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Using spectral properties of the Laplace operator and some structural formula for rapidly
decreasing functions of the Laplace operator, we offer a novel method to derive explicit formulae
for solutions to the Cauchy problem for classical wave equation in arbitrary dimensions. Among
them are the well-known d’Alembert, Poisson, and Kirchhoff representation formulae in low space
dimensions.

1. Introduction

The wave equation for a function u(x1, . . . , xn, t) = u(x, t) of n space variables x1, . . . , xn and
the time t is given by

∂2u

∂t2
= Δu, (1.1)

where

Δ =
∂2

∂x2
1

+ · · · + ∂2

∂x2
n

(1.2)

is the Laplacian. The wave equation is encountered often in applications. For n = 1 the
equation can represent sound waves in pipes or vibrations of strings, for n = 2 waves on
the surface of water, for n = 3 waves in acoustics or optics. Therefore, formulae that give
the solution of the Cauchy problem in explicit form are of great significance. In the Cauchy
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problem (initial value problem) one asks for a solution u(x, t) of (1.1) defined for x ∈ R
n,

t ≥ 0 that satisfies (1.1) for x ∈ R
n, t > 0 and the initial conditions

u(x, 0) = ϕ(x),
∂u(x, 0)

∂t
= ψ(x) (x ∈ R

n). (1.3)

If n = 1 and ϕ ∈ C2(R), ψ ∈ C1(R), then the classical solution of problem (1.1), (1.3) is
given by d’Alembert’s formula

u(x, t) =
ϕ(x + t) + ϕ(x − t)

2
+
1
2

∫x+t

x−t
ψ
(
y
)
dy. (1.4)

If n = 2 and ϕ ∈ C3(R2), ψ ∈ C2(R2), then the solution of problem (1.1), (1.3) is given
by Poisson’s formula

u(x, t) =
1
2π

∫
|y−x|<t

ψ
(
y
)
dy√

t2 − ∣∣y − x∣∣2
+
∂

∂t

⎡
⎢⎣ 1
2π

∫
|y−x|<t

ϕ
(
y
)
dy√

t2 − ∣∣y − x∣∣2

⎤
⎥⎦, (1.5)

where x = (x1, x2), y = (y1, y2), and |y − x|2 = (y1 − x1)2 + (y2 − x2)2.
If n = 3 and ϕ ∈ C3(R2), ψ ∈ C2(R2), then the solution of problem (1.1), (1.3) is given

by Kirchhoff’s formula

u(x, t) =
1

4πt

∫
|y−x|=t

ψ
(
y
)
dSy +

∂

∂t

[
1

4πt

∫
|y−x|=t

ϕ
(
y
)
dSy

]
, (1.6)

where x = (x1, x2, x3), y = (y1, y2, y3), |y − x|2 = (y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2, and dSy is
the surface element of the sphere {y ∈ R

3 : |y − x| = t}.
Passing to an arbitrary n let us denote by u(x, t) =Nϕ(x, t) the solution of the problem

∂2u

∂t2
= Δu, x ∈ R

n, t > 0, (1.7)

u(x, 0) = ϕ(x),
∂u(x, 0)

∂t
= 0, x ∈ R

n. (1.8)

It is easy to see that then the function

v(x, t) =
∫ t

0
u(x, τ)dτ (1.9)
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is the solution of the problem

∂2v

∂t2
= Δv, x ∈ R

n, t > 0, (1.10)

v(x, 0) = 0,
∂v(x, 0)

∂t
= ϕ(x), x ∈ R

n. (1.11)

Indeed, integrating (1.7) we get

∫ t

0

∂2u(x, τ)
∂τ2

dτ =
∫ t

0
Δu(x, τ)dτ = Δ

∫ t

0
u(x, τ)dτ = Δv(x, t). (1.12)

Hence,

∂u(x, t)
∂t

− ∂u(x, 0)
∂t

= Δv(x, t) or
∂u(x, t)
∂t

= Δv(x, t), (1.13)

by the second condition in (1.8). On the other hand, from (1.9),

∂v(x, t)
∂t

= u(x, t),
∂2v(x, t)
∂t2

=
∂u(x, t)
∂t

. (1.14)

Comparing (1.13) and (1.14), we get (1.10). Besides,

v(x, 0) = 0,
∂v(x, 0)

∂t
= u(x, 0) = ϕ(x) (1.15)

so that initial conditions in (1.11) are also satisfied.
Consequently, the solution u(x, t) of problem (1.1), (1.3) is represented in the form

u(x, t) =Nϕ(x, t) +
∫ t

0
Nψ(x, τ)dτ. (1.16)

It follows that it is sufficient to know an explicit form of the solutionNϕ(x, t) of problem (1.7),
(1.8). It is known [1, 2] that

Nϕ(x, t) =
1

2m+1πm

(
∂

∂t

1
t

)m ∫
|y−x|=t

ϕ
(
y
)
dSy if n = 2m + 1, (1.17)

Nϕ(x, t) =
1

2mπm

(
∂

∂t

1
t

)m−1 ∂
dt

∫
|y−x|<t

ϕ
(
y
)
dy√

t2 − ∣∣y − x∣∣2
if n = 2m, (1.18)
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where x = (x1, . . . , xn), y = (y1, . . . , yn), |y − x|2 = (y1 − x1)2 + · · · + (yn − xn)2, and dSy is the
surface element of the sphere {y ∈ R

n : |y − x| = t}.
In the present paper, we give a new proof of formulae (1.17), (1.18) for the solution of

problem (1.7), (1.8). Our method of the proof is based on the spectral theory of the Laplace
operator. We hope that such a method may be useful also in some other cases of the equation
and space.

The paper consists, besides this introductory section, of three sections. In Section 2,
we describe the structure of arbitrary rapidly decreasing function of the Laplace operator,
showing that it is an integral operator and giving an explicit formula for its kernel. Next we
use these results in Section 3 to derive the explicit representation formulae for the classical
solution to the initial value problem for the wave equation in arbitrary dimensions. The final
Section is an appendix and contains some explanation of several points in the paper.

2. Structure of Arbitrary Function of the Laplace Operator

Let A be the self-adjoint positive operator obtained as the closure of the symmetric operator
A′ determined in the Hilbert space L2(Rn) by the differential expression

−Δ = −
(

∂2

∂x2
1

+ · · · + ∂2

∂x2
n

)
, (x1, . . . , xn) ∈ R

n, (2.1)

on the domain of definition D(A′) = C∞
0 (Rn) that is the set of all infinitely differentiable

functions on R
n with compact support. Let Eμ denote the resolution of the identity (the

spectral projection) for A:

Af =
∫∞

0
μdEμf, f ∈ D(A). (2.2)

Next, let g(t) be any infinitely differentiable even function on the axis −∞ < t < ∞ with
compact support and

g̃(λ) =
∫∞

−∞
g(t)eiλtdt (2.3)

its Fourier transform. Note that the function g̃(λ) tends to zero as |λ| → ∞ (λ ∈ R) faster than
any negative power of |λ|. Consider the operator g̃(A1/2) defined according to the general
theory of self-adjoint operators (see [3]):

g̃
(
A1/2

)
f =

∫∞

0
g̃
(√

μ
)
dEμf, f ∈ L2(Rn). (2.4)

The following theorem describes the structure of the operator g̃(A1/2) showing that it
is an integral operator and giving an explicit formula for its kernel in terms of the function
g(t).
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Theorem 2.1. The operator g̃(A1/2) is an integral operator

g̃
(
A1/2

)
f(x) =

∫
Rn

K(
x, y

)
f
(
y
)
dy, f ∈ L2(Rn). (2.5)

Further, there is a smooth function k(t) defined on the interval 0 ≤ t <∞ such that

K(
x, y

)
= k

(∣∣x − y∣∣2). (2.6)

The function k(t) depends on the function g(t) as follows. If one sets

Q(t) = g
(√

t
)
, that is, Q

(
t2
)
= g(t), 0 ≤ t <∞, (2.7)

then

k(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)m
πm

Q(m)(t) if n = 2m + 1,

(−1)m
πm

∫∞

t

Q(m)(w)√
w − t dw if n = 2m,

(2.8)

where Q(m)(t) denotes the mth order derivative of Q(t). Further, if supp g(t) ⊂ (−a, a), then
supp k(t) ⊂ [0, a2). For any solution ψ(x, λ) of the equation

−Δψ(x, λ) = λ2ψ(x, λ), (2.9)

the equality

∫
Rn

k
(∣∣x − y∣∣2)ψ(y, λ)dy = g̃(λ)ψ(x, λ) (2.10)

holds for λ ∈ R.

Proof. First we consider the case n = 1. In this case, the statements of the theorem take the
following form: k(t) = Q(t) = g(

√
t) for 0 ≤ t < ∞; the operator g̃(A1/2) is an integral

operator of the form

g̃
(
A1/2

)
f(x) =

∫∞

−∞
g
(
x − y)f(y)dy, (2.11)

and for any solution ψ(x, λ) of the equation

−ψ ′′(x, λ) = λ2ψ(x, λ), (2.12)
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the equality

∫∞

−∞
g
(
x − y)ψ(y, λ)dy = g̃(λ)ψ(x, λ) (2.13)

holds.
To prove the last statements note that, in the case n = 1, the operator A is generated in

the Hilbert space L2(−∞,∞) by the operation −d2/dx2 and the operatorA1/2 by the operation
id/dx. The resolvent Rμ = (A − μI)−1 of the operator A has the form

Rμf(x) =
i

2√μ
∫∞

−∞
ei|x−y|

√
μf

(
y
)
dy, (2.14)

while the spectral projection Eμ of the operator A has the form (see [3, page 201])

Eμf(x) =
∫∞

−∞

sin√μ(x − y)
π
(
x − y) f

(
y
)
dy, 0 ≤ μ <∞,

Eμ = 0 for μ < 0.

(2.15)

Therefore,

g̃
(
A1/2

)
f(x) =

∫∞

0
g̃
(√

μ
)
dEμf(x)

=
∫∞

0
g̃
(√

μ
){∫∞

−∞

cos√μ(x − y)
2π√μ f

(
y
)
dy

}
dμ

=
∫∞

−∞

{
1
π

∫∞

0
g̃(λ) cosλ

(
x − y)dλ

}
f
(
y
)
dy =

∫∞

−∞
g
(
x − y)f(y)dy,

(2.16)

where we have used the inversion formula for the Fourier cosine transform. Therefore, (2.11)
is proved. To prove (2.13) note that the general solution of (2.12) is

ψ(x, λ) =

⎧⎨
⎩
c1 cosλx + c2 sinλx if λ/= 0,

c1 + c2x if λ = 0,
(2.17)
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where c1 and c2 are arbitrary constants. Then, we have, for λ/= 0,

∫∞

−∞
g
(
x − y)ψ(y, λ)dy = c1

∫∞

−∞
g
(
x − y) cosλy dy + c2

∫∞

−∞
g
(
x − y) sinλy dy

= c1

∫∞

−∞
g(t) cosλ(x − t)dt + c2

∫∞

−∞
g(t) sinλ(x − t)dt

= c1

∫∞

−∞
g(t)(cosλx cosλt + sinλx sinλt)dt

+ c2

∫∞

−∞
g(t)(sinλx cosλt − sinλt cosλx)dt

= c1 cosλx
∫∞

−∞
g(t) cosλt dt + c2 sinλx

∫∞

−∞
g(t) cosλt dt

= (c1 cosλx + c2 sinλx)
∫∞

−∞
g(t) cosλt dt = ψ(x, λ)g̃(λ),

(2.18)

where we have used the fact that the function g(t) is even and therefore

∫∞

−∞
g(t) sinλt dt = 0. (2.19)

The same result can be obtained similarly for λ = 0. Thus, (2.13) is also proved.
Now we consider the case n ≥ 2. We shall use the integral representation

Rμf(x) =
∫

Rn

r
(
x, y;μ

)
f
(
y
)
dy (2.20)

of the resolvent Rμ = (A − μI)−1 of the operator A. As is known [4, Section 13.7, Formula
(13.7.2)],

r
(
x, y;μ

)
=

iμ(n−2)/4

2(n+2)/2π(n−2)/2∣∣x − y∣∣(n−2)/2H
(1)
(n−2)/2

(∣∣x − y∣∣√μ
)
, (2.21)

whereH(1)
ν (z) is theHankel function of the first kind of order ν. Next, according to the general

spectral theory of self-adjoint operators [3, page 150, Formula (11)], we have

dEμf(x) =
1

2πi
(
Rμ+i0 − Rμ−i0

)
f(x)dμ. (2.22)

Therefore, from (2.4) it follows that the representation (2.5) holds with

K(
x, y

)
=

1
2πi

∫∞

0
g̃
(√

μ
)[
r
(
x, y;μ + i0

) − r(x, y;μ − i0)]dμ. (2.23)
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Now the representation (2.6), which expresses that K(x, y) is a function of |x − y|2, follows
from (2.23) by (2.21).

To prove (2.10)we use (2.23). By virtue of (2.23),

∫
Rn

k
(∣∣x − y∣∣2)ψ(y, λ)dy =

∫
Rn

K(
x, y

)
ψ
(
y, λ

)
dy

= lim
ε→+0

∫
Rn

{
1

2πi

∫∞

0
g̃
(√

μ
)[
r
(
x, y;μ + iε

)

−r(x, y;μ − iε)]dμ
}
ψ
(
y, λ

)
dy

= ψ(x, λ) lim
ε→+0

ε

π

∫∞

0

g̃
(√

μ
)

(
μ − λ2)2 + ε2dμ = ψ(x, λ)g̃(λ),

(2.24)

see Appendix. Here we have used the fact that from (2.9) it follows that

(−Δ − z)ψ(x, λ) =
(
λ2 − z

)
ψ(x, λ), (2.25)

that is,

ψ(x, λ) =
(
λ2 − z

)
(−Δ − z)−1ψ(x, λ), (2.26)

and therefore

∫
Rn

r
(
x, y; z

)
ψ
(
y, λ

)
dy =

1
λ2 − zψ(x, λ). (2.27)

Finally, to deduce the explicit formulae (2.7), (2.8), we take ψ(x, λ) = eiλx1 in (2.10).
Then, putting x̃ = (x2, . . . , xn), we can write

∫
Rn

k
(∣∣x1 − y1∣∣2 + ∣∣x̃ − ỹ∣∣2)eiλy1dy1dỹ = g̃(λ)eiλx1 . (2.28)

If we set

(
x1 − y1

)2 = w, (2.29)

then the left-hand side of (2.28) equals

∫∞

−∞

{∫
Rn−1

k
(
w +

∣∣x̃ − ỹ∣∣2)dỹ
}
eiλy1dy1. (2.30)
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On the other hand,

∫
Rn−1

k
(
w +

∣∣x̃ − ỹ∣∣2)dỹ =
∫∞

0

{∫
|x̃−ỹ|=r

k
(
w +

∣∣x̃ − ỹ∣∣2)dS
}
dr

=
∫∞

0
k
(
w + r2

){∫
|x̃−ỹ|=r

dS

}
dr = σn−1

∫∞

0
rn−2k

(
w + r2

)
dr

=
1
2
σn−1

∫∞

w

(t −w)(n−3)/2k(t)dt,

(2.31)

where

σn =
2πn/2

Γ(n/2)
(2.32)

is the surface area of the (n − 1)-dimensional unit sphere (Γ is the gamma function) and dS
denotes the surface element of the sphere {ỹ ∈ R

n−1 : |x̃ − ỹ| = r}. Therefore, setting

Q(w) =
1
2
σn−1

∫∞

w

(t −w)(n−3)/2k(t)dt, (2.33)

we get that (2.28) takes the form

∫∞

−∞
Q(w)eiλy1dy1 = g̃(λ)eiλx1 . (2.34)

Substituting here the expression ofw given in (2.29) and making then the change of variables
x1 − y1 = t, we obtain

∫∞

−∞
Q
(
t2
)
eiλtdt = g̃(λ) =

∫∞

−∞
g(t)eiλtdt. (2.35)

Hence (2.7) follows. Further, it is not difficult to check that the formula (2.33) for n ≥ 2 is
equivalent to (2.8), see Appendix.

Since g(t) is smooth and has a compact support, it follows from (2.7), (2.8) that the
function k(t) also is smooth and has a compact support; more precisely, if supp g(t) ⊂ (−a, a),
then supp k(t) ⊂ [0, a2). This implies, in particular, convergence of the integral in (2.10) for
each fixed x. The theorem is proved.
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3. Derivation of Formulae (1.17), (1.18)

Consider the Cauchy problem (1.7), (1.8):

∂2u

∂t2
= Δu, x ∈ R

n, t > 0, (3.1)

u(x, 0) = ϕ(x),
∂u(x, 0)

∂t
= 0, x ∈ R

n, (3.2)

where u = u(x, t), t ≥ 0, x = (x1, . . . , xn) ∈ R
n, ϕ(x) ∈ C∞

0 (Rn).
For ν = (ν1, . . . , νn), x = (x1, . . . , xn) ∈ R

n, let us set

|ν|2 = ν21 + · · · + ν2n, (ν, x) = ν1x1 + · · · + νnxn. (3.3)

Since

−Δei(ν,x) = |ν|2ei(ν,x), (3.4)

applying (2.9), (2.10), we get

∫
Rn

k
(∣∣x − y∣∣2)ei(ν,y)dy = g̃(|ν|)ei(ν,x) (ν ∈ R

n). (3.5)

Hence, by the inverse Fourier transform formula,

k
(∣∣x − y∣∣2) =

1
(2π)n

∫
Rn

g̃(|ν|)ei(ν,x)e−i(ν,y)dν. (3.6)

Multiplying both sides of the last equality by ϕ(y) and then integrating on y ∈ R
n, we get

∫
Rn

k
(∣∣x − y∣∣2)ϕ(y)dy =

1
(2π)n

∫
Rn

g̃(|ν|)ei(ν,x)
[∫

Rn

ϕ
(
y
)
e−i(ν,y)dy

]
dν. (3.7)

Substituting here for g̃(|ν|) its expression

g̃(|ν|) = 2
∫∞

0
g(t) cos(|ν|t)dt (3.8)

and setting

u(x, t) =
1

(2π)n

∫
Rn

(cos|ν|t)ei(ν,x)
[∫

Rn

ϕ
(
y
)
e−i(ν,y)dy

]
dν, (3.9)
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we obtain

∫
Rn

k
(∣∣x − y∣∣2)ϕ(y)dy = 2

∫∞

0
g(t)u(x, t)dt. (3.10)

Obviously, the function u(x, t) defined by (3.9) is the solution of problem (3.1), (3.2). Next we
will transform the left-hand side of (3.10) using Theorem 2.1.

First we consider the case n = 1. In this case, (3.10) takes the form

∫∞

−∞
k
(∣∣x − y∣∣2)ϕ(y)dy = 2

∫∞

0
g(t)u(x, t)dt (3.11)

and from (2.7), (2.8) we have

k
(
t2
)
= Q

(
t2
)
= g(t). (3.12)

Therefore, making the change of variables y − x = t and taking into account the evenness of
the function g(t), we can write

∫∞

−∞
k
(∣∣x − y∣∣2)ϕ(y)dy =

∫∞

−∞
k
(
t2
)
ϕ(x + t)dt

=
∫∞

−∞
g(t)ϕ(x + t)dt =

∫∞

0
g(t)

[
ϕ(x + t) + ϕ(x − t)]dt.

(3.13)

Substituting this in the left-hand side of (3.11), we obtain

∫∞

0
g(t)

[
ϕ(x + t) + ϕ(x − t)]dt = 2

∫∞

0
g(t)u(x, t)dt. (3.14)

Hence, by the arbitrariness of the smooth even function g(t) with compact support, we get

u(x, t) =
ϕ(x + t) + ϕ(x − t)

2
. (3.15)

Further assume that n ≥ 2. Making the change of variables

y − x = tω, 0 ≤ t <∞, |ω| = 1, ω = (ω1, . . . , ωn), dy = tn−1dt dSω, (3.16)

where dSω is the surface element of the unit sphere {ω ∈ R
n : |ω| = 1}, we get

∫
Rn

k
(∣∣x − y∣∣2)ϕ(y)dy =

∫∞

0
tn−1k

(
t2
){∫

|ω|=1
ϕ(x + tω)dSω

}
dt. (3.17)
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Further, making in the right-hand side of (3.17) the change of variables

x + tω = y, dSy = tn−1dSω, (3.18)

where dSy is the surface element of the sphere {y ∈ R
n : |y − x| = t}, we have

tn−1
∫
|ω|=1

ϕ(x + tω)dSω =
∫
|y−x|=t

ϕ
(
y
)
dSy =: Pϕ(x, t). (3.19)

Therefore,

∫
Rn

k
(∣∣x − y∣∣2)ϕ(y)dy =

∫∞

0
k
(
t2
)
Pϕ(x, t)dt, (3.20)

and (3.10) becomes

∫∞

0
k
(
t2
)
Pϕ(x, t)dt = 2

∫∞

0
g(t)u(x, t)dt. (3.21)

Consider the cases of odd and even n separately.
Let n = 2m + 1(m ∈ N). Then, by (2.8)we have

k
(
t2
)
=

(−1)m
πm

Q(m)
(
t2
)

(3.22)

and it follows from (2.7) (by successive differentiation) that

Q(m)
(
t2
)
=

(
1
2t

∂

∂t

)m

g(t). (3.23)

Therefore,

k
(
t2
)
=

(−1)m
2mπm

(
1
t

∂

∂t

)m

g(t), (3.24)

and (3.21) takes the form

(−1)m
2mπm

∫∞

0

{(
1
t

∂

∂t

)m

g(t)
}
Pϕ(x, t)dt = 2

∫∞

0
g(t)u(x, t)dt. (3.25)

Further, integratingm times by parts, we get

∫∞

0

{(
1
t

∂

∂t

)m

g(t)
}
Pϕ(x, t)dt = R(x, t)|t=∞t=0 + (−1)m

∫∞

0
g(t)

(
∂

∂t

1
t

)m

Pϕ(x, t)dt, (3.26)
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where

R(x, t) =
m∑
k=1

(−1)k−1
t

{(
1
t

∂

∂t

)m−k
g(t)

}(
∂

∂t

1
t

)k−1
Pϕ(x, t)

=
m∑
k=1

(−1)k−1
t

{(
1
t

∂

∂t

)m−k
g(t)

}(
∂

∂t

1
t

)k−1
t2m

∫
|ω|=1

ϕ(x + tω)dSω.

(3.27)

Since g(t) is identically zero for large values of t, we have from (3.27) that R(x,∞) = 0. Also,
it follows directly from (3.27) that R(x, 0) = 0. Therefore, (3.25) becomes

1
2mπm

∫∞

0
g(t)

(
∂

∂t

1
t

)m

Pϕ(x, t)dt = 2
∫∞

0
g(t)u(x, t)dt. (3.28)

Since in (3.28) g(t) is arbitrary smooth even function with compact support, we obtain that

u(x, t) =
1

2m+1πm

(
∂

∂t

1
t

)m

Pϕ(x, t). (3.29)

This coincides with (1.17) by (3.19).
Now let us consider the case n = 2m (m ∈ N). In this case, by (2.8) we have

k
(
r2

)
=

(−1)m
πm

∫∞

r2

Q(m)(w)√
w − r2

dw =
(−1)m
πm

∫∞

r

Q(m)(t2)2t√
t2 − r2

dt, (3.30)

and therefore

∫∞

0
k
(
r2

)
Pϕ(x, r)dr =

(−1)m
πm

∫∞

0

{∫∞

r

Q(m)(t2)2t√
t2 − r2

dt

}
Pϕ(x, r)dr

=
(−1)m
πm

∫∞

0

{∫∞

r

Q(m)(t2)2t√
t2 − r2

dt

}{∫
|y−x|=r

ϕ
(
y
)
dSy

}
dr

=
(−1)m
πm

∫∞

0

⎧⎪⎨
⎪⎩

∫∞

r

Q(m)
(
t2
)
2t

⎡
⎢⎣
∫
|y−x|=r

ϕ
(
y
)
dSy√

t2 − ∣∣y − x∣∣2

⎤
⎥⎦dt

⎫⎪⎬
⎪⎭dr

=
(−1)m
πm

∫∞

0
Q(m)

(
t2
)
2t

⎧⎪⎨
⎪⎩

∫ t

0

⎡
⎢⎣
∫
|y−x|=r

ϕ
(
y
)
dSy√

t2 − ∣∣y − x∣∣2

⎤
⎥⎦dr

⎫⎪⎬
⎪⎭dt.

(3.31)

Hence, setting

Hϕ(x, t) :=
∫ t

0

⎡
⎢⎣
∫
|y−x|=r

ϕ
(
y
)
dSy√

t2 − ∣∣y − x∣∣2

⎤
⎥⎦dr =

∫
|y−x|<t

ϕ
(
y
)
dy√

t2 − ∣∣y − x∣∣2
, (3.32)
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we get

∫∞

0
k
(
r2

)
Pϕ(x, r)dr =

(−1)m
πm

∫∞

0
Q(m)

(
t2
)
2tHϕ(x, t)dt. (3.33)

Substituting this in the left-hand side of (3.21) (beforehand replacing t by r in the left side of
(3.21)), we obtain

(−1)m
πm

∫∞

0
Q(m)

(
t2
)
2tHϕ(x, t)dt = 2

∫∞

0
g(t)u(x, t)dt (3.34)

or, using (3.23),

(−1)m
2m−1πm

∫∞

0

{(
1
t

∂

∂t

)m

g(t)
}
tHϕ(x, t)dt = 2

∫∞

0
g(t)u(x, t)dt. (3.35)

Further, integratingm times by parts, we get

∫∞

0

{(
1
t

∂

∂t

)m

g(t)
}
tHϕ(x, t)dt = L(x, t)|t=∞t=0 + (−1)m

∫∞

0
g(t)

(
∂

∂t

1
t

)m

tHϕ(x, t)dt, (3.36)

where

L(x, t) =
m∑
k=1

(−1)k−1
{(

1
t

∂

∂t

)m−k
g(t)

}(
∂

∂t

1
t

)k−1
tHϕ(x, t). (3.37)

Since g(t) is identically zero for large values of t, we have from (3.37) that L(x,∞) = 0. Also,
using the expression ofHϕ(x, t),

Hϕ(x, t) =
∫ t

0

⎡
⎢⎣
∫
|y−x|=r

ϕ
(
y
)
dSy√

t2 − ∣∣y − x∣∣2

⎤
⎥⎦dr

=
∫ t

0
r2m−1

[∫
|ω|=1

ϕ(x + rω)√
t2 − r2

dSω

]
dr

=
∫ t

0

r2m−1
√
t2 − r2

[∫
|ω|=1

ϕ(x + rω)dSω

]
dr

=
∫ t

0

(
t2 − ξ2

)2m−2
[∫

|ω|=1
ϕ

(
x +

√
t2 − ξ2ω

)
dSω

]
dξ,

(3.38)

we can check directly from (3.37) that L(x, 0) = 0. Therefore, (3.35) becomes

1
2m−1πm

∫∞

0
g(t)

(
∂

∂t

1
t

)m

tHϕ(x, t)dt = 2
∫∞

0
g(t)u(x, t)dt. (3.39)
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Since in (3.39) g(t) is arbitrary smooth even function with compact support, we obtain that

u(x, t) =
1

2mπm

(
∂

∂t

1
t

)m

tHϕ(x, t)

=
1

2mπm

(
∂

∂t

1
t

)m−1 ∂
∂t
Hϕ(x, t).

(3.40)

This coincides with (1.18) by (3.32).

Appendix

For reader’s convenience, in this section we give some explanation of several points in the
paper.

(1) Let us show how (2.33) for n ≥ 2 implies (2.8).

Let n = 2m + 1, wherem ≥ 1. Then, since

1
2
σ2m =

1
2
2πm

Γ(m)
=

πm

(m − 1)!
, (A.1)

Equation (2.33) takes the form

Q(w) = πm

∫∞

w

(t −w)m−1

(m − 1)!
k(t)dt. (A.2)

Hence applying the differentiation formula

d

dw

∫∞

w

G(t,w)dt = −G(w,w) +
∫∞

w

∂G(t,w)
∂w

dt (A.3)

repeatedly, we find

Q(m)(w) = πm(−1)mk(w) (A.4)

which gives (2.8) for n = 2m + 1.
In the case n = 2m withm ≥ 1, (2.33) takes the form

Q(w) =
1
2
σ2m−1

∫∞

w

(t −w)(2m−3)/2k(t)dt. (A.5)

Hence,

Q(m−1)(w) =
1
2
σ2m−1

∫∞

w

(−1)m−1 2m − 3
2

2m − 5
2

· · · 1
2
(t −w)−1/2k(t)dt. (A.6)
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Therefore, taking into account that by virtue of

Γ(x) = (x − 1)Γ(x − 1), Γ
(
1
2

)
=
√
π, (A.7)

we have

1
2
σ2m−1 =

π(2m−1)/2

Γ((2m − 1)/2)
=

π(2m−1)/2

((2m − 3)/2)((2m − 5)/2) · · · (1/2)Γ(1/2)

=
πm−1

((2m − 3)/2)((2m − 5)/2) · · · (1/2) ,
(A.8)

we get

Q(m−1)(w) = (−1)m−1πm−1
∫∞

w

k(t)√
t −wdt. (A.9)

In the right-hand side we replace t by u, then divide both sides by
√
w − t and integrate on

w ∈ (t,∞) to get

∫∞

t

Q(m−1)(w)√
w − t dw = (−1)m−1πm−1

∫∞

t

1√
w − t

{∫∞

w

k(u)√
u −wdu

}
dw

= (−1)m−1πm−1
∫∞

t

k(u)

{∫u

t

dw√
(w − t)(u −w)

}
du

= (−1)m−1πm

∫∞

t

k(u)du,

(A.10)

because for any t < u, using the change of variables
√
w − t = ξ, we have

∫u

t

dw√
(w − t)(u −w)

= 2
∫√

u−t

0

dξ√
u − t − ξ2

= 2 arcsin
ξ√
u − t

∣∣∣∣
ξ=

√
u−t

ξ=0
= 2 arcsin 1 = π.

(A.11)

Therefore, differentiating (A.10) with respect to t, we get

k(t) =
(−1)m
πm

d

dt

∫∞

t

Q(m−1)(w)√
w − t dw =

(−1)m
πm

d

dt

∫∞

0

Q(m−1)(u + t)√
u

du

=
(−1)m
πm

∫∞

0

Q(m)(u + t)√
u

du =
(−1)m
πm

∫∞

t

Q(m)(w)√
w − t dw.

(A.12)

Thus, (2.8) is obtained also for n = 2m withm ≥ 1.
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(2) Here we explain (2.24). Note that since the spectrum of the operator A is [0,∞)
(zero is included into the spectrum), the spectral representation formula (2.4) should be
understood in the sense of the formula

g̃
(
A(1/2)

)
f =

∫∞

−δ
g̃
(√

μ
)
dEμf, (A.13)

where δ is an arbitrary positive real number and the integral does not depend on δ > 0 (Eμ is
zero on (−∞, 0) because A is a positive operator). Therefore, for (2.24)we have to show that

lim
ε→+0

ε

π

∫∞

−δ

g̃
(√

μ
)

(
μ − λ2)2 + ε2dμ = g̃(λ), λ ∈ R, (A.14)

for any δ > 0.
Since for any ε > 0

ε

π

∫∞

−δ

1(
μ − λ2)2 + ε2dμ =

ε

π

∫∞

−δ−λ2
du

u2 + ε2
=

1
π

(
π

2
+ arctan

δ + λ2

ε

)
, (A.15)

we have

lim
ε→+0

ε

π

∫∞

−δ

1(
μ − λ2)2 + ε2dμ = 1, λ ∈ R,

ε

π

∫∞

−∞

du

u2 + ε2
= 1.

(A.16)

Given α > 0, we can choose a β > 0 such that

∣∣∣g̃(√u + λ2
)
− g̃(λ)

∣∣∣ < α for u ∈ Ω =
{
u : −δ − λ2 < u <∞, |u| < β

}
(A.17)

since the function g̃(z) is continuous for z = λ (we choose the continuous branch of the square
root for which

√
1 = 1). Further, we choose a numberM such that

∣∣g̃(z)∣∣ ≤M for |Im z| ≤ C <∞, (A.18)
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for sufficiently large positive number C. This is possible by (2.3) and the fact that g(t) has a
compact support. Let us set Ω′ = (−δ − λ2,∞) \Ω. Then,

∣∣∣∣∣
ε

π

∫∞

−δ

g̃
(√

μ
)

(
μ − λ2)2 + ε2dμ − g̃(λ) ε

π

∫∞

−δ

1(
μ − λ2)2 + ε2dμ

∣∣∣∣∣

≤ ε

π

∫∞

−δ−λ2

∣∣∣g̃(√u + λ2
)
− g̃(λ)

∣∣∣
u2 + ε2

du

=
ε

π

∫
Ω

∣∣∣g̃(√u + λ2
)
− g̃(λ)

∣∣∣
u2 + ε2

du +
ε

π

∫
Ω′

∣∣∣g̃(√u + λ2
)
− g̃(λ)

∣∣∣
u2 + ε2

du.

(A.19)

Further,

ε

π

∫
Ω

∣∣∣g̃(√u + λ2
)
− g̃(λ)

∣∣∣
u2 + ε2

du <
α

π

∫∞

−∞

ε

u2 + ε2
du = α,

ε

π

∫
Ω′

∣∣∣g̃(√u + λ2
)
− g̃(λ)

∣∣∣
u2 + ε2

du ≤ 2M
π

∫
|u|≥β

ε

u2 + ε2
du

=
4M
π

∫∞

β

ε

u2 + ε2
du =

4M
π

(
π

2
− arctan

β

ε

)
.

(A.20)

For fixed β, the last expression tends to zero as ε → +0; hence, and by (A.16), (A.19),
and (A.20) we get (A.14).

(3) The formula (2.14) follows from (2.21) for n = 1 noting that

H
(1)
−(1/2)(z) =

(
2
πz

)1/2

eiz. (A.21)

(4) The difference between operators (∂/∂t 1/t)m (formulae (1.17), (1.18)) and
(1/t ∂/∂t)m (formula (3.25)) is given by

(
∂

∂t

1
t

)m

=
∂

∂t

(
1
t

∂

∂t

)m−1 1
t
. (A.22)

(5) The explicit formula for the solution of the wave equation in the case n even can
be derived from the case n odd by a known computation called the “method of descent” (see
[1]).

(6) Since for supp g(t) ⊂ (−a, a), a > 0, we have supp k(t) ⊂ [0, a2), and on the left-
hand side of (2.10) the integral is taken in fact over the ball {y ∈ R

n : |y − x| < a}, for fixed x.
Therefore, this integral is finite for each x ∈ R

n and any solution ψ(x, λ) of (2.9). We proved
(2.10) for λ ∈ R. If the solution ψ(x, λ) is an analytic function of λ ∈ C, then (2.10)will be held
also for complex values of λ by the uniqueness of analytic continuation.
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