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This paper is concerned with the nonnegativity preserving interpolation of data on rectangular
grids. The function is a kind of bivariate rational interpolation spline with parameters, which is C1

in the whole interpolation region. Sufficient conditions are derived on coefficients in the rational
spline to ensure that the surfaces are always nonnegative if the original data are nonnegative. The
gradients at the data sites are modified if necessary to ensure that the nonnegativity conditions are
fulfilled. Some numerical examples are illustrated in the end of this paper.

1. Introduction

Interpolation to the scientific data is of great significance in the area of computer-aided
geometric design. Particularly, there is often some property inherent in the data which
one wishes to preserve when the interpolant is visualized. One useful shape property is
nonnegativity: one may have all data values nonnegative and seek an interpolant that is
everywhere nonnegative. In this paper, we are concerned with the nonnegativity preserving
bivariate interpolation to data on a rectangular grid.

Several kinds of surfaces are concerned with nonnegativity preserving interpolation
on rectangular grid. For example, C1 biquadratic splines on a refined rectangular grid have
been considered in paper [1]. In paper [2, 3], Brodlie et al. followed the same approach (but
for bicubic interpolation) ofmaintaining nonnegativity bymodifying estimated slopes at data
points. In [4], the interpolant is piecewise an average of two blending surfaces. In [5], C1

interpolating surface is constructed piecewise as a convex combination of two bicubic Bézier
patches with the same set of boundary Bézier ordinates. Sufficient nonnegativity conditions
on the Bézier ordinates are derived to ensure the nonnegativity of a bicubic Bézier patch. The
Bézier ordinates are modified locally to fulfill the sufficient nonnegativity conditions.
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The surface we consider here is rational spline. Rational spline with parameters has
been considered in recent years. Those kinds of interpolation splines have simple and explicit
mathematical representation. In paper [6], a bivariate rational interpolation is constructed
using both function values and partial derivatives of the function being interpolated as
the interpolation data. The convexity control method and point control method have been
studied in [7, 8]. In paper [9], a rational cubic function is extended to a rational bicubic
partially blended functions (Coons-patches) and the constraints on parameters are derived to
visualize the shape of nonnegative surface data. In this paper, we consider the rational spline
from different points of view. The sufficient nonnegativity conditions of the bicubic Bézier
patch are introduced to consider this problem. We get the sufficient nonnegativity conditions
of the rational spline. Gradients at data sites are modified if necessary to ensure that the
nonnegativity conditions are fulfilled. It is designed in such a way that no additional points
need to be supplied and the sufficient conditions are simple and explicit.

The paper is organized as follows. In Section 2, the bivariate rational spline is intro-
duced. Section 3 deals with the smoothness of the interpolating surface. In Section 4, the
sufficient nonnegativity conditions of the rational spline are derived and a local scheme forC1

nonnegativity preserving interpolation is described. We conclude in Section 5 by illustrating
the method with some graphical examples.

2. Rational Interpolation Spline

In this section, the univariate rational cubic spline is introduced which was developed by
Hussain and Sarfraz [10]. We extend it to a bivariate rational interpolation spline function.

Let Ω : [a, b; c, d] be a planar region, {(xi, yj , fi,j , ∂fi,j/∂x, ∂fi,j/∂y), (i = 1, 2, . . . , n; j =
1, 2, . . . , m)} a given set of data points, where a = x1 < x2 < · · · < xn = b and c =
y1 < y2 < · · · < ym = d are the knot sequences. And let fi,j , ∂fi,j/∂x, ∂fi,j/∂y represent
f(xi, yj), ∂f(xi, yj)/∂x, ∂f(xi, yj)/∂y, respectively. ∂f(xi, yj)/∂x and ∂f(xi, yj)/∂y are not
always given; they can be estimated by the method in [11].

For any point (x, y) ∈ [xi, xi+1;yj , yj+1] in the (x, y)-plane, we construct the x-direction
interpolating curve S∗

i,j(x) in [xi, xi+1] for each y = yj , j = 1, 2, . . . , m:

S∗
i,j(x) =

p∗i,j(x)

q∗i,j(x)
, i = 1, 2, . . . , n − 1, (2.1)

where

p∗i,j(x) = (1 − θ)3fi,j + αi,jθ(1 − θ)2V ∗
i,j + βi,jθ

2(1 − θ)W∗
i,j + θ3fi+1,j ,

q∗i,j(x) = (1 − θ)3 + αi,jθ(1 − θ)2 + βi,jθ
2(1 − θ) + θ3,

V ∗
i,j = fi,j +

hi

αi,j

∂fi,j

∂x
, W∗

i,j = fi+1,j − hi

βi,j

∂fi+1,j

∂x
, hi = xi+1 − xi, θ =

x − xi

hi
,

(2.2)

with free parameters αi,j > 0, βi,j > 0.
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Obviously, the rational cubic interpolation is unique for the given data (xr, fr,j ,
∂fr,j/∂x, r = i, i + 1) and the parameters αi,j , βi,j . It has the following properties:

S∗
i,j(xi) = fi,j , S∗

i,j(xi+1) = fi+1,j , S′∗
i,j(xi) =

∂fi,j

∂x
, S′∗

i,j(xi+1) =
∂fi+1,j

∂x
. (2.3)

For each pair (i, j), i = 1, 2, . . . , n − 1 and j = 1, 2, . . . , m − 1, using the x-direction
interpolation function S∗

i,j(x), i = 1, 2, . . . , n − 1; j = 1, 2, . . . , m, we can define the bivariate
rational interpolating function Si,j on [xi, xi+1;yj , yj+1] as follows:

Si,j

(
x, y
)
=

pi,j
(
x, y
)

qi,j
(
y
) , i = 1, 2, . . . , n − 1, j = 1, 2, . . . , m − 1, (2.4)

where

pi,j
(
x, y
)
=
(
1 − η

)3
S∗
i,j(x) + μi,jη

(
1 − η

)2
Vi,j +ωi,jη

2(1 − η
)
Wi,j + η3S∗

i,j+1(x),

qi,j
(
y
)
=
(
1 − η

)3 + μi,jη
(
1 − η

)2 +ωi,jη
2(1 − η

)
+ η3,

(2.5)

Vi,j

(
x, y
)
= S∗

i,j(x) +
lj

μi,j
di,j

(
x, yj

)
, Wi,j

(
x, y
)
= S∗

i,j+1(x) −
lj

ωi,j
di,j+1

(
x, yj+1

)
,

di,s

(
x, ys

)
=

[
(1 − θ)3 + θ(1 − θ)2

](
∂fi,s/∂y

)
+
[
θ2(1 − θ) + θ3](∂fi+1,s/∂y

)

(1 − θ)3 + αi,jθ(1 − θ)2 + βi,jθ2(1 − θ) + θ3
,

θ ∈ [0, 1], s = j, j + 1.

(2.6)

μi,j > 0 and ωi,j > 0 are free parameters, and lj = yj+1 − yj, η = (y − yj)/lj .
It is obvious that di,s(x, ys) satisfies di,s(xr, ys) = ∂fr,s/∂y, r = i, i + 1, s = j, j + 1.

And the bivariate rational function Si,j(x, y) satisfies the interpolation conditions Si,j(xr, ys) =
f(xr, ys), ∂Si,j(xr, ys)/ ∂x = ∂fr,s/∂x, ∂Si,j(xr, yj)/∂y = ∂fr,s/∂y, r = i, i + 1 and s = j, j + 1.

3. The Smoothing Conditions

In this section, the smoothing conditions of the rational spline Si,j(x, y) defined by (2.4)
are derived. The rational interpolating function S∗

i,j(x) defined by (2.1) is a piecewise
Hermite interpolant, and it has continuous first-order derivative when x ∈ [x1, xn]. So
the bivariate interpolating function Si,j defined by (2.4) has continuous first-order partial
derivatives ∂Si,j(x, y)/∂x and ∂Si,j(x, y)/∂y in the interpolating region [x1, xn;y1, ym] except
∂Si,j(x, y)/∂x at the points (xi, y), i = 1, 2, . . . , n − 1 for every y ∈ [yj, yj+1], j = 1, 2, . . . , m − 1.
So it is sufficient for Si,j(x, y) ∈ C1 in the whole interpolating region [x1, xn;y1, ym] if
∂Si,j(xi+, y)/∂x = ∂Si,j (xi−, y)/∂x holds. This leads to the following theorem.
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Theorem 3.1. If the knots are equally spaced for variable x; that is, hi = (b − a)/n, a sufficient
condition for the interpolating function Si,j(x, y), i = 1, 2, . . . , n − 1; j = 1, 2, . . . , m − 1, to be C1 in
the whole interpolating region [x1, xm;y1, yn] is that the parameters μi,j = constant, ωi,j = constant,
and αi,j + βi−1,j = 2 for each j ∈ [1, 2, . . . , m − 1] and all i = 1, 2, . . . , n − 1.

Proof. From the analysis above, without loss of generality, for any pair (i, j), 1 ≤ i ≤ n−1, 1 ≤
j ≤ m − 1, and y ∈ [yj , yj+1], it is sufficient to prove

∂Si,j

(
xi+, y

)

∂x
=

∂Si,j

(
xi−, y

)

∂x
. (3.1)

Since

∂Si,j

(
x, y
)

∂x
=

1
qi,j
(
y
)
[(
1 − η

)3
S′∗
i,j(x) + μi,jη

(
1 − η

)2
V ′
i,j(x)

+ωi,jη
2(1 − η

)
W ′

i,j(x) + η3S′∗
i,j+1(x)

]
,

(3.2)

from (2.5), we get

∂Si,j

(
x, y
)

∂x
=

1
qi,j
(
y
)

{[(
1 − η

)3 + μi,jη
(
1 − η

)2]
S′∗
i,j(x) +

[
ωi,jη

2(1 − η
)
+ η3
]
S′∗
i,j+1(x)

+η
(
1 − η

)2
ljd

′∗
i,j

(
x, yj

) − ljη
2(1 − η

)
d′∗
i,j+1

(
x, yj+1

)
}

.

(3.3)

And since

S′∗
i,j(xi+) =

∂fi,j

∂x
, S′∗

i−1,j(xi−) =
∂fi,j

∂x
,

d′∗
i,j

(
xi+, yj

)
=

1 − αi,j

hi

∂fi,j

∂y
, d′∗

i,j

(
xi−, yj

)
=

βi,j − 1
hi

∂fi+1,j

∂y
,

(3.4)

we have

∂Si,j

(
xi, y

)

∂x
|x=x+

i
=

1
qi,j
(
y
)
[(
1 − η

)3 + μi,jη
(
1 − η

)2] ∂fi,j

∂x
+
[
ωi,jη

2(1 − η
)
+ η3
]∂fi,j+1

∂x

+ η
(
1 − η

)2
lj
1 − αi,j

hi

∂fi,j

∂y
− η2(1 − η

)
lj
1 − αi,j+1

hi

∂fi,j+1

∂y
,

(3.5)

where

qi,j
(
y
)
=
(
1 − η

)3 + μi,jη
(
1 − η

)2 +ωi,jη
2(1 − η

)
+ η3. (3.6)
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Similarly we get

∂Si−1,j
(
x, y
)

∂x
|x=x−

i
=

1
qi−1,j

[(
1 − η

)3 + μi−1,jη
(
1 − η

)2]∂fi,j
∂x

+
[
ωi−1,jη2(1 − η

)
+ η3
]∂fi,j+1

∂x

+ η
(
1 − η

)2
lj
βi−1,j − 1
hi−1

∂fi,j

∂y
− η2(1 − η

)
lj
βi−1,j+1 − 1

hi−1

∂fi,j+1

∂y
,

(3.7)

where
qi−1,j

(
x, y
)
=
(
1 − η

)3 + μi−1,jη
(
1 − η

)
+ωi−1,jη2(1 − η

)
+ η3. (3.8)

If (3.1) holds, it needs (3.5) = (3.7); it can be seen that μi,j = μi−1,j , ωi,j = ωi−1,j , αi,j +
βi−1,j = 2, and hi = hi−1.

This completes the proof.

The interpolating scheme above begins in x-direction first. If the interpolation begins
with y-direction first, we would get a restriction on the data in the y-direction.

4. Construction of Nonnegativity Preserving Interpolating Surface

In this section we first introduce the following theorem in paper [5], which is the basis of our
discussion below.

Theorem 4.1. Let P(u, v) =
∑3

i=0
∑3

j=0 bi,jB
3
i (u)B

3
j (v), u, v ∈ [0, 1], where {b0,0, b3,0, b0,3, b3,3} =

{αι, βι, γι, ι}, with ι > 0 and α ≥ β ≥ γ ≥ 1. Let λ = γ if ι and γι are values at the diagonal vertices;
otherwise λ = β. If b1,0, b2,0, b1,3, b2,3, b0,1, b0,2, b3,1, b3,2, b1,1, b2,1, b1,2, b2,2 ≥ −l/3a, where a is the
smallest solution in (1, 5] of

−27λ2a4 + 108λ2a3 +
(
288λ − 162λ2

)
a2 +

(
108λ2 − 320λ + 256

)
a − 27λ2 + 32λ = 0, (4.1)

then p(u, v) ≥ 0, for all u, v ∈ [0, 1].

Theorem 4.1 gives us the sufficient nonnegativity conditions on the Bézier ordinates,
which ensure the nonnegativity of a bicubic Bézier patch. Nowwe consider the nonnegativity
condition for the rational spline Si,j(x, y) defined by (2.4). For the parameters μi,j ≥ 0, ωi,j ≥
0, qi,j(x, y) defined in (2.5) is positive obviously. Now we consider pi,j(x, y) defined in (2.5).
Assume αi,j and βi,j are constant for each i ∈ 1, 2, . . . , n − 1 and all j = 1, 2, . . . m − 1. Function
pi,j(x, y) can be expressed as follows:

pi,j
(
x, y
)
=

1
q∗i,j

{

(1 − θ)3
[
(
1 − η

)3
fi,j + η

(
1 − η

)2
(

μi,jfi,j + lj
∂fi,j

∂y

)

+η2(1 − η
)
(

ωi,jfi,j+1 − lj
∂fi,j+1

∂y

)

+ η3fi,j+1

]

+ θ(1 − θ)2
[
(
1 − η

)3
αi,jV

∗
i,j + η

(
1 − η

)2
(

μi,jαi,jV
∗
i,j + lj

∂fi,j

∂y

)

+η2(1 − η
)
(

ωi,jαi,jV
∗
i,j+1 − lj

∂fi,j+1

∂y

)

+ η3αi,jV
∗
i,j+1

]
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+ θ2(1 − θ)

[
(
1 − η

)3
βi,jW

∗
i,j + η

(
1 − η

)2
(

μi,jβi,jW
∗
i,j + lj

∂fi+1,j

∂y

)

+η2(1 − η
)
(

ωi,jβi,jW
∗
i,j+1 − lj

∂fi+1,j+1

∂y

)

+ η3βi,jW
∗
i,j+1

]

+ θ3

[
(
1 − η

)3
fi+1,j + η

(
1 − η

)2
(

μi,jfi+1,j + lj
∂fi+1,j

∂y

)

+η2(1 − η
)
(

ωi,jfi+1,j+1 − lj
∂fi+1,j+1

∂y

)

+ η3fi+1,j+1

]}

=
ti,j

q∗i,j
,

(4.2)

where

q∗i,j = (1 − θ)3 + αi,jθ(1 − θ)2 + βi,jθ
2(1 − θ) + θ3. (4.3)

It can be seen that q∗i,j is positive for αi,j > 0 and βi,j > 0. The function ti,j is a
bicubic Bézier patch. It is nonnegative if the Bézier ordinates of it satisfy the conditions in
Theorem 4.1.

The Bézier ordinates bp,q (p, q = 0, 1, 2, 3) of ti,j are

b0,0 = fi,j , b0,1 = μi,jfi,j + lj
∂fi,j

∂y
, b0,2 = ωi,jfi,j+1 − lj

∂fi,j+1

∂y
, b0,3 = fi,j+1,

b1,0 = αi,jfi,j + hi

∂fi,j

∂x
, b1,1 = μi,jαi,jfi,j + μi,jhi

∂fi,j

∂x
+ lj

∂fi,j

∂y
,

b1,2 = ωi,jαi,jfi,j+1 +ωi,jhi

∂fi,j+1

∂x
− lj

∂fi,j+1

∂y
, b1,3 = αi,jfi,j+1 + hi

∂fi,j+1

∂x
,

b2,0 = βi,jfi+1,j − hi

∂fi+1,j

∂x
, b2,1 = μi,jβi,jfi+1,j − μi,jhi

∂fi+1,j

∂x
+ lj

∂fi+1,j

∂y
,

b2,2 = ωi,jβi,jfi+1,j+1 −ωi,jhi

∂fi+1,j+1

∂x
− lj

∂fi+1,j+1

∂y
,

b2,3 = βi,jfi+1,j+1 − hi

∂fi+1,j+1

∂x
,

b3,0 = fi+1,j , b3,1 = μi,jfi+1,j + lj
∂fi+1,j

∂y
,

b3,2 = ωi,jfi+1,j+1 − lj
∂fi+1,j+1

∂y
, b3,3 = fi+1,j+1.

(4.4)

Bézier ordinates of ti,j need not to satisfy the nonnegative conditions. To ensure this,
we shall impose upon these Bézier ordinates the conditions bp,q ≥ −ι/3a (p, q = 0, 1, 2, 3)
according to Theorem 4.1, where ι = min{fi,j , fi,j+1, fi+1,j , fi+1,j+1} and a is determined by (4.1).
This can be achieved by modifying if necessary the gradients at vertices Vi,j = (xi, yj). The
modification of derivatives ∂fi,j/∂x and ∂fi,j/∂y at a vertex is performed by scaling each of
them with a positive factor α < 1. The scaling factor α is obtained by taking into account
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Figure 1: Vertex O with its associated rectangles.

all the rectangular patches sharing that vertex. For the four rectangles which share vertex
Vi,j , denote vertex Vi,j as O and its adjacent vertices as A,B,C,D, E, F,G,H, respectively (see
Figure 1).

Consider rectangle 1 and the lower bound −ι1/3a1 where ι1 = min{S(O), S(A), S(B),
S(C)} and a1 is obtained by solving (4.1) in Theorem 4.1. Scalar α1

OA is defined as follows. If
μi,jfi,j+lj(∂fi,j/∂y) ≥ −ι1/3a1, then α1

OA = 1. Otherwise, α1
OA is defined by the equation μi,jfi,j+

α1
OAlj(∂fi,j/∂y) = −ι1/3a1. Similarly for the scalar α1

OC, if αi,jfi,j + hi(∂fi,j/∂x) ≥ −ι1/3a1, then
α1
OC = 1; otherwise α1

OC is given by the equation αi,jfi,j + α1
OChi(∂fi,j/∂x) = −ι1/3a1. For the

scalar α1
OAC, if μi,jαi,jfi,j + μi,jhi(∂fi,j/∂x) + lj(∂fi,j/∂y) ≥ −ι1/3a1, then α1

OAC = 1; otherwise
α1
OAC is determined by the equation μi,jαi,jfi,j +α1

OAC(μi,jhi(∂fi,j/∂x)+ lj(∂fi,j/∂y)) = −ι1/3a1.
Then define α11 = min{α1

OA, α
1
OAC}, α12 = min{α1

OC, α
1
OAC}. By using the same argument

above, we get α21 and α22, α31 and α32, α41 and α42 for rectangles 2, 3, 4, respectively. In order
for all the Bézier ordinates adjacent to O to fulfill the positivity preserving conditions stated
in Theorem 4.1, set αO1 = min{α11, α21, α31, α41}, αO2 = min{α12, α22, α32, α42}.

If αO1 < 1 (or αO2 < 1), the x (or y) partial derivatives at O are redefined as
αO1(∂fO/∂x) and αO2(∂fO/∂y). Then the Bézier ordinates adjacent to O in each rectangle
are redetermined. The above process is repeated at all the nodes Vi,j .

For the boundary node O, which belongs to one or two rectangles of the rectangular
grid, αO is defined in a similar way. The only difference is that we consider only one or two
rectangles instead of four.

Now all the Bézier ordinates are determined, so ti,j is nonnegative. Thus we can get
the C1 rational interpolant S, which is nonnegative.

5. Numerical Examples

We shall illustrate our discussion with the following examples.

Example 5.1. In the first example the data are given as follows:

f1,1 = 0.1, f1,2 = 1.5, f2,1 = 2, f2,2 = 2.5,
∂f1,1
∂x

= −3, ∂f1,2
∂x

= 0.5,
∂f2,1
∂x

= −0.1, ∂f2,2
∂x

= −0.1,
∂f1,1
∂y

= −0.1, ∂f1,2
∂y

= 0.01,
∂f2,1
∂y

= −0.02, ∂f2,2
∂y

= −0.01.

(5.1)
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Figure 2: The unconstrained interpolating surface to data.

11.21.41.61.82

0
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1

1.5

2
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Figure 3: A different view of the surface, of Figure 2, after rotation.

Figure 2 shows the rational interpolation surface, which loses the nonnegativity in
its display. Figure 3 is a different view of Figure 2 after making a rotation. It confirms that
the surface is not preserving nonnegativity feature. Figures 4 and 5 show the surface after
modifying by the scheme of this paper, which are indeed nonnegative. In fact, they are
changed as follows:

∂f1,1
∂x

= −0.2876, ∂f1,2
∂x

= 0.5,
∂f2,1
∂x

= −0.1, ∂f2,2
∂x

= −0.1,

∂f1,1
∂y

= −0.0496, ∂f1,2
∂y

= 0.01,
∂f2,1
∂y

= −0.02, ∂f2,2
∂y

= −0.01.
(5.2)
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Figure 4: Nonnegativity-preserving interpolating surface to data.
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Figure 5: A different view of the surface, of Figure 4, after rotation.

Example 5.2. In the second example, data points are generated from function g(x, y) [12]:

g
(
x, y
)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2
(
y − x

)
, 0 ≤ y − x ≤ 0.5,

1, y − x ≥ 0.5,

0.5 cos
(
4π
√
(x − 1.5)2 +

(
y − 0.5

)2
)
+ 0.5, (x − 1.5)2 +

(
y − 0.5

)2 ≤ 1
16

,

0, elsewhere on [0, 2] × [0, 1].

(5.3)
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Figure 6: The unconstrained interpolating surface to data from g.

0

0.5

1

00.511.52

−0.4

−0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 7: Nonnegativity-preserving interpolating surface to data from g.

Figure 6 shows the unconstrained interpolating surface, which loses the nonnegativity
in its display. Output from the nonnegativity preserving scheme of this paper is shown in
Figure 7. It clearly shows that the surface remains nonnegative everywhere and visually
pleasant.
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6. Conclusion

In this paper, we construct a nonnegativity preserving interpolant of data on rectangular
grids by using the rational spline. The sufficient nonnegativity conditions are derived, which
are simple and explicit. And the experimental results illustrate the feasibility and validity of
our method.
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