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Obtaining periodic orbits of dynamical systems is the main source of information about how the
orbits, in general, are organized. In this paper, we extend classical continuation algorithms in
order to be able to obtain families of periodic orbits with high-precision. These periodic orbits
can be corrected to get them with arbitrary precision. We illustrate the method with two important
classical Hamiltonian problems.

1. Introduction

Obtaining periodic orbits in dynamical systems is the main source of information about how
the orbits in general are organized, and, in Poincaré’s words, they offer “the only opening
through which we might try to penetrate the fortress (chaos) which has the reputation of
being impregnable.” The stable periodic orbits explain the dynamics of bounded regular
motion [1], while the unstable periodic orbits in a chaotic set (attractor or saddle) determine
its structure [2] and, thus, the chaotic behavior of the system.

Therefore, it is not surprising the high number of works that use the detection of
periodic orbits in the analysis of dynamical systems in many different fields. The analysis
and control of chaotic dynamical systems [3, 4], the “scar” theory in quantummechanics [5],
electrical and magnetic fields [6], hydrodynamical flows [7], electrical circuits and optical
systems [8], and astrodynamics [1, 9, 10] are just a few examples.

There are several works developing different numerical algorithms to compute
periodic orbits [11–19], but most of them do not work with high-precision. This is a serious
difficulty if our problem requires obtaining periodic orbits with many precision digits. Some
important examples of this kind of problems are the complex pole location in physics
[20–23], the study of the splitting of separatrices (numerical difficulties arise because this
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phenomenon can exhibit exponentially small splitting) [24], and the study of the fractal
properties of the chaotic attractors [25]. Currently, the only algorithms capable of computing
high-precision periodic orbits are based on Lindstedt-Poincaré series [14] or Taylor series
methods [19]. The first one uses very clever algorithms, but it is quite difficult to use in a
general setting. Based on the second method, we extend classical continuation algorithms in
order to be able to continue families of periodic orbits with high-precision, generating with
arbitrary precision the values of those orbits that are considered of special interest. This algo-
rithm is based on the pseudo-arclength continuation method [26, 27], an optimized shooting
method with the Newton method [11, 15], the Taylor series method (implemented by means
of the free software TIDES [28, 29]), and the singular value decomposition, SVD [30, 31].

The organization of the paper is as follows. In Section 2, we review the correction
method developed in [19] and we show an example to illustrate its use with arbitrary
precision. Section 3 describes the continuation method explaining some technical aspects and
examples. Finally, in Section 4, we present the combined use of methods described above to
take advantage of each one of them.

2. Correction of Periodic Orbits with Arbitrary Precision

Let us consider the differential system:

y′ = f(y, t),

y(t0) = y0,
(2.1)

with y = (y1, y2, . . . , ys)
T and y0 = (y0

1 , y
0
2 , . . . , y

0
s)

T ∈ R
s, and t ∈ R. And let

y = y(t;y0), t ≥ t0, (2.2)

be the solution of (2.1).
If we have an estimation of the initial conditions y0 of a periodic orbit with estimated

period T0, then y(t0 +T0;y0) ≈ y0. If we callΔy andΔT the corrections to the initial conditions
and the period, respectively, then we have the periodicity condition:

y(t0 + T0 + ΔT ;y0 +Δy) = y0 +Δy. (2.3)

To obtain an approximation of ΔT and Δy, we follow the strategy of the Newton method: we
take the multivalued Taylor expansion up to the first order in (2.3) to get s linear equations
(with s + 1 unknowns) to satisfy

(
M0 − Is

∂y
∂t

(t0 + T0;y0)
)(Δy0

ΔT0

)
=
(
y0 − y(t0 + T0;y0)

)
, (2.4)

with Is ∈ R
s×s the identity matrix, ΔT0 and Δy0 approximations of ΔT and Δy, respectively,

and M0 ∈ R
s×s given by

M0 =
(
m0

k,l

)
, where m0

k,l =
∂yk

∂y0
l

(t0 + T0;y0), 1 ≤ k, l ≤ s. (2.5)
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At this point, we have to obtain numerically y(t0 +T0;y0) andM0. Usually, to compute
M0, the variational equations of the differential system (2.1) are formulated and integrat-
ed. However, this task is not always easy and frequently cumbersome. Free software TIDES
[28, 29] allows to compute simultaneously the solution of (2.1) and its partial derivatives
automatically. Besides, this software is programmed implementing multiple-precision arith-
metic (via the MPFR library [32]), which allows us to compute the former integrations with
arbitrary precision.

To optimize each iteration of the method, we can add a condition to have a correction
(Δy0,ΔT0) orthogonal to the vector field (2.1):

(
∂yT

∂t
(t0;y0) 0

)(Δy0

ΔT0

)
= 0. (2.6)

If our differential system (2.1) has an integral of the motion (IM(t;y0) ≡ im, being
im ∈ R a constant value) and we want to preserve it in the correction, we have to add an extra
equation to the system. With the same idea described above, we take a multivalued Taylor
expansion up to the first order:

IM(t0 + T0 + ΔT0;y0 +Δy0) − im

≈ IM(t0 + T0;y0) − im +
∂IM

∂y
(t0 + T0;y0)Δy0 +

∂IM

∂t
(t0 + T0;y0)ΔT0 = 0.

(2.7)

Note that, when (2.1) has k independent integrals of the motion, the last equation becomes a
set of k equations with im ∈ R

k.
Putting together (2.4), (2.6), and (2.7), we arrive to the system

⎛
⎜⎜⎜⎜⎜⎜⎝

M0 − Is
∂y
∂t

(t0 + T0;y0)

∂yT

∂t
(t0;y0) 0

∂IM

∂y
(t0 + T0;y0)

∂IM

∂t
(t0 + T0;y0)

⎞
⎟⎟⎟⎟⎟⎟⎠

(
Δy0

ΔT0

)
=

⎛
⎜⎜⎝

y0 − y(t0 + T0;y0)

0

im − IM(t0 + T0;y0)

⎞
⎟⎟⎠. (2.8)

Linear system (2.8) is not necessary squared. Thus, to find a solution that minimizes
the residual error, we can use, for example, the Singular Value Decomposition (SVD)method
[30, 31], which leads to a robust solver of theminimization problem. After solving the system,
we define y1 = y0+Δy0 and T1 = T0+ΔT0. Now, we can apply the above steps again for a new
iteration (with y1 and T1) that provides us a better approximation and iterate the correction
algorithm to correct the initial approximation up to any precision level.

Particularizing now to the case of autonomous Hamiltonian systems with two degrees
of freedom (y = (x, y,X, Y )T ), the (i + 1)th step is defined by the system

⎛
⎜⎜⎝

Mi − I4 J∇yH
(
y∗i
)

−∇yH(y(t0;yi))TJ 0

∇yH
(
y∗i
)

0

⎞
⎟⎟⎠
(
Δyi

ΔTi

)
=

⎛
⎜⎜⎝

yi − y∗i
0

h −H(y∗i )

⎞
⎟⎟⎠, (2.9)
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where J is the symplectic matrix, h the desired value of Hamiltonian constant, and y∗i =
y(t0 + Ti;yi).

Sometimes, we are interested in a subset of the full phase space. Then we have to
correct only some variables, fixing the remaining variables and removing their corresponding
columns.

As an example, to show the applicability of the method described in this section, we
show some results obtained for the classical Hénon-Heiles Hamiltonian [33]:

H(x, y,X, Y
)
=

1
2

(
X2 + Y 2

)
+
1
2

(
x2 + y2

)
+
(
yx2 − 1

3
y3
)
. (2.10)

In this system, the energy E ≡ H(x, y,X, Y ) is a first integral of the problem. This problem
was introduced in the study of galactic dynamics to describe the motion of stars around a
galactic center, assuming the motion is restricted to the xy plane.

The study of the chaotic and regular regions is traditionally done by means of the
Poincaré surfaces of section (PSS) [34] and the Lyapunov exponents. To accelerate the
analysis, some fast chaos indicators have been introduced the last few years. The one used in
this paper, OFLI2 [35], is defined at the final time tf by

OFLI2 := sup
0<t<tf

ln

∥∥∥∥∥
{
ξ(t) +

1
2
δξ(t)

}⊥∥∥∥∥∥, (2.11)

where ξ and δξ are the first- and second-order sensitivities with respect to carefully chosen
initial vectors and x⊥ stands for the orthogonal component to the flow of the vector x. In this
case, the variational equations up to second order and the initial conditions are

dρ

dt
= f(t,ρ), ρ(0) = ρ0,

dξ

dt
=

∂f(t,ρ)
∂ρ

ξ, ξ(0) =
f
(
0,ρ0

)
∥∥f(0,ρ0

)∥∥ ,
dδξj

dt
=

∂fj

∂ρ
δξ + ξT

∂2fj

∂ρ2
ξ, δξ(0) = 0.

(2.12)

Note that the last line of (2.12) is written for a single j-th component δξj to simplify the
notation. The OFLI2 tends to a constant value for the periodic orbits, behaves linearly (in
log-log scale) for regular initial conditions, and grows exponentially for chaotic orbits [35].

Figure 1(a) shows the PSS (dark blue points) and the chaos indicator OFLI2 (different
color regions, red color for chaotic behavior and blue color for regular one) for x = 0
and E = 1/8. Both techniques give complementary information about the behavior of the
system. Black circles sign two periodic orbits selected for the correction process. The left point
corresponds to an unstable periodic orbit and the right point to a stable one. On the right
side of Figure 1, we show the CPU time in seconds (on a personal computer PC Intel Core
i7 CPU 860, 2.80GHz under 2.6.32-29-generic SMP x86 64 GNU/Linux system) versus the
number of digits for obtaining periodic orbits up to one thousand precision digits. We observe
that the behavior is quite similar for the stable and the unstable orbits. The computational
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Figure 1: (a): OFLI2 and PSS section of the Hénon-Heiles problem for x = 0 and Energy E = 1/8. (b):
Computational relative error versus CPU time for the correction method applied to the two marked
periodic orbits on the left picture.

complexity behaves likeO(d4) being d = −log10(TOL) the requested number of digits. We can
see that the CPU time for 1000 digits of precision is around 3 hours, a very acceptable time
for this very high level of precision. The possibility of following orbits with high-precision
enables to compute the Poincaré map and its first- and higher-order derivatives also with
high-precision.

3. Continuation of Periodic Orbits with High-Precision

If F : R
n+k → R

n (with k > 0) is a smooth mapping and x∗ ∈ R
n+k is a solution of F(x) = 0

then, by applying the implicit function theorem near x∗, the solution set of former equation is
a smooth k-dimensional submanifold of R

n+k. Therefore, when k > 1, if we want just a curve
of solutions, we have to add further restrictions.

For autonomous Hamiltonian systems, once we have one elementary periodic orbit
[36], it can be continued and so the periodic orbits appear in families.

The great advantage of the continuation methods is that, once we have one periodic
orbit of a family of periodic orbits, the method gives us the complete family and bifurcations
of it. There are several techniques to continue a family of periodic orbits. The simplest one
consists of performing a prediction of the next point of the family and, then, a correction
to have the new point up to the desired precision level. This technique is used in a great
variety of research papers [15, 37] and programs [38–40]. In this work, we use the pseudo-
arclength continuation method [26, 27, 41], which allows the continuation of the solution
curve regardless of its direction. Therefore, there is no problem with folds or with “vertical”
branches. This is an important feature when working in the calculation of periodic orbits of
conservative systems [42, 43].
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Figure 2: Sketch of one step in pseudo-arclength continuation method.

Given a point xi on the solution curve, the prediction of the next step is a point x̃i+1 =
xi + δ · ui, where ui is the unit tangent vector to the curve at xi and δ is the fixed step size.
To compute the unit tangent vector ui, we have to solve the system Fx(xi)ui = 0, with the
restriction ‖ui‖ = 1. For x0, we have two valid solutions, with the same direction but opposite
senses, each of them will give us a side of the curve. For i > 0, we can approximate ui by
choosing a unit secant vector, that is, the normalized vector of the difference xi − xi−1. For
practical implementations, this approach leads to a faster and easier to program algorithm.

Once we have x̃i+1, we can apply the correction method described in the previous
section by adding the condition uT

i · (xji+1 − x̃i+1) = 0, where xji+1 is the jth approximation
of xi+1 obtained by the correction algorithm. That is, in the correction process, we impose that
xi+1 is on the hyperplane HP, perpendicular to ui passing through x̃i+1 (see Figure 2). Here,
again (see Section 2), the use of the free software TIDES and SVD allows us to automate the
process and to work with any arbitrary precision.

Note that the phase space where we look for the curve of periodic orbits can be given
by variables of the system or by functions G(y) of them (the Hamiltonian, e.g.). In the latter
case, the value of ΔG(y) depends on other corrected variables:

ΔG(y) =
s∑
l=1

∂G
∂yl

Δyl. (3.1)

Following the example of Section 2, we are going to look for families of periodic orbits
of the classical Hénon-Heiles Hamiltonian with x0 = Y0 = 0 andX0 given by y0 andH. In this
case, we have three variables to continue {y0,H, T} (we also have to predict next period T)
and

ΔH = XΔX +
(
y − y2

)
Δy. (3.2)

In Figure 3, we show two curves corresponding to two different families of periodic orbits.
The blue curve corresponds to orbits of multiplicity m = 1, while the red curve corresponds
to orbits of multiplicitym = 5. The stability of the orbits [18, 44] is discriminated on the figure
by using continuous or dashed lines for stable and unstable periodic orbits, respectively. Both
curves have been obtained with δ = 0.01 and 15 digits of precision. In Table 1, we show CPU
times (in seconds) for the computation of the unstable branch of the family with multiplicity
5 (m5u) in Figure 3 for different values of δ and precision level. These CPU times are still
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Figure 3:Continuation of two families of periodic orbits (multiplicitiesm = 1 and 5) of the classical Hénon-
Heiles Hamiltonian with x0 = Y0 = 0 depending on the coordinate y and the energy E.

Table 1: CPU times for the computation of the unstable branch of the family with multiplicity 5 (m5u) in
Figure 3.

CPU time (seconds)

Precision δ = 0.01 δ = 0.001
Double 7.002675 62.871128
Multiple (16 digits) 131.818665 1187.724976
Multiple (32 digits) 304.062012 2980.975586
Multiple (100 digits) 2741.602051 28029.414062

acceptable, although obviously we cannot take values of delta of the size of the precision
considered in the correction since the number of points calculated on the curve would soar.

Summarizing the method, we start from a point in the family of periodic orbits (we
can obtain it by correcting an approximation with the algorithm of Section 2). Now, if we
want to compute the new initial conditions (ynew,Hnew, Tnew) at a distance δ from point
(yold,Hold, Told), we define the first approximation, (ỹ, H̃, T̃) = (yold,Hold, Told) + δ · u, of
the new point as the starting point. The correction of the provisional conditions (ỹ +Δy, H̃ +
ΔH, T̃ + ΔT)will be in the previously defined hyperplane HP:

HP =
{(

y,H, T
) | (y − ỹ,H− H̃, T − T̃

)
· u = 0

}
. (3.3)

Then,

(i) we compute corrections in position Δy, momentum ΔX and period ΔT . The
corrected orbit will satisfy

(a) correction conditions (2.9) with Δx = ΔY = 0,
(b) restriction of being in the hyperplane HP (3.3);
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Figure 4: Family of periodic orbits for the Copenhagen problem depending on the coordinate x and the
Jacobi constant C. Picture (a) is extracted from Exploration numérique du problème restreint. I. Masses égales;
orbites périodiques, Hénon [44]; Picture (b) shows the same curve obtained with the method described
above. Bottom: magnifications of the squared regions showing the spiral structure.

(ii) we output ΔH (according to (3.2)) from Δy and ΔX;

(iii) we iterate previous stages until the desired precision level.

As a second example, we consider the Copenhagen problem, a simplification of the
three-body problem supposing that the mass of one of the three bodies is negligible and the
other two masses are equal [10, 44]. The equations of motion of this problem are

ẍ − 2ẏ = x − x + 1/2
2r31

− x − 1/2
2r32

,

ÿ + 2ẋ = y − y

2r31
− y

2r32
,

(3.4)

with r21 = (x + 1/2)2 + y2 and r22 = (x − 1/2)2 + y2. The only known integral of motion of this
problem is the Jacobian constant C

C = −
(
ẋ2 + ẏ2

)
+

1
r1

+
1
r2

+ x2 + y2, (3.5)

that can be used to define the effective energy as EJ = −C/2. Note that now we do not use the
Hamiltonian formalism and so the function G (3.1) is the Jacobi constant.
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Figure 5: (a) continuation of two families of periodic orbits of the classical Hénon-Heiles Hamiltonian
with x0 = Y0 = 0. Orbits with some selected values of the energy and coordinate y are pointed out. (b)
corrected arbitrary precision periodic orbits corresponding to surrounded points following the color code;
top, unstable orbits, and bottom, the stable ones.

In [44], Hénonmade an exhaustive analysis of classes of periodic orbits of the problem.
Several families of such orbits were drawn. Here, we use the necessary precision to redraw
one of them and to check that the end of the curve is a spiral (see Figure 4). This situation
cannot be seen from the pictures in [44] and provides a clear application of the present
approach. Note that with this approach we may obtain the curves with any desired precision
level, up to the hardware and CPU time restrictions, whereas the classical continuation
programs, like AUTO or MATCONT, are limited to double-precision (enough for most of
the situations).

4. Continuation of Periodic Orbits with Arbitrary Precision

As stated in the previous section, the CPU time for the families of periodic orbits with high-
precision is acceptable as long as we do not take a too small value of δ or a too high-precision
level. If you also want to make an exhaustive continuation of the different families of periodic
orbits that can appear in a region of the phase space, restrictions must be more severe.
However, in most cases, these restrictions are acceptable because we do not need to get the
data of all the orbits of the different families with arbitrary precision. Double- or quadruple-
precision is usually sufficient for most of them. Only a few of these orbits (being of special
interest) have to be further corrected with arbitrary precision.

This idea has been implemented in the calculations of Figure 5 where the two families
of periodic orbits have been computed in double-precision. Subsequently, the orbits of the
family of multiplicity 5, corresponding to values of E = 0.12 and 0.14, or y = 0.5, (values
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Table 2: Corrected values up to 50 digits for the selected orbits in Figure 5.

y0 1.8817343638528059241776135906704656237302870299392e − 3
H 1.2e − 1
T 3.1884755881458007139894029240879646745967964214245e1
y0 5.4846395794245312569019288801973048034848306007155e − 1
H 1.2e − 1
T 3.2132619977067518675898102052374230853344441909611e1
y0 −6.9222934138872141467629060227049920239548916485414e − 2
H 1.4e − 1
T 3.2463680584143904506022667600424054135989589752729e1
y0 6.4236679697082661947506127379024223882593232233963e − 1
H 1.4e − 1
T 3.3190847175337893134522290150974531243339047630215e1
y0 5.0e − 1
H 1.1064108429643783371307847713912555690466002998356e − 1
T 3.1704681349442488934633816972756993961160952189802e1

taken just as an example) have been corrected to obtain 100 digits of precision. On the right
plots, the obtained periodic orbits are shown: unstable orbits above and below the stable ones.
In Table 2, we show the corrected values up to 50 digits for these selected orbits.

5. Conclusions

In this paper, we introduce a numerical scheme able to continue families of periodic orbits in
high-precision and to correct selected orbits up to any arbitrary precision level. The method
is based on the combined use of the pseudo-arclength continuation method, an optimized
shootingmethodwith the Newtonmethod, the Taylor series method (implemented bymeans
of the free software TIDES), and the singular value decomposition (SVD). We illustrate the
scheme on the paradigmatic Hénon-Heiles Hamiltonian and the Copenhagen problem. On
the Copenhagen problem, we have been able to show that a classical family of periodic orbits
found by Hénon ends in a spiral structure, which cannot be observed without high-precision.
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[33] M. Hénon and C. Heiles, “The applicability of the third integral of motion: some numerical exper-
iments,” The Astronomical Journal, vol. 69, pp. 73–79, 1964.
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