ1|Xn|2 + γ2|Xn−m|2

))
.

(4.17)

Substituting (4.4)–(4.7) and (4.17) into (4.16), and taking expectation, we have

E|Xn+1|2 ≤ E|Xn|2 + 2(1 − θ)2(Δt)2
((

D + λ2γ1
)
E|Xn|2 +

(
D + λ2γ2

)
E|Xn−m|2

)

+ Δt
(
β1E|Xn|2 + β2E|Xn−m|2

)
+ λΔt

(
γ1E|Xn|2 + γ2E|Xn−m|2

)

+ θΔt
((

2α1 + α2 + λ
(
1 + γ1

))
E|Xn+1|2 +

(
α2 + λγ2

)
E|Xn−m+1|2

)

+ (1 − θ)Δt
((

2α1 + α2 + λ
(
1 + γ1

))
E|Xn|2 +

(
α2 + λγ2

)
E|Xn−m|2

)
,

(4.18)

which yields

(
1 − θΔt

(
2α1 + α2 + λ

(
1 + γ1

)))
E|Xn+1|2

≤ (
1 − θΔt

(
2α1 + α2 + λ

(
1 + γ1

)))
E|Xn|2 +

((
2α1 + α2 + β1 + λ + 2λγ1

)
Δt

+ 2(1 − θ)2
(
D + λ2γ1

)
(Δt)2

)
E|Xn|2

+
((

α2 + β2 + 2λγ2
)
Δt + 2(1 − θ)2

(
D + λ2γ2

)
(Δt)2

)
max

n−m≤i≤n−m+1
E|Xi|2.

(4.19)

Hence,

E|Xn+1|2 − E|Xn|2
Δt

≤ −AE|Xn|2 + B max
n−m≤i≤n−m+1

E|Xi|2, (4.20)
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where

A = −2α1 + α2 + β1 + λ + 2λγ1 + 2(1 − θ)2
(
D + λ2γ1

)
Δt

1 − θΔt
(
2α1 + α2 + λ

(
1 + γ1

)) ,

B =
α2 + β2 + 2λγ2 + 2(1 − θ)2

(
D + λ2γ2

)
Δt

1 − θΔt
(
2α1 + α2 + λ

(
1 + γ1

)) .

(4.21)

By Lemma 4.2, we derive that the methods are exponentially mean-square stable if

0 ≤ B < A, 0 < AΔt < 1. (4.22)

That is,

Δt <
−α

2(1 − θ)2
(
2D + λ2

(
γ1 + γ2

)) ,

Δt < −2α1 + α2 + β1 + λ + 2λγ1
2(1 − θ)2

(
D + λ2γ1

) ,

P(θ,Δt) > 0,

(4.23)

where P(θ,Δt) = 2(1 − θ)2(D + λ2γ1)(Δt)2 + ((1 − θ)(2α1 + α2 + λ + λγ1) + β1 + λγ1)Δt + 1. Since
P(θ, 0) = 1, there must exist Δt3 > 0 such that P(θ,Δt) > 0 when Δt < Δt3. On the other hand,
if P(θ,Δt) ≥ 0 is always true, we then defineΔt3 as∞. Therefore, letΔt1 = −α/2(1 − θ)2(2D+
λ2(γ1+γ2)),Δt2 = −(2α1+α2+β1+λ+2λγ1)/2(1 − θ)2 (D+λ2γ1),Δt3 = inf{Δt > 0 : P(θ,Δt) < 0}
andΔt0 = min{Δt1,Δt2,Δt3}, then (4.22) holdswhenΔt ∈ (0,Δt0), which completes the proof
of Theorem 4.3.

By the proof of Theorem 4.3, we can easily obtain the following result.

Theorem 4.4. Suppose that (2.3)–(2.7) hold. If θ = 1, then the compensated stochastic θ-method is
exponentially mean-square stable for every stepsize Δt = τ/m.

5. Numerical Examples

The purpose of this section is to illustrate our theoretical results presented in the previous
section by numerical experiments. We first consider the following nonlinear scalar SDDEs
with jumps:

dx(t) =
(
−4x(t) − x3(t) + x(t − 1)

)
dt + sin(x(t − 1))dW(t) − x

(
t−
)
dN(t), t > 0,

x(t) = 1, t ∈ [−1, 0],
(5.1)

where N(t) is a scalar Poisson process with parameter λ = 1. In this case, (2.3)–(2.6) are
satisfied with α1 = −4, α2 = 1, β1 = 0, β2 = 1, γ1 = 1, γ2 = 0, and τ = 1. So we have α = −2 in
(2.7), which guarantees mean-square stability of the zero solution of (5.1) by Theorem 2.2.
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Figure 1: Fixed θ = 0.5 (a) and θ = 0.8 (b)with different stepsize Δt = 1/8, 1/4, 1/2, 1.

The following numerical experiments will show how the parameter θ and the stepsize
Δt influence the mean-square stability of the compensated stochastic θ methods. We simulate
the expectation of |Xn|2 by using 1000 trajectories, that is,

E|Xn|2 ≈ 1
1000

1000∑

i=1

|Xn(ωi)|2. (5.2)

Theorem 4.1 shows that the compensated stochastic θmethods are mean-square stable
for every stepsize Δt = τ/m when 1/2 ≤ θ ≤ 1. In Figure 1, we use (3.4) to solve (5.1)
and choose the parameter θ with different values 0.5 and 0.8, and we take the stepsize Δt =
1/8, 1/4, 1/2, and 1, respectively. We can find that the compensated stochastic θ methods are
mean-square stable with these stepsizes.

Theorem 4.3 shows that the compensated stochastic θ methods are exponentially
mean-square stable if the stepsize Δt ∈ (0,Δt0) when 0 ≤ θ < 1. Now, we consider the
following nonlinear scalar SDDEs with jumps:

dx(t) = −3x(t)dt + sin(x(t − 1))dW(t) − x
(
t− − 1

)
dN(t), t > 0,

x(t) = 1, t ∈ [−1, 0], (5.3)

where N(t) is a scalar Poisson process with parameter λ = 1. (2.3)–(2.7) and (4.14) are
satisfied with α1 = −3, α2 = 0, β1 = 0, β2 = 1, γ1 = 0, γ2 = 1, τ = 1, D = 9, and α = −2.
Therefore, the zero solution of (5.3) is exponentially mean-square stable. By Theorem 4.3, we
calculateΔt1 = 1/19(1−θ)2,Δt2 = 5/18(1−θ)2, and P(θ,Δt) = 18(1−θ)2(Δt)2−5(1−θ)Δt+1.
It is easy to see that P(θ,Δt) > 0 for every Δt > 0, then we get Δt3 = ∞. Therefore, we obtain
Δt0 = min{Δt1,Δt2,Δt3} = 1/19(1−θ)2, which implies that the methods applied to (5.3) have
less restrictions on the stepsize as the value of θ increases. Now, we use (3.4) to solve (5.3)
and choose the parameter θ = 0 and θ = 0.2, and we take the stepsizeΔt = 1/20, 1/8, 1/2, and
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Figure 2: Fixed θ = 0 (a) and θ = 0.2 (b) with different stepsize Δt = 1/20, 1/8, 1/2, 1.

1, respectively. By Theorem 4.3, we compute that Δt0 = 0.0526 when θ = 0 and Δt0 = 0.0822
when θ = 0.2. Figure 2 indicates that both methods are exponentially mean-square stable
if the stepsize Δt = 0.05, which is well selected in Δt ∈ (0,Δt0). It also shows that the
methods maybe stable when the stepsize is bigger than Δt0, since both methods are stable
when stepsize Δt = 0.125, but they are not stable for stepsize Δt = 1. This indicates that the
restriction of the stepsize Δt0 in Theorem 4.3 is not theoretical optimal. From Figure 2, we
also can find that the methods behave better stability when the value of θ increases and the
stepsize Δt decreases.
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