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We introduce the concepts of set-valued homomorphism and strong set-valued homomorphism of
a quantale which are the extended notions of congruence and complete congruence, respectively.
The properties of generalized lower and upper approximations, constructed by a set-valued map-
ping, are discussed.

1. Introduction

The concept of Rough set was introduced by Pawlak [1] as a mathematical tool for dealing
with vagueness or uncertainty. In Pawlak’s rough sets, the equivalence classes are the build-
ing blocks for the construction of the lower and upper approximations. It soon invoked a
natural question concerning a possible connection between rough sets and algebraic systems.
Biswas and Nanda [2] introduced the notion of rough subgroups. Kuroki [3] and Qimei [4]
introduced the notions of a rough ideal and a rough prime ideal in a semigroup, respectively.
Davvaz in [5] introduced the notion of rough subring with respect to an ideal of a ring. Rough
modules have been investigated by Davvaz andMahdavipour [6]. Rasouli and Davvaz stud-
ied the roughness in MV-algebra [7]. In [8–12], the roughness of various hyperstructures are
discussed. Further, some authors consider the rough set in a fuzzy algebraic system, see [13–
16]. The concept of quantale was introduced by Mulvey [17] in 1986 with the purpose of
studying the spectrum of C∗-algebra, as well as constructive foundations for quantum mech-
anics. There are abundant contents in the structure of quantales, because quantale can be re-
garded as the generalization of frame. Since quantale theory provides a powerful tool in
studying noncommutative structures, it has wide applications, especially in studying non-
commutative C∗-algebra theory, the ideal theory of commutative ring, linear logic, and so on.
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The quantale theory has aroused great interests of many researchers, and a great deal of new
ideas and applications of quantale have been proposed in twenty years [18–24].

The majority of studies on rough sets for algebraic structures such as semigroups,
groups, rings, andmodules have been concentrated on a congruence relation. An equivalence
relation is sometimes difficult to be obtained in real-world problems due to the vagueness and
incompleteness of human knowledge. From this point of view, Davvaz [25] introduced the
concept of set-valued homomorphism for groups. And then, Yamak et al. [26, 27] introduced
the concepts of set-valued homomorphism and strong set-valued homomorphism of a ring
and amodule. In this paper, the concepts of set-valued homomorphism and strong set-valued
homomorphism in quantales are introduced. We discuss the properties of generalized lower
and upper approximations in quantales.

2. Preliminaries

In this section, we give some basic notions and results about quantales and rough set theory
(see [19, 22, 25, 28]), which will be necessary in the next sections.

Definition 2.1. A quantale is a complete lattice Q with an associative binary operation ◦ satis-
fying

a ◦
(∨

i∈I
bi

)
=
∨
i∈I

(a ◦ bi),
(∨

i∈I
ai

)
◦ b =

∨
i∈I

(ai ◦ b), (2.1)

for all a, b, ai, bi ∈ Q(i ∈ I).
An element e ∈ Q is called a left (right) unit if and only if e ◦a = a (a ◦ e = a), e is called

a unit if it is both a right and left unit.
A quantale Q is called a commutative quantale if a ◦ b = b ◦ a for all a, b ∈ Q.
A quantale Q is called an idempotent quantale if a ◦ a = a for all a ∈ Q.
A subset S of Q is called a subquantale of Q if it is closed under ◦ and arbitrary sups.
In a quantaleQ, we denote the top element ofQ by 1 and the bottom by 0. ForA,B ⊆ Q,

we write A ◦ B to denote the set {a ◦ b | a ∈ A, b ∈ B}, A ∨ B to denote {a ∨ b | a ∈ A, b ∈ B}
and

∨
i∈IAi = {∨i∈Iai | ai ∈ Ai}.

Definition 2.2. Let Q be a quantale, a subset ∅/= I ⊆ Q is called a left (right) ideal of Q if

(1) a, b ∈ I implies a ∨ b ∈ I,

(2) a ∈ I, b ∈ Q and b ≤ a imply b ∈ I for all,

(3) a ∈ Q and x ∈ I imply a ◦ x ∈ I (x ◦ a ∈ I).

A subset I ⊆ Q is called an ideal if it is both a left and a right ideal.
Let X be a subset of Q, we write ↓ X = {y ∈ Q | y ≤ x for some x ∈ X}, X is a lower

set if and only if X =↓ X. It is obvious that an ideal I is a directed lower set. For every (left,
right) ideal I of Q, it is easy to see that 0 ∈ I.

An ideal of Q is called a prime ideal if a ◦ b ∈ I implies a ∈ I or b ∈ I for all a, b ∈ Q.
An ideal I of Q is called a semi-prime ideal if a ◦ a ∈ I implies a ∈ I for all a ∈ Q.
An ideal I of Q (I /=Q) is called a primary ideal if for all a, b ∈ Q, a ◦ b ∈ I and a /∈ I

imply bn ∈ I for some n > 0. (bn = b ◦ b ◦ · · · ◦ b︸ ︷︷ ︸
n

).
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Definition 2.3. A nonempty subset M ⊆ Q is called an m-system of Q, if for all a, b ∈ M,
↓ (a ◦ 1 ◦ b) ∩M/= ∅.

A nonempty subset S ⊆ Q is called a multiplicative set of Q, if a ◦ b ∈ S for all a, b ∈ S.
Every ideal of Q is both an m-system and a multiplicative set.

Definition 2.4. Let Q be a quantale, an equivalence relation θ on L is called a congruence on Q
if for all a, b, c, d, ai, bi ∈ Q (i ∈ I), we have

(1) aθb, cθd ⇒ (a ◦ c)θ(b ◦ d),
(2) aiθbi(i ∈ I) ⇒ (

∨
i∈Iai)θ(

∨
i∈Ibi).

It is obvious that [a]θ ◦ [b]θ ⊆ [a ◦ b]θ,
∨

i∈I[ai]θ ⊆ [
∨

i∈Iai]θ for all a, b, ai ∈ Q (i ∈ I).

Definition 2.5. Let Q be a quantale, a congruence θ on Q is called a complete congruence, if

(1) [a]θ ◦ [b]θ = [a ◦ b]θ for all a, b ∈ Q,

(2)
∨

i∈I[ai]θ = [
∨

i∈Iai]θ for all ai ∈ Q (i ∈ I).

Definition 2.6. Let (Q1, ◦1) and (Q2, ◦2) be two quantales. A map f : Q1 → Q2 is said to be a
homomorphism if

(1) f(a ◦1 b) = f(a)◦2f(b) for all a, b ∈ Q1;

(2) f(
∨

i∈Iai) =
∨

i∈If(ai) for all ai ∈ Q1 (i ∈ I).

Definition 2.7. LetU andW be two nonempty universes. Let T be a set-valuedmapping given
by T : U → P(W), where P(W) denotes the set of all subsets of W . Then the triple (U,W, T)
is referred to as a generalized approximation space. For any setA ⊆ W , the generalized lower
and upper approximations, T−(A) and T−(A), are defined by

T−(A) = {x ∈ U | T(x) ⊆ A}, T−(A) = {x ∈ U | T(x) ∩A/= ∅}. (2.2)

The pair (T−(A), T−(A)) is referred to as a generalized rough set.

From the definition, the following theorems can be easily derived.

Theorem 2.8. Let U,W be nonempty universes and T : U → P ∗(W) be a set-valued mapping,
where P ∗(W) denotes the set of all nonempty subsets of W . If A ⊆ W , then T−(A) ⊆ T−(A).

If W = U and RT = {(x, y) | y ∈ T(x)} is an equivalence relation on U, then the pair
(U,RT ) is the Pawlak approximation space. Therefore, a generalized rough set is an extended
notion of Pawlak’s rough set.

Theorem 2.9. Let (U,W, T) be a generalized approximation space, its lower and upper approximation
operators satisfy the following properties. For all A,B ∈ P(W),

(1) T−(A) = (T−(Ac))c, T−(A) = (T−(Ac))c,

(2) T−(W) = U, T−(∅) = ∅,
(3) T−(A ∩ B) = T−(A) ∩ T−(B), T−(A ∪ B) = T−(A) ∪ T−(B),
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(4) A ⊆ B ⇒ T−(A) ⊆ T−(B), T−(A) ⊆ T−(B),

(5) T−(A ∪ B) ⊇ T−(A) ∪ T−(B), T−(A ∩ B) ⊆ T−(A) ∩ T−(B),

where Ac is the complement of the set A.

3. Generalized Rough Subsets in Quantales

In this paper, (Q1, ◦1) and (Q2, ◦2) are two quantales.

Theorem 3.1. Let T : Q1 → P(Q2) be a set-valued mapping and ∅/=A,B ⊆ Q2. Then

(1) T−(A) ∪ T−(B) ⊆ T−(A ∨ B), if 0 ∈ A ∩ B,

(2) T−(A) ∪ T−(B) ⊆ T−(A ◦2 B), if e ∈ A ∩ B,

(3) T−(A) ∩ T−(B) ⊆ T−(A ∨ B),

(4) T−(A) ∩ T−(B) ⊆ T−(A ∨ B), if Q2 is an idempotent quantale,

(5) T−(A) ∪ T−(B) ⊆ T−(A ∨ B), if 0 ∈ A ∩ B,

(6) T−(A) ∪ T−(B) ⊆ T−(A ◦2 B), if e ∈ A ∩ B.

Proof. (1) Suppose that a ∈ A, we have a = a ∨ 0 ∈ A ∨ B for 0 ∈ B. So A ⊆ A ∨ B. Similarly,
B ⊆ A∨B. SoA∪B ⊆ A∨B. By Theorem 2.9, we have T−(A)∪T−(B) = T−(A∪B) ⊆ T−(A∨B).

(2) Suppose that a ∈ A, we have a = a ◦2 e ∈ A ◦2 B for e ∈ B. So A ⊆ A ◦2 B. Simi-
larly, B ⊆ A ◦2 B. So A ∪ B ⊆ A ◦2 B. By Theorem 2.9, we have T−(A) ∪ T−(B) = T−(A ∪ B) ⊆
T−(A ◦2 B).

(3) It is obvious that A ∩ B ⊆ A ∨ B. By Theorem 2.9, we have T−(A) ∩ T−(B) =
T−(A ∩ B) ⊆ T−(A ∨ B).

(4) SinceQ2 is an idempotent quantale, we haveA∩B ⊆ A◦B. By Theorem 2.9, we have
T−(A) ∩ T−(B) = T−(A ∩ B) ⊆ T−(A ◦2 B).

(5) and (6) The proofs are similar to (1) and (2), respectively.

Definition 3.2. A set-valued mapping T : Q1 → P(Q2) is called a set-valued homomorphism if

(1) T(a) ◦2 T(b) ⊆ T(a ◦1 b) for all a, b ∈ Q1,

(2)
∨

i∈IT(ai) ⊆ T(
∨

i∈Iai) for all ai ∈ Q1(i ∈ I).

T is called a strong set-valued homomorphism if the equalities in (1), (2) hold.

Example 3.3. (1) Let θ be a congruence on Q2. Then the set-valued mapping T : Q1 → P(Q2)
defined by T(x) = [x]θ is a set-valued homomorphism but not necessarily a strong set-valued
homomorphism. If θ is complete, then T is a strong set-valued homomorphism.

(2) Let f be a quantale homomorphism from Q1 to Q2. Then the set-valued mapping
T : Q1 → P(Q2) defined by T(a) = {f(a)} is a strong set-valued homomorphism.

Theorem 3.4. Let T : Q1 → P(Q2) be a set-valued homomorphism and ∅/=A,B ⊆ Q2. Then

(1) T−(A) ∨ T−(B) ⊆ T−(A ∨ B),

(2) T−(A) ◦1 T−(B) ⊆ T−(A ◦2 B),

(3) T−(A) ∩ T−(B) ⊆ T−(A ∨ B),

(4) T−(A) ∩ T−(B) ⊆ T−(A ◦2 B), if Q1 is an idempotent quantale.
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Proof. (1) Suppose that c ∈ T−(A)∨T−(B), there exist a ∈ T−(A), b ∈ T−(B) such that c = a∨b.
So there exist x ∈ A∩T(a) and y ∈ B∩T(b). Hence x∨y ∈ A∨B and x∨y ∈ T(a)∨T(b). Since
T is a set-valued homomorphism, we have x ∨ y ∈ T(a ∨ b). Therefore, T(a ∨ b) ∩ (A ∨ B)/= ∅
which implies that c = a ∨ b ∈ T−(A ∨ B).

(2) The proof is similar to (1).
(3) Suppose that x ∈ T−(A) ∩ T−(B), there exist a ∈ A∩T(x) and b ∈ B∩T(x). Since T

is a set-valued homomorphism, we have a∨ b ∈ T(x)∨ T(x) ⊆ T(x). So a∨ b ∈ T(x)∩ (A∨B)
which implies that x ∈ T−(A ∨ B).

(4) Suppose that x ∈ T−(A) ∩ T−(B), there exist a ∈ A ∩ T(x) and b ∈ B ∩ T(x). Since
T is a set-valued homomorphism and Q1 is idempotent, we have a ∨ b ∈ T(x) ◦2 T(x) ⊆
T(x ◦1 x) = T(x). So a ∨ b ∈ T(x) ∩ (A ∨ B) which implies that x ∈ T−(A ◦2 B).

Theorem 3.5. Let T : Q1 → P(Q2) be a strong set-valued homomorphism and ∅/=A,B ⊆ Q2. Then

(1) T−(A) ∨ T−(B) ⊆ T−(A ∨ B),

(2) T−(A) ◦1 T−(B) ⊆ T−(A ◦2 B).

Proof. (1) Suppose that c ∈ T−(A) ∨ T−(B), there exist a ∈ T−(A), b ∈ T−(B) such that c = a ∨ b.
Hence T(a) ⊆ A and T(b) ⊆ B. Since T is a strong set-valued homomorphism, we have
T(a ∨ b) = T(a) ∨ T(b) ⊆ A ∨ B which implies that c = a ∨ b ∈ T−(A ∨ B).

(2) The proof is similar to (1).

4. Generalized Rough Ideals in Quantales

Theorem 4.1. Let T : Q1 → P(Q2) be a set-valued mapping. If I and J are, respectively, a right and
a left ideal of Q2, then

(1) T−(I ◦2 J) ⊆ T−(I) ∩ T−(J),

(2) T−(I ◦2 J) ⊆ T−(I) ∩ T−(J),

(3) T−(I ∧ J) ⊆ T−(I) ∩ T−(J),

(4) T−(I) ∧ T−(J) = T−(I ∧ J),

(5) T−(I) ∪ T−(J) ⊆ T−(I ∨ J),

(6) T−(I) ∪ T−(J) ⊆ T−(I ∨ J).

If Q1 is an idempotent quantale and T is a set-valued homomorphism, then the equalities in
(1)–(3) hold.

Proof. Since I and J are, respectively, a right and a left ideal of Q2, we have I ◦2 J ⊆ I ∩ J ,
I ∧ J = I ∩ J and o ∈ I ∩ J . By Theorem 2.9, we get the conclusion (1)–(4). By Theorem 3.1, we
get (5) and (6).

If Q1 is idempotent, we first show that T−(I) ∩ T−(J) ⊆ T−(I ◦2 J). Suppose that
x ∈ T−(I) ∩ T−(J), there exist y ∈ I, z ∈ J such that y, z ∈ T(x). So, y ◦2 z ∈ I ◦2 J and
y ◦2 z ∈ T(x) ◦2 T(x). Since T is a set-valued homomorphism andQ1 is idempotent, we have
y ◦2 z ∈ T(x ◦1 x) = T(x). Therefore, x ∈ T−(I ◦2 J). So the equality in (1) holds. Since Q1

is idempotent, we have I ∩ J ⊆ I ◦2 J . So I ∩ J = I ◦2 J = I ∩ J . By Theorem 2.9, we get
T−(I ◦2 J) = T−(I ∩ J) = T−(I) ∩ T−(J). Since the equality in (1) holds, we have T−(I ∧ J) =
T−(I ◦2 J) = T−(I) ∩ T−(J).
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Lemma 4.2. Let T : Q1 → P(Q2) be a set-valued homomorphism. If A is a lower set of Q2, then
T−(A) is a lower set of Q1.

Proof. Suppose x ≤ y ∈ T−(A), then T(y) ⊆ A. Let z ∈ T(x), a ∈ T(y), we have z ∨ a ∈ T(x) ∨
T(y) ⊆ T(x∨y) = T(y) ⊆ A. SinceA is a lower set, we have z ∈ A. Therefore, T(x) ⊆ Awhich
implies that x ∈ T−(A).

Lemma 4.3. Let T : Q1 → P(Q2) be a strong set-valued homomorphism. If A is a lower set of Q2,
then T−(A) is a lower set of Q1.

Proof. Suppose that x ≤ y ∈ T−(A), there exists z ∈ T(y) ∩ A. Since T is a strong set-valued
homomorphism, we have T(x) ∨ T(y) = T(x ∨ y) = T(y). So there exist a ∈ T(x), b ∈ T(y)
such that z = a ∨ b. Since A is a lower set, we have a ∈ A. Thus T(x) ∩ A/= ∅ which follows
that x ∈ T−(A).

Lemma 4.4. Let T : Q1 → P(Q2) be a set-valued homomorphism andA a nonempty subset ofQ2. If
A is closed under arbitrary (resp., finite) sups, then T−(A) is closed under arbitrary (resp., finite) sups.

Proof. Let B ⊆ T−(A). For each b ∈ B, we have b ∈ T−(A), then there exist xb ∈ T(b) ∩ A.
Since T is a set-valued homomorphism, we have

∨
b∈Bxb ∈

∨
b∈BT(b) ⊆ T(

∨
B). And we have∨

b∈Bxb ∈ A for A is closed under arbitrary sups. So T(
∨
B) ∩A/= ∅ which implies that

∨
B ∈

T−(A).

Lemma 4.5. Let T : Q1 → P(Q2) be a strong set-valued homomorphism andA a nonempty subset of
Q2. IfA is closed under arbitrary (resp., finite) sups, then T−(A) is closed under arbitrary (resp., finite)
sups.

Proof. Let B ⊆ T−(A). For each b ∈ B, we have T(b) ⊆ A. Since T is a strong set-valued homo-
morphism, we have T(

∨
B) =

∨
T(B). Suppose z ∈ T(

∨
B) =

∨
T(B), there exist xb ∈ T(b) ⊆

A (b ∈ B) such that z =
∨

b∈Bxb. Since A is closed under arbitrary sups, we have z =
∨

b∈Bxb ∈
A. So T(

∨
B) ⊆ A which implies that

∨
B ∈ T−(A).

Theorem 4.6. Let T : Q1 → P(Q2) be a set-valued homomorphism. IfA is a subquantale ofQ2, then
T−(A) is a subquantale of Q1.

Proof. Since T is a set-valued homomorphism and A is a subquantale, by Theorems 3.4 and
2.9, we have T−(A) ◦1 T−(A) ⊆ T−(A ◦2 A) ⊆ T−(A). So, T−(A) is closed under ◦1.

Since A is closed under arbitrary sups, by Lemma 4.4, we get T−(A) is closed under
arbitrary sups.

Theorem 4.7. Let T : Q1 → P(Q2) be a strong set-valued homomorphism. If A is a subquantale of
Q2, then T−(A) is a subquantale of Q1.

Proof. The proof is similar to Theorem 4.6.

Theorem 4.8. Let T : Q1 → P ∗(Q2) be a strong set-valued homomorphism and I a right (left) ideal
of Q2. Then T−(I) is, if it is nonempty, a right (left) ideal of Q1.

Proof. Suppose that a, b ∈ T−(I). Since I is closed under finite sups, by Lemma 4.4, we have
T−(I) is closed under finite sups. So a ∨ b ∈ T−(I).
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Table 1

◦1 0 a 1
0 0 a 1
a 0 a 1
1 0 a 1

a

1

0

Figure 1

Since I is a lower set, by Lemma 4.3, we have T−(I) is a lower set.
Suppose a ∈ Q1, x ∈ T−(I), there exists y ∈ I ∩ T(x). Since I is a right ideal of Q2, we

have y ◦2 b ∈ I for each b ∈ T(a) ⊆ Q2. So y ◦2 b ∈ T(x) ◦2 T(a) ⊆ T(x ◦1 a). Therefore,
T(x ◦1 a) ∩ I /= ∅ which implies that x ◦1 a ∈ T−(I).

Theorem 4.9. Let T : Q1 → P(Q2) be a strong set-valued homomorphism and I a right (left) ideal of
Q2. Then T−(I) is, if it is nonempty, a right (left) ideal of Q1.

Proof. Suppose a, b ∈ T−(I). Since I is closed under finite sups, by Lemma 4.5, we have T−(I)
is closed under finite sups. So, a ∨ b ∈ T−(I).

Since I is a lower set, by Lemma 4.2, we have T−(I) is a lower set.
Suppose a ∈ Q1, x ∈ T−(I), we have T(x) ⊆ I. Let y ∈ T(x ◦1 a). Since T is a strong

set-valued homomorphism, we have y ∈ T(x) ◦2 T(a), then there exist y1 ∈ T(x) ⊆ I, y2 ∈
T(a) such that y = y1 ◦2 y2. Since I is a right ideal, we have y = y1 ◦2 y2 ∈ I. Therefore,
T(x ◦1 a) ⊆ I which implies that x◦1a ∈ T−(I).

Definition 4.10. A subsetA ⊆ Q2 is called a generalized rough ideal (subquantale) ofQ1 if T−(A)
and T−(A) are ideals (subquantales) of Q1.

The following corollary follows from Theorems 4.6–4.9.

Corollary 4.11. Let T : Q1 → P(Q2) be a strong set-valued homomorphism and I an ideal (a sub-
quantale) ofQ2. If T−(I) and T−(I) are nonempty, then I is a generalized rough ideal (subquantale) of
Q1.

From the above, we know that an ideal is a generalized rough ideal with respect to a
strong set-valued homomorphism. The following example shows that the converse does not
hold in general.

Example 4.12. Let Q1 = {0, a, 1} and Q2 = {0′, b, c, 1′} be quantales shown in Figures 1 and 2
and Tables 1 and 2.

Let T : Q1 → P(Q2) be a strong set-valued homomorphism as defined by T(0) = {0′},
T(a) = {b, c}, T(1) = {1′}. Let A = {0′, b, c} ⊆ Q2, B = {b, c} ⊆ Q2, then T−(A) = {0, a} = T−(A)
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Table 2

◦2 0′ b c 1′

0′ 0′ b c 1′

b 0′ b c 1′

c 0′ b c 1′

1′ 0′ b c 1′

b c

1′

0′

Figure 2

and T−(B) = {a} = T−(B). It is obvious that A is a generalized rough ideal of Q1 but A is not
an ideal of Q2 and B is a generalized rough subquantale of Q1 but B is not a subquantale of
Q2.

Theorem 4.13. Let T : Q1 → P(Q2) be a strong set-valued homomorphism and I a prime ideal of
Q2. Then T−(I) is, if it is nonempty, a prime ideal of Q1.

Proof. By Theorem 4.8, we get T−(I) is an ideal of Q1.
Let a ◦1 b ∈ T−(I), there exists x ∈ I ∩ T(a ◦1 b). Since T is a strong set-valued homo-

morphism, we have x ∈ T(a) ◦2 T(b), then there exist y ∈ T(a), z ∈ T(b) such that x =
y ◦2 z ∈ I. Since I is a prime ideal of Q2, we have y ∈ I or z ∈ I. So T(a) ∩ I /= ∅ or T(b) ∩ I /= ∅
which implies that a ∈ T−(I) or b ∈ T−(I).

Theorem 4.14. Let T : Q1 → P(Q2) be a strong set-valued homomorphism and I a prime ideal of
Q2. Then T−(I) is, if it is nonempty, a prime ideal of Q1.

Proof. By Theorem 4.9, we get T−(I) is an ideal of Q1.
Let a ◦1 b ∈ T−(I), we have T(a◦1b) ⊆ I. Since T is a strong set-valued homomorphism,

we have T(a) ◦2 T(b) ⊆ I. We assume that a /∈ T−(I), then T(a)/⊆I, there exists x ∈ T(a) but
x /∈ I. If y ∈ T(b), then x ◦2 y ∈ T(a) ◦2 T(b) ⊆ I. Since I is a prime ideal of Q2, we have
y ∈ I. Therefore, T(b) ⊆ I which implies that b ∈ T−(I).

We call I ⊆ Q2 is a generalized rough prime ideal of Q1 if T−(I) and T−(I) are ideals of
Q1.

Theorem 4.15. Let T : Q1 → P(Q2) be a strong set-valued homomorphism and I a semiprime ideal
of Q2. Then T−(I) is, if it is nonempty, a semiprime ideal of Q1.
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Proof. By Theorem 4.9, we get T−(I) is an ideal of Q1.
Suppose that a ◦1 a ∈ T−(I), we have T(a ◦1 a) ⊆ I. Let x ∈ T(a), we have x ◦2 x ∈

T(a) ◦2 T(a) ⊆ T(a ◦1 a) ⊆ I. Since I is a semi-prime ideal, we have x ∈ I. So T(a) ⊆ I which
implies that a ∈ T−(I).

Theorem 4.16. Let T : Q1 → P(Q2) be a strong set-valued homomorphism and I a primary ideal of
Q2. Then T−(I) is, if T−(I)/= ∅ and T−(I)/=Q1, a primary ideal of Q1.

Proof. By Theorem 4.8, we get T−(I) is an ideal of Q1.
Suppose that a, b ∈ Q, a ◦1 b ∈ T−(I) and a /∈ T−(I), there exists x ∈ I∩T(a ◦1 b). Since

T is a strong set-valued homomorphism, we have x ∈ T(a) ◦2 T(b), there exist y ∈ T(a),
z ∈ T(b) such that x = y ◦2 z ∈ I. Since a /∈ T−(I), we get y /∈ I. Since I is a primary ideal, we
have zn ∈ I for some n > 0 Since T is a strong set-valued homomorphism, we have zn ∈ T(bn).
So T(bn) ∩ I /= ∅which implies that bn ∈ T−(I).

Theorem 4.17. Let T : Q1 → P(Q2) be a strong set-valued homomorphism and I a primary ideal of
Q2. LetQ2 be a commutative quantale and T(x) a finite set for each x ∈ Q1. Then T−(I) is, if T−(I)/= ∅
and T−(I)/=Q1, a primary ideal of Q1.

Proof. By Theorem 4.9, we get T−(I) is an ideal of Q1.
Suppose a, b ∈ Q, a ◦1 b ∈ T−(I) and a /∈ T−(I), then T(a ◦1 b) ⊆ I and T(a)/⊆I. So

there exists x ∈ T(a) with x /∈ I. We assume that T(b) = {y1, y2, . . . , ym}, then x ◦2 yi ∈
T(a) ◦2 T(b) ⊆ T(a ◦1 b) ⊆ I(i = 1, 2, . . . , m). Since I is a primary ideal, there exists yni

i ∈ I
for some ni > 0 (i = 1, 2, . . . , m). Let n = max{ni | i = 1, 2, . . . , m}. Since I is an ideal, we have
yl
i ∈ I (l ≥ n). Let z ∈ T(bmbn) = T(b)mn. Since Q2 is commutative, there exists {i1, i2, . . . , is} ⊆

{1, 2, . . . , m} such that z = yt1
i1
◦2 yt2

i2
◦2 · · · ◦2 yts

is
with t1+ t2+ · · ·+ ts = mn, where tj > 0 (j = 1,

2, . . . , s). Assume that tj < n, (j = 1, 2, . . . , s), then t1+ t2+ · · ·+ ts < sn ≤ mn. It contradicts with
t1 + t2 + · · · + ts = mn. Therefore, there is 1 ≤ k ≤ s such that tk ≥ n, (j = 1, 2, . . . , s), we have
ytk
ik
∈ I. Since I is an ideal, we get z ∈ I. Hence T(bmn) ⊆ I which implies that bmn ∈ T−(I).

Theorem 4.18. Let T : Q1 → P(Q2) be a set-valued homomorphism. If S is a multiplicative set of
Q2, then T−(S) is, if it is nonempty, a multiplicative ofQ1. If T is a strong set-valued homomorphism,
then T−(S) is, if it is nonempty, a multiplicative of Q1.

Proof. Suppose that a, b ∈ T−(S), there exist x ∈ T(a) ∩ S, y ∈ T(b) ∩ S. Hence x ◦ y ∈ T(a)◦2
T(b) ⊆ T(a◦1b). Since S is amultiplicative set, we have x◦2y ∈ S. Therefore, x◦2y ∈ T(a◦1b)∩S
which implies that a◦1b ∈ T−(S).

Suppose a, b ∈ T−(S), then T(a) ⊆ S, T(b) ⊆ S. Let x ∈ T(a ◦1 b). Since T is a strong
set-valued homomorphism, we have x ∈ T(a) ◦2 T(b). There exist y ∈ T(a) ⊆ S, z ∈ T(b) ⊆ S
such that x = y ◦2 z. Since S is a multiplicative set, we have x = y ◦2 z ∈ S. So T(a ◦1 b) ⊆ S
which implies that a ◦1 b ∈ T−(S).

We call A ⊆ Q2 a generalized rough multiplicative set (m-system) of Q1, if T−(A),
T−(A) are multiplicative sets (m-systems) of Q1.

Theorem 4.19. Let T : Q1 → P ∗(Q2) be a set-valued homomorphism. IfQ1 is commutative andA ⊆
Q2 with 1 /∈ T−(A), then the following statements are equivalent:

(1) A is a generalized rough prime ideal of Q1,

(2) A is a generalized rough ideal and Ac is a generalized rough multiplicative set of Q1,

(3) A is a generalized rough ideal and Ac is a generalized rough m-system of Q1.
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Proof. (1)⇒(2): Since A is a generalized rough prime ideal of Q1, we get A is a generalized
rough ideal of Q1 and T−(A), T−(A) are prime ideals of Q1. Now we show that T−(Ac) is a
multiplicative set. Let a, b ∈ T−(Ac). By Theorem 2.9(1), we have a, b ∈ (T−(A))c. Since T−(A)
is a prime ideal, we have a ◦1 b /∈ T−(A) which implies that a ◦1 b ∈ (T−(A))c = T−(Ac). So
T−(Ac) is a multiplicative set. Similarly, T−(Ac) is a multiplicative set.

(2)⇒(3): Let a, b ∈ T−(Ac). Since 1 /∈ T−(A) and T(1)/= ∅, we have 1 ∈ T−(Ac). Since
T−(Ac) is a multiplicative set, we have a ◦1 1 ◦1 b ∈ T−(Ac). So ↓ (a ◦1 1 ◦1 b) ∩ T−(Ac)/= ∅.
Therefore, T−(Ac) is an m-system. Similarly, we have T−(Ac) is am-system.

(3)⇒(1): Let a ◦1 b ∈ T−(A). Suppose a /∈ T−(A) and b /∈ T−(A), then a, b ∈ (T−(A))c =
T−(Ac). Since T−(Ac) is an m-system, we have ↓ (a ◦1 1 ◦1 b) ∩ T−(Ac)/= ∅. Thus ↓ (a ◦1
1 ◦1 b) ∩ (T−(A))c /= ∅. Since T−(A) is an ideal and Q1 is commutative, we have a ◦1 1 ◦1 b ∈
T−(A) and ↓ (a ◦1 1 ◦1 b) ⊆ T−(A). It contradicts with ↓ (a ◦1 1 ◦1 b) ∩ (T−(A))c /= ∅. So,
a ∈ T−(A) or b ∈ T−(A). Therefore, T−(A) is a prime ideal. Similarly, we have T−(A) as a
prime ideal.

5. Conclusion

The Pawlak rough sets on the algebraic sets such as semigroups, groups, rings, modules, and
lattices were mainly studied by a congruence relation. However, the generalized Pawlak
rough set was defined for two universes and proposed on generalized binary relations. Can
we extended congruence relations to two universes for algebraic sets? Therefore, Davvaz [25]
introduced the concept of set-valued homomorphism for groups which is a generalization of
the concept of congruence. In this paper, the concepts of set-valued homomorphism and
strong set-valued homomorphism of quantales are introduced. We construct generalized
lower and upper approximations by means of a set-valued mapping and discuss the pro-
perties of them. We obtain that the concept of generalized rough ideal (subquantale) is the
extended notion of ideal (subquantale). Many results in [29] are the special case of the results
in this paper. It is an interesting research topic of rough set, we will further study it in the
future.
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