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It is well known that the mixed variational inequalities are equivalent to the fixed point problem.
We use this alternative equivalent formulation to suggest some new proximal point methods for
solving the mixed variational inequalities. These new methods include the explicit, the implicit,
and the extragradient method as special cases. The convergence analysis of these new methods is
considered under some suitable conditions. Our method of constructing these iterative methods is
very simple. Results proved in this paper may stimulate further research in this direction.

1. Introduction

Variational inequalities are being used to study a wide class of diverse unrelated problems
arising in various branches of pure and applied sciences in a unified framework. Several
extensions and generalizations of the variational inequalities have been considered using
novel and innovative techniques. A useful and significant generalization of the variational
inequalities is known as the mixed variational inequality involving a nonlinear term. Due to
the presence of the nonlinear term, the projection and its variant forms cannot be applied
to establish the equivalence between the mixed variational inequalities and the fixed point
problem. It is well known that the nonlinear term in the mixed variational inequality is a
proper, convex, and lower semicontinuous, then one can establish the equivalence between
the mixed variational inequality and the fixed point problem. This equivalence has been
used to study the existence of a solution of the mixed variational inequalities as well as to
develop numerical methods. We use this alternative equivalent formulation to suggest and
analyze a wide class of proximal point methods for solving themixed variational inequalities,
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which includes the implicit and explicit resolvent method as special cases. This is the main
motivation of this paper. We also consider its convergence criteria under suitable conditions.
Our method of constructing these methods is very simple as compared with other methods.
We have only included very iterative methods. Readers are encouraged to construct other
methods using the technique of this paper for solving other kinds of variational inequalities
and related optimization problems. We hope that the ideas and techniques of this paper may
stimulate further research in this area of pure and applied sciences.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. LetK be a nonempty, closed, and convex set inH, and let ϕ(·) : H → R ∪ {+∞}
be a continuous function.

For a given operator T : H → H, we consider the problem of finding u ∈ H such that

〈Tu, v − u〉 + ϕ(v) − ϕ(u) ≥ 0, ∀v ∈ H, (2.1)

which is called the mixed variational inequality or variational inequality of the second kind.
For the applications, formulations, numerical methods, and other aspects of the mixed

variational inequalities, see [1–15] and the references therein.
If the operator T is linear, positive, and symmetric and the function ϕ(·) is convex

function, then the minimum of the functional I[v], defined as

I[v] = 〈Tv, v〉 + gϕ(v) (2.2)

on the convex set, can be characterized by the mixed variational inequality (2.1).
If the function ϕ(·) is proper, convex, and semicontinuous, then problem (2.1) is

equivalent to find u ∈ H such that

0 ∈ Tu + ∂ϕ(u), (2.3)

where ∂ϕ is the subdifferential. The problem (2.3) is called the variational inclusion problem
or problem of finding the zero of the sum of two (more)monotone operators. It is known that
a wide class of problems with applications in industry, physical, regional and engineering
sciences can be studied by the problems (2.1) and (2.3), see, for example, [1–15] and the
references therein.

If the function ϕ(·) is the indictor function of a closed and convex set K in the Hilbert
space H, then problem (2.1) is equivalent to finding u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K, (2.4)

which is known as the classical variational inequality, introduced and studied by Stampacchia
[15] in 1964. For the applications, formulations, generalizations, numerical results, and other
aspects of the variational inequalities, see [1–15].

We now recall some well-known results and concepts.
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Definition 2.1 (see [1]). Let T be a maximal monotone operator, then the resolvent operator
associated with T is defined as

JT (u) =
(
I + ρT

)−1(u), ∀u ∈ H, (2.5)

where ρ > 0 is a constant and I is the identity operator.

It is well known that the subdifferential ∂ϕ(·) is a maximal monotone operator, and we
can define its resolvent as

Jϕ(u) =
(
I + ρ∂ϕ

)−1(u). (2.6)

The resolvent operator Jϕ defined by (2.6) has the following useful characterization.

Lemma 2.2 (see [1]). For a given z ∈ H, u ∈ H satisfies the inequality

〈u − z, v − u〉 + ρϕ(v) − ρϕ(u) ≥ 0, ∀ v ∈ H, (2.7)

if and only if

u = Jϕz, (2.8)

where Jϕ(u) = (I + ρ∂ϕ)−1(u) is the resolvent operator.

It is well known that the resolvent operator Jϕ is nonexpansive, that is,

∥∥Jϕu − Jϕv
∥∥ ≤ ‖u − v‖, ∀ u, v ∈ H. (2.9)

Using Lemma 2.2, one can easily show that the mixed variational inequality (2.1) is equiv-
alent to finding u ∈ H such that

u = Jϕ
[
u − ρTu

]
, (2.10)

where ρ > 0 is a constant.
Lemma 2.2 implies that variational inequality (2.1) and the fixed point problem

(2.10) are equivalent. This alternative equivalent formulation has played a central role in
the development of the mixed variational inequality theory. This equivalence formulation
has been extensively used to develop several iterative methods for solving the variational
inequalities, see, for example, [1–15] and the references therein.

Definition 2.3. An operator T : H → H is said to be partially relaxed strongly monotone, if
and only if, there exists a constant α > 0 such that

〈Tu − Tv, z − v〉 ≥ α‖z − v‖2, ∀u, v, z ∈ H (2.11)
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and pseudomontone with respect to the function ϕ if and only if

〈Tu, v − u〉 + ϕ(v) − ϕ(u) ≥ 0 =⇒ 〈Tv, v − u〉 + ϕ(v) − ϕ(u) ≥ 0, ∀u, v ∈ H. (2.12)

Definition 2.4. An operator T : H → H, is said to be partially relaxed strongly pseudomono-
tone if the operator is both relaxed strongly monotone and pseudomonotone.

3. Main Results

In this section, we use the fixed point formulation (2.10) to suggest a new unified implicit
method for solving the mixed variational inequalities (2.1), and this is the main motivation
of this paper.

Algorithm 3.1. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

un+1 = Jϕ
[
un − ρTun

]
, n = 0, 1, 2, . . . . (3.1)

Algorithm 3.1 is known as the projection iterative method. For the convergence
analysis of Algorithm 3.1, see Noor et al. [6].

For a given λ ∈ [0, 1], we can rewrite (2.10) as

u = Jϕ
[
u − ρTu + λρ(Tu − Tu)

]
. (3.2)

This fixed point formulation is used to suggest the following new proximal point iterative
method for solving mixed variational inequality (2.1) as follows.

Algorithm 3.2. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

un+1 = Jϕ
[
un − ρTun+1 + λρ(Tun+1 − Tun)

]
, n = 0, 1, 2, . . . . (3.3)

Note that Algorithm 3.2 is an implicit-type iterative method. It is clear that for λ = 1,
Algorithm 3.2 reduces to Algorithm 3.1. For λ = 0, Algorithm 3.2 collapses to the following
implicit iterative method for solving the mixed variational inequality (2.1).

Algorithm 3.3. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

un+1 = Jϕ
[
un − ρTun+1

]
, n = 0, 1, 2, . . . . (3.4)

For the convergence analysis of Algorithm 3.3, see Noor [8] and the references therein.In
order to implement Algorithm 3.2, we use the predictor-corrector technique. We use
Algorithm 3.1 as the predictor and Algorithm 3.2 as the corrector. Consequently, we obtain
the following two-step iterative method for solving the variational inequality (2.1).
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Algorithm 3.4. For a given u0 ∈ H, find the approximate solution un+1 by the iterative
schemes:

yn = Jϕ
[
un − ρTun

]
,

un+1 = Jϕ
[
un − ρTyn + λρ

(
Tyn − Tun

)]
, n = 0, 1, 2, . . . .

(3.5)

Algorithm 3.3 is a new two-step iterative method for solving the variational inequality (2.1).

For λ = 1, Algorithm 3.3 reduces to Algorithm 3.1. For λ = 0, Algorithm 3.3 reduces to
the following iterative method for solving the mixed variational inequality (2.1).

Algorithm 3.5. For a given u0 ∈ H, find the approximate solution un+1 by the iterative
schemes:

yn = Jϕ
[
un − ρTun

]
,

un+1 = Jϕ
[
un − ρTyn

]
, n = 0, 1, 2, . . . .

(3.6)

which is known as the extragradient method and is due to Korpelevič [5]?

For λ = 1/2, Algorithm 3.2 collapses to the following iterative method for solving the
mixed variational inequality (2.1) and appears to be a new one.

Algorithm 3.6. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

un+1 = Jϕ

[
un − ρ

Tun+1 + Tun

2

]
, n = 0, 1, 2, . . . . (3.7)

This clearly shows that Algorithm 3.2 is a unified implicit method and includes the previously
known extragradient method of Korpelevič [5] and several new methods as special cases.

We now consider the convergence criteria of Algorithm 3.2 and this is the main
motivation of our next result.

Theorem 3.7. Let the operator T be partially relaxed strongly pseudomonotone with constant α > 0.
Then

‖u − un+1‖2 ≤ ‖u − un‖2 −
(
1 − 2λρα

)‖un − un+1‖2, (3.8)

where un+1 is the approximate solution, which is obtained from Algorithm 3.2.

Proof. Let u ∈ H be a solution of (2.1). Then, by using the pseudomonotonicity of T , we have

〈Tv, v − u〉 + ϕ(v) − ϕ(u) ≥ 0, ∀u, v ∈ H. (3.9)
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Taking v = un+1 in (3.9) and (2.1), we have

〈Tun+1, un+1 − u〉 + ϕ(un+1) − ϕ(u) ≥ 0,

〈Tu, un+1 − u〉 + ϕ(un+1) − ϕ(u) ≥ 0.
(3.10)

Using Lemma 2.2, we can rewrite (3.3) in the following equivalent form:

〈
(1 − λ)ρTun+1 + λρTun + un+1 − un, v − un+1

〉
+ ϕ(v) − ϕ(un+1) ≥ 0, ∀v ∈ H. (3.11)

Taking v = u in (3.11), we have

〈
(1 − λ)ρTun+1 + λρTun + un+1 − un, u − un+1

〉
+ ϕ(u) − ϕ(un+1) ≥ 0. (3.12)

Form (3.10) and (3.12), we have

〈un+1 − un, u − un+1〉 ≥ 〈
2(1 − λ)ρTun+1, un+1 − u

〉
+ 2λρ〈Tun − Tu, un+1 − u〉

≥ 2λρ〈Tun − Tu, un+1 − u〉.
(3.13)

Using the inequality 〈u, v〉 = ‖u − v‖2 − ‖u‖2 − ‖v‖2, for all u, v ∈ H, and partially relaxed
strongly monotonicity of the operator T , form (3.13), we obtain

‖u − un+1‖2 ≤ ‖u − un‖2 −
(
1 − 2λρα

)‖un − un+1‖2, (3.14)

which is the required (3.3).

Theorem 3.8. Let H be a finite dimensional space. If un+1 is the approximate solution obtained from
Algorithm 3.2, and let u ∈ H be a solution of problem (2.1). If 0 < ρ < 1/2αλ, then limn→∞un = u.

Proof. Let u ∈ H be a solution of (2.1). For 0 < ρ < 1/2αλ, we see that the sequence {‖u−un‖}
is nonincreasing and consequently {un}is bounded. Also from (3.8), we have

∞∑

n=0

(
1 − 2ρλα

)‖un+1 − un‖2 ≤ ‖u − u0‖2, (3.15)

which implies that

lim
n→∞

‖un+1 − un‖ = 0. (3.16)

Let û be the cluster point of {un} and the subsequence {unj} of this sequence converges to
û ∈ H. Replacing un by unj in (3.11) and taking the limit as nj → ∞ and using (3.16), we
have

〈Tû, v − û〉 + ϕ(v) − ϕ(û) ≥ 0, ∀v ∈ H, (3.17)
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which shows that û solves the mixed variational inequality (2.1) and

‖un+1 − û‖2 ≤ ‖un − û‖2. (3.18)

Thus, it follows from the above inequality that the sequence {un} has exactly one cluster point
and limn→∞un = û, the required result.

For a given λ ∈ [0, 1], we can rewrite (2.10) as:

u = Jϕ
[
(1 − λ)u + λu − ρTu

]
. (3.19)

We use this alternative equivalent fixed point formulation to suggest and analyze the
following iterative method for solving the mixed variational inequality (2.1) as.

Algorithm 3.9. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

un+1 = Jϕ
[
λ(un − un+1) + un+1 − ρTun+1

]
, n = 0, 1, 2, . . . . (3.20)

It is clear that Algorithm 3.9 is an implicit method. To implement Algorithm 3.9, we use the
predictor-corrector technique. We use Algorithm 3.1 as the predictor and Algorithm 3.9 as
the corrector. Consequently, we have the following predictor-corrector method for solving
the mixed variational inequalities (2.1).

Algorithm 3.10. For a given u0 ∈ H, find the approximate solution un+1 by the iterative
schemes

yn = Jϕ
[
un − ρTun

]
,

un+1 = Jϕ
[
λ
(
un − yn

)
+ yn − ρTyn

]
, n = 0, 1, 2, . . . .

(3.21)

Algorithm 3.10 is a new two-step implicit method for solving the mixed variational
inequality (2.1).

For λ = 1, Algorithm 3.9 collapses to the following algorithm.

Algorithm 3.11. For a given u0 ∈ H, find the approximate solution un+1 by the iterative
schemes

yn = Jϕ
[
un − ρTun

]
.

un+1 = Jϕ
[
un − ρTyn

]
, n = 0, 1, 2, . . . .

(3.22)

which is known as extraresolvent method and includes the extragradient method of
Korpelevič [5] as special case.

For λ = 0, Algorithm 3.9 reduces to the following algorithm.
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Algorithm 3.12. For a given u0 ∈ H, find the approximate solution un+1 by the iterative
schemes

yn = Jϕ
[
un − ρTun

]
,

un+1 = Jϕ
[
yn − ρTyn

]
, n = 0, 1, 2, . . . .

(3.23)

Algorithm 3.12 is called the modified extraresolvent method, which is mainly due to
Noor [8].

From the above discussion, it is clear that Algorithm 3.9 is a unified implicit resolvent
method for solving the mixed variational inequalities. Algorithm 3.9 includes several new
and previously known methods as special cases. Using the technique of Noor et al. [13], one
can easily consider the convergence analysis of Algorithm 3.9.

For a given λ ∈ [0, 1], one can rewrite (2.10) in the following form:

u = Jϕ
[
u − ρT((1 − λ)u + λu)

]
. (3.24)

This fixed point formulation enables us to suggest and analyze a class of iterative
methods for solving the mixed variational inequality (2.1).

Algorithm 3.13. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

un+1 = Jϕ
[
un − ρT((1 − λ)un+1 + λun)

]
, n = 0, 1, 2, . . . . (3.25)

For different choice of the parameter λ, we can obtain the extraresoalvent method and
Algorithm 3.1 as special cases. In particular, for λ = 1/2, we have the following iterative
method for solving the mixed variational inequality (2.1).

Algorithm 3.14. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

un+1 = Jϕ
[
un − ρT

(un+1 + un

2

)]
, n = 0, 1, 2, . . . . (3.26)

We remark that if T is a linear operator, then Algorithm 3.6 andAlgorithm 3.14 are equivalent.

Remark 3.15. We remark that if the function ϕ(·) is the indicator function of a closed and
convex set K, then Jϕ = (I + ρ∂ϕ)−1 ≡ PK, the projection of H onto the convex and closed set
K. Consequently, Algorithms 3.1–3.12 are reduced to the algorithms considered in [13].

4. Conclusion

In this paper, we have used the equivalence between the mixed variational inequality and
the fixed point problem to suggest and analyze some new proximal point methods for
solving themixed variational inequality.We have also shown that these new implicit methods
include the extraresolvent and the classical implicit resolvent methods as special cases.
We have also discussed the convergence criteria of the proposed new iterative methods
under some suitable conditions. We have also shown that this technique can be used to
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suggest several iterative methods for solving various classes of equilibrium and variational
inequalities problems. The technique of constructing various iterative methods is very simple
and contains a wealth of new ideas. The results proved in this paper can be extended for
the multivalued mixed quasi-variational inequalities and related optimization problems.
Comparison of these methods with other methods is an interesting problem for further
research.
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