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In our present investigation, motivated from Noor work, we define the class Rs
k
(b) of functions of

bounded radius rotation of complex order b with respect to symmetrical points and learn some
of its basic properties. We also apply this concept to define the class Hs

k
(α, b, δ). We study some

interesting results, including arc length, coefficient difference, and univalence sufficient condition
for this class.

1. Introduction

Let A denote the class of analytic function satisfying the condition f(0) = 0, f ′(0) − 1 = 0 in
the open unit disc U = {z : |z| < 1} and in more simple form:

f(z) = z +
∞∑

n=2

anz
n (z ∈ U). (1.1)

By S, C, and S∗, we means the well-known subclasses of A which consists of univalent,
convex, and starlike functions, respectively. In [1], Sakaguchi introduced the class S∗

s of
starlike functions with respect to symmetrical points and is defined as follows: a function
f(z) given by (1.1) belongs to the class S∗

s , if and only if

Re
{

zf ′(z)
f(z) − f(−z)

}
> 0 (z ∈ U). (1.2)
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Motivated from Sakaguchi work, Das and Singh [2] extend the concepts of S∗
s to other class

in U, namely, convex functions with respect to symmetrical points. Let Cs denote the class of
convex functions with respect to symmetrical points and satisfying the following condition:

Re

{ (
zf ′(z)

)′

f ′(z) − f ′(−z)

}
> 0 (z ∈ U). (1.3)

Let Pk(δ), 0 ≤ δ < 1, be the class of functions p(z) analytic in U with p(0) = 1 and

∫2π

0

∣∣∣∣
Re p(z) − δ

1 − δ

∣∣∣∣dθ ≤ kπ, z = reiθ, k ≥ 2. (1.4)

This class was introduced in [3]. For δ = 0, we obtain the class Pk defined by Pinchuk [4],
and for k = 2, the class Pk reduces to the class P of functions with positive real part.

Now, with the help of the aforementioned concepts, we define the class Rs
k
(b) of

functions of bounded radius rotation of complex order b with respect to symmetrical points
as follows.

Definition 1.1. Let f(z) ∈ A in U. Then f(z) ∈ Rs
k
(b), if and only if

1 +
1
b

{
2zf ′(z)

f(z) − f(−z) − 1
}

∈ Pk (z ∈ U), (1.5)

where k ≥ 2 and b ∈ C − {0}.
Using the class Rs

k(b), we define the class Hs
k(α, b, δ) as follows.

Definition 1.2. Let f(z) ∈ A in U. Then f(z) ∈ Hs
k(α, b, δ), if and only if there exists g(z) ∈

Rs
k
(b) such that

zf ′(z)
f(z)

(
2f(z)

g(z) − g(−z)
)α

∈ P(δ), (1.6)

where α > 0, 0 ≤ δ < 1, and b ∈ C − {0}.
It is noticed that, by giving specific values to α, b, δ, and k in Rs

k(b) and Hs
k(α, b, δ),

we obtain many well-known as well as new subclasses of analytic and univalent functions;
for details see [5–11].

Throughout this paper, we will assume, unless otherwise stated, that k ≥ 2,α > 0, 0 ≤
δ < 1, and b ∈ C − {0}.

Lemma 1.3. Let p(z) be analytic in U where p(0) = 1 belongs to P(δ). Then

1
2π

∫2π

0

∣∣p(z)
∣∣2dθ ≤

1 +
(
4(1 − δ)2 − 1

)
r2

1 − r2
(1.7)

(see [8, 12]).
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Lemma 1.4. Let s1(z) be univalent function in U. Then there exists ξ with |ξ| = r such that for all z,
|z| = r,

|z − ξ||s1(z)| ≤ 2r2

1 − r2
(1.8)

(see [13]).

2. Some Properties of the Classes Rs
k(b) and Hs

k(α, b, δ)

Theorem 2.1. Let f(z) ∈ Rs
k
(b). Then the odd function

φ(z) =
1
2
[
f(z) − f(−z)] (2.1)

belongs to Rk(b) in U.

Proof. Let f(z) ∈ Rs
k(b) and consider

φ(z) =
1
2
[
f(z) − f(−z)]. (2.2)

From logarithmic differentiation of the previous relation, we have

φ′(z)
φ(z)

=
f ′(z) − f ′(−z)
f(z) − f(−z) , (2.3)

or, equivalently,

zφ′(z)
φ(z)

=
1
2
[
p1(z) + p2(z)

]
(2.4)

with

p1(z) =
2zf ′(z)

f(z) − f(−z) , p2(z) =
2(−z)f ′(−z)
f(−z) − f(z)

(2.5)

belongs to Pk(b). Since Pk(b) is a convex set, we have

zφ′(z)
φ(z)

∈ Pk(b) (z ∈ U), (2.6)

and hence φ(z) ∈ Rk(b).
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Theorem 2.2. Let f(z) ∈ Rs
k(b). Then

f ′(z) =
1
2
[
b
(
p(z) − 1

)
+ 1
]
exp
{
b

2

∫z

0

1
ξ

(
p(ξ) − p(−ξ) − 2

b

)
dξ

}
. (2.7)

Proof. Let f(z) ∈ Rs
k
(b). Then by definition we have

1 +
1
b

[
2zf ′(z)

f(z) − f(−z) − 1
]
= p(z), p(z) ∈ Pk. (2.8)

Simple computation yields us

f(z) − f(−z)
z

= exp
{
b

2

∫z

0

1
ξ

[
p(ξ) − p(−ξ) − 2

b

]
dξ

}
. (2.9)

Using (2.8) in (2.9), we can easily obtain (2.7).
If we put b = 1 and k = 2 in Theorem 2.1, we obtain the integral representation for S∗

s

given by Stankiewiez in [14].

Theorem 2.3. Let f(z) ∈ Rs
k
(b). Then

|a2| ≤ k|b|
2

. (2.10)

The function f0(z) ∈ Rs
k
(b) defined by

f ′
0(z) =

(
1 + z2

)(k−2)/4

(1 − z2)(k+2)/4

[
b

{(
k + 2
4

)(
1 − z

1 + z

)
−
(
k − 2
4

)(
1 + z

1 − z

)}
+ (1 − b)

]
(2.11)

shows that this bound is sharp.

Proof . Since f(z) ∈ Rs
k
(b), there exists an odd function φ(z) ∈ Rk(b)with

φ(z) =
1
2
[
f(z) − f(−z)], (2.12)

such that

zf ′(z) = φ(z)p(z), (2.13)

with p(z) ∈ Pk(b). Let

φ(z) = z +
∞∑

n=2

b2n−1 z2n−1, p(z) = 1+
∞∑

n=1

cnz
n. (2.14)



Abstract and Applied Analysis 5

Then (2.13) implies that

z +
∞∑

n=2

nanz
n =

[
z +

∞∑

n=2

b2n−1 z2n−1
][

1+
∞∑

n=1

cnz
n

]
. (2.15)

Equating the coefficients of z2, we have 2a2 = c1, and so

|a2| ≤ k|b|
2

, (2.16)

where we have used the coefficient bounds |c1| ≤ k|b| for the class Pk(b).

Corollary 2.4. The range of every univalent function f(z) ∈ Rs
k
(b) contains the disc

|w| < 2
4 + k|b| . (2.17)

Proof . The Koebe one-quarter theorem states that each omitted value w of the univalent
function f(z) of the form (1.1) satisfies

|w| > 1
2 + |a2| . (2.18)

Using (2.18) and Theorem 2.3, we obtain the required result.

By using the same method as in [1], we obtain the following result.

Theorem 2.5. Let f(z) ∈ Rs
k
(b). Then, for z = reiθ and 0 ≤ θ1 < θ2 ≤ 2π ,

∫θ2

θ1

Re

(
zf ′(z)

)′

f ′(z)
dθ > −(k − 1)|b|π. (2.19)

Theorem 2.6. Let f(z) ∈ Hs
k(α, b, 0). Then, for z = reiθ,

∫θ2

θ1

Re J
(
α, f(z)

)
dθ > −(α|b|(k − 1) + 1)π, (2.20)

where 0 ≤ θ1 < θ2 ≤ 2π and

J
(
α, f(z)

)
=
(
1 +

zf ′′(z)
f ′(z)

)
+ (α − 1)

zf ′(z)
f(z)

. (2.21)
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Proof. We can define, for z = reiθ, r < 1, θ real, the following:

S(r, θ) = arg
[
zf ′(z)fα−1(z)

]
, (2.22)

V (r, θ) = arg
[
g(z) − g(−z)

2

]α
. (2.23)

The functions S(z) and V (z) are periodic and continuous with period 2π . Since f(z) ∈
Hs

k
(α, b, 0), therefore from (2.22), it follows that we can choose the branches of argument

of S(z) and V (z) as

|S(r, θ) − V (r, θ)| ≤ π

2
. (2.24)

Now we have from (2.22)

V (r, θ2) − V (r, θ1) = α

∫θ2

θ1

Re
zφ′(z)
φ(z)

dθ, (2.25)

where φ(z) is an odd function of the following form:

φ(z) =
1
2
[
g(z) − g(−z)]. (2.26)

Since g(z) ∈ Rs
k
(b), therefore by using Theorem 2.5, we have

∫θ2

θ1

Re
zφ′(z)
φ(z)

dθ > −(k − 1)|b|π. (2.27)

From (2.22), (2.23), (2.24), and (2.27), we have

|S(r, θ2) − S(r, θ1)| = |S(r, θ2) − V (r, θ2) − (S(r, θ1) − V (r, θ1)) + (V (r, θ2) − V (r, θ1))|
<

π

2
+
π

2
+ α(k − 1)|b|π = (α|b|(k − 1) + 1)π.

(2.28)

Moreover, from (2.22)

d

dθ
S(r, θ) = Re

[(
1 +

zf ′′(z)
f ′(z)

)
+ (α − 1)

zf ′(z)
f(z)

]
. (2.29)

Therefore

∫θ2

θ1

Re J
(
α, f(z)

)
dθ > −(α|b|(k − 1) + 1)π. (2.30)
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Theorem 2.7. Let f(z) ∈ Hs
k(α, b, δ). Then for α(k/2 + 1)Re b > 1,

Lrf(z) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C(α, b, δ, k)M1−α(r)
(

1
1 − r

)α(k/2+1)Re b

, 0 < α ≤ 1,

C(α, b, δ, k)mα−1(r)
(

1
1 − r

)α(k/2+1)Re b

, α > 1,

(2.31)

where m(r) = min|z|=r |f(z)|, M(r) = max|z|=r |f(z)|, and C(α, b, δ, k) is a constant depending
upon α, b, δ, and k only.

Proof. We know that

Lrf(z) =
∫2π

0

∣∣zf ′(z)
∣∣dθ, z = reiθ, 0 < r < 1. (2.32)

Since f(z) ∈ Hs
k
(α, b, δ), therefore

zf ′(z)
f(z)

(
2f(z)

g(z) − g(−z)
)α

= p(z), p(z) ∈ P(δ). (2.33)

By Theorem 2.1, we have, for g(z) ∈ Rs
k
(b), the odd function φ(z) = (1/2)[g(z) − g(−z)] ∈

Rk(b). This implies that

zf ′(z) =
(
f(z)
)1−α(

φ(z)
)α
p(z). (2.34)

Therefore, we have

Lrf(z) ≤
∫2π

0

∣∣f(z)
∣∣1−α∣∣φ(z)

∣∣α∣∣p(z)
∣∣dθ,

≤ M1−α(r)
∫2π

0

∣∣φ(z)
∣∣α∣∣p(z)

∣∣dθ.
(2.35)

Since φ(z) ∈ Rk(b), therefore we have for odd functions s1(z), s1(z) ∈ S∗,

≤ M1−α(r)
∫2π

0

∣∣∣∣∣
(s1(z))(k/4+1/2)b

(s2(z))(k/4−1/2)b

∣∣∣∣∣

α∣∣p(z)
∣∣dθ,

≤ cM1−α(r)
∫2π

0

|(s1(z))|α(k/4+1/2)Re b
|(s2(z))|α(k/4−1/2)Re b

∣∣p(z)
∣∣dθ, c = e(π/2) Im b.

≤ cM1−α(r)2α(k/2−1)Re br−α(k/4−1/2)Re b
∫2π

0
|(s1(z))|α(k/4+1/2)Re b

∣∣p(z)
∣∣dθ.

(2.36)
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Now using Cauchy Schwarz inequality, we have

Lrf(z) ≤ cM1−α(r)2α(k/2−1)Re br−α(k/4−1/2)Re b
(

1
2π

∫2π

0

∣∣p(z)
∣∣2dθ
)1/2

×
(

1
2π

∫2π

0
|(s1(z))|2α(k/4+1/2)Re bdθ

)1/2

.

(2.37)

By Lemma 1.3 and distortion results for the class S∗ with a subordination result, we obtain

Lrf(z) ≤ cM1−α(r)2α(k/2−1)Re brαRe b
(

1

(1 − r)4α(k/4+1/2)Re b−1

)1/2
⎛
⎜⎝

1 +
(
4(1 − δ)2 − 1

)
r2

1 − r2

⎞
⎟⎠

1/2

= C(α, b, δ, k)M1−α(r)
(

1
1 − r

)α(k/2+1)Re b

.

(2.38)

Similarly for α > 1, we have

Lrf(z) ≤ C(α, b, δ, k)mα−1(r)
(

1
1 − r

)α(k/2+1)Re b

. (2.39)

Theorem 2.8. Let f(z) ∈ Hs
k
(α, b, δ). Then for α(k/2 + 1)Re b > 1

|an| ≤

⎧
⎪⎪⎨

⎪⎪⎩

C1(α, b, δ, k)M1−α(n)(n)α(k/2+1)Re b−1, 0 < α ≤ 1,

C1(α, b, δ, k)mα−1(n)(n)α(k/2+1)Re b−1, α > 1,

(2.40)

where m and M are the same as in Theorem 2.7 and C1(α, b, δ, k) is a constant depending upon
α, b, δ, and k only.

Proof. Since, with z = reiθ Cauchy theorem gives

nan =
1

2πrn

∫2π

0
zf ′(z)e−inθdθ, (2.41)

therefore

n|an| ≤ 1
2πrn

Lrf(z). (2.42)
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Now using Theorem 2.7 for 0 < α ≤ 1, we have

n|an| ≤ 1
2πrn

C(α, b, δ, k)M1−α(r)
(

1
1 − r

)α(k/2+1)Re b

. (2.43)

Putting r = 1 − 1/n, we have

|an| ≤ C1(α, b, δ, k)M1−α(r)(n)α(k/2+1)Re b−1. (2.44)

Similarly we obtain the required result for α > 1.

Theorem 2.9. Let f(z) ∈ Hs
k
(α, b, δ). Then for α(k/2 + 1)Re b > 3,

||an+1| − |an|| ≤
{
C2(α, b, δ, k)M1−α(r)(n)α(k/2+1)Re b−2, 0 < α ≤ 1,
C2(α, b, δ, k)mα−1(r)(n)α(k/2+1)Re b−2, α > 1.

(2.45)

Proof. We know that for ξ ∈ U and n ≥ 1,

|(n + 1)ξan+1 − nan| ≤
∫2π

0
|z − ξ|∣∣zf ′(z)

∣∣dθ, z = reiθ, 0 < r < 1, 0 ≤ θ ≤ 2π. (2.46)

Since f(z) ∈ Hs
k
(α, b, δ), therefore

zf ′(z)
f(z)

(
2f(z)

g(z) − g(−z)
)α

= p(z), p(z) ∈ P(δ). (2.47)

By Theorem 2.1, we have, for g(z) ∈ Rs
k(b), the odd function φ(z) = (1/2)[g(z) − g(−z)] ∈

Rk(b). This implies that

zf ′(z) =
(
f(z)
)1−α(

φ(z)
)α
p(z). (2.48)

Thus, for ξ ∈ U and n ≥ 1, we have

|(n + 1)ξan+1 − nan| ≤ M1−α(r)
∫2π

0
|z − ξ|∣∣φ(z)∣∣α∣∣p(z)∣∣dθ. (2.49)

Since φ(z) ∈ Rk(b), therefore we have for odd functions s1(z), s1(z) ∈ S∗,

|(n + 1)ξan+1 − nan| ≤ 2α(k/2−1)Re beIm b(π/2)M1−α(r)
2πrn+1−α(k/2−1)Re b

∫2π

0
|z − ξ||(s1(z))|α(k/4+1/2)Re b

∣∣p(z)
∣∣dθ.

(2.50)
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By using Lemma 1.4, we have

≤ 2α(k/2−1)Re beIm b(π/2)M1−α(r)
2πrn−1−α(k/2−1)Re b(1 − r)

∫2π

0
|(s1(z))|α(k/4+1/2)Re b−1

∣∣p(z)
∣∣dθ. (2.51)

Now using Cauchy Schwarz inequality, we have

|(n + 1)ξan+1 − nan| ≤ 2α(k/2−1)Re beIm b(π/2)M1−α(r)
2πrn−1−α(k/2−1)Re b(1 − r)

(
1
2π

∫2π

0
|(s1(z))|2α(k/4+1/2)Re b−2dθ

)1/2

×
(

1
2π

∫2π

0

∣∣p(z)
∣∣2dθ
)1/2

.

(2.52)

By Lemma 1.3 and distortion result for the class S∗ with a subordination result, we obtain

|(n + 1)ξan+1 − nan| ≤ cM1−α(r)2α(k/4)−Re brαRe b−n+1
(

1
(1 − r)

)α(k/2+1)Re b−5/2+1

×

⎛
⎜⎝

1 +
(
4(1 − δ)2 − 1

)
r2

1 − r2

⎞
⎟⎠

1/2

.

(2.53)

Now putting |ξ| = r = n/(n + 1), we obtain

||an+1| − |an|| ≤ C2(α, b, δ, k)M1−α(r)(n)α(k/2+1)Re b−2. (2.54)

Similarly for α > 1, we have

||an+1| − |an|| ≤ C2(α, b, δ, k)mα−1(r)(n)α(k/2+1)Re b−2. (2.55)
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