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We study the generalized order-k Lucas sequences modulo m. Also, we define the ith generalized
order-k Lucas orbit li,{α1 ,α2 ,...,αk−1}

A (G) with respect to the generating set A and the constants α1, α2,
and αk−1 for a finite groupG = 〈A〉. Then, we obtain the lengths of the periods of the ith generalized
order-k Lucas orbits of the binary polyhedral groups 〈n, 2, 2〉, 〈2, n, 2〉, 〈2, 2, n〉 and the polyhedral
groups (n, 2, 2), (2, n, 2), (2, 2, n) for 1 ≤ i ≤ k.

1. Introduction

The well-known Fibonacci sequence {Fn} is defined as

F1 = F2 = 1, for n > 2, Fn = Fn−1 + Fn−2. (1.1)

We call Fn the nth Fibonacci number. The Fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . . (1.2)

Definition 1.1. Let f (k)
n denote the nth member of the k-step Fibonacci sequence defined as

f
(k)
n =

k∑

j=1

f
(k)
n−j for n > k (1.3)
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with boundary conditions f
(k)
i = 0 for 1 ≤ i < k and f

(k)
k = 1. Reducing this sequence by

modulus m, we can get a repeating sequence, which we denote by

f(k,m) =
(
f
(k,m)
1 , f

(k,m)
2 , . . . , f

(k,m)
n . . .

)
, (1.4)

where f
(k,m)
i = f

(k)
i (mod m). We then have that (f (k,m)

1 , f
(k,m)
2 , . . . , f

(k,m)
k ) = (0, 0, . . . 0, 1) and

it has the same recurrence relation as in (1.3) [1].

Theorem 1.2. f(k,m) is a periodic sequence [1].
Let hk(m) denote the smallest period of f(k,m), called the period of f(k,m) or the Wall

number of the k-step Fibonacci sequence modulo m. For more information see [1].

Definition 1.3. Let hk(a1,a2,...,ak)(m) denote the smallest period of the integer-valued recurrence
relation un = un−1 + un−2 + · · ·+un−k, u1 = a1, u2 = a2, . . . , uk = ak when each entry is reduced
modulo m [2].

Lemma 1.4. For a1, a2, . . . , ak, x1, x2, . . . , xk ∈ Z with m > 0, a1, a2, . . . , ak not all congruent to
zero modulo m and x1, x2, . . . , xk not all congruent to zero modulo m,

hk(a1,a2,...,ak)(m) = hk(x1,x2, ...,xk)(m), (1.5)

see [2].

In [3], Taşçı and Kılıç defined the k sequences of the generalized order-k Lucas
numbers as follows:

lin =
k∑

j=1

lin−j , (1.6)

for n > 0 and 1 ≤ i ≤ k, with boundary (initial) conditions

lin =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 if i = 2 − n,

−1 if i = 1 − n,

0 otherwise,

(1.7)

for 1 − k ≤ n ≤ 0, where lin is the nth term of the ith sequence. When i = 1 and k = 2, the
generalized order-k Lucas sequence reduces to the usual negative Fibonacci sequence, that
is, l1n = −Fn+1 for all n ∈ Z

+.
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In [3], it is obtained that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

lin+1

lin

lin−1
...

lin−k+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

lin

lin−1
lin−2
...

lin−k+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.8)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.9)

The Lucas sequence, the generalized Lucas sequence, and their properties have been studied
by several authors; see for example, [4–9]. The study of the Fibonacci sequences in groups
began with the earlier work of Wall [10]. Knox examined the k-nacci (k-step Fibonacci)
sequences in finite groups [11]. Karaduman and Aydin examined the periods of the 2-step
general Fibonacci sequences in dihedral groups Dn [12]. Lü and Wang contributed to the
study of the Wall number for the k-step Fibonacci sequence [1]. C. M. Campbell and P.
P. Campbell examined the behaviour of the Fibonacci lengths of finite binary polyhedral
groups [13]. Also, Deveci et al. obtained the periods of the k-nacci sequences in finite binary
polyhedral groups [14]. Now, we extend the concept to k sequences of the generalized
order-k Lucas numbers and we examine the periods of the ith generalized order-k Lucas
orbits of the binary polyhedral groups 〈n, 2, 2〉, 〈2, n, 2〉, 〈2, 2, n〉 and the polyhedral groups
(n, 2, 2), (2, n, 2), (2, 2, n) for 1 ≤ i ≤ k.

In this paper, the usual notation p is used for a prime number.

2. Main Results and Proofs

Reducing the k sequences of the generalized order-k Lucas numbers by modulus m, we can
get a repeating sequence denoted by

l(i,m) =
(
. . . , l

(i,m)
1 , l

(i,m)
2 , . . . , l

(i,m)
n , . . .

)
for n > 0, 1 ≤ i ≤ k, (2.1)

where l(i,m)
n = lin(mod m). It has the same recurrence relation as that in (1.6).
Let the notation hlik(m) denote the smallest period of l(i,m). It is easy to see from

Lemma 1.4 that hk(m) = hlik(m).
For a given matrix M = [bij] with bij ’s being integers, M(modm) means

that every entry of M is reduced modulo m, that is, M(modm) = (bij(modm)).
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Let 〈A〉pα = {Ai(mod pα) | i ≥ 0} be a cyclic group, and let |〈A〉pα | denote the order of
〈A〉pα . Then, we have the following.

Theorem 2.1. hk(pα) = |〈A〉pα |.

Proof. It is clear that |〈A〉pα | is divisible by hk(pα). Then we need only to prove that hk(pα)is
divisible by |〈A〉pα |. Let hk(pα) = λ. Then we have

Aλ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1k

a21 a22 · · · a2k

...
...

. . .
...

ak1 ak2 · · · akk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.2)

By mathematical induction it is easy to prove that the elements of the matrix Aλ are in the
following forms:

a11=f
(k)
λ+k, a12=f

(k)
λ+k−1+· · ·+f

(k)
λ+1, a13=f

(k)
λ+k−1+· · ·+f

(k)
λ+2, . . . , a1k−1=f

(k)
λ+k−1+f

(k)
λ+k−2, a1k =f

(k)
λ+k−1,

a21=f
(k)
λ+k−1, a22=f

(k)
λ+k−2+· · ·+f

(k)
λ , a23=f

(k)
λ+k−2+· · ·+f

(k)
λ+1, . . . , a1k−1=f

(k)
λ+k−2+f

(k)
λ+k−3, a2k =f

(k)
λ+k−2,

...
...

...
...

...

ak1=f
(k)
λ+1, ak2=f

(k)
λ +· · ·+f (k)

λ−k+2, ak3=f
(k)
λ +· · ·+f (k)

λ−k+3, . . . , akk−1=f
(k)
λ +f (k)

λ−1, akk =f
(k)
λ .

(2.3)

We thus obtain that

aii ≡ 1
(
mod pα

)
for 1 ≤ i ≤ k,

aij ≡ 0
(
mod pα

)
for 1 ≤ i, j ≤ k such that i /= j.

(2.4)

So we get that Aλ ≡ I(mod pα), which yields that n is divisible by |〈A〉pα |. We are done.

Definition 2.2. Let G be a finitely generated group G = 〈A〉, where A = {a1, a2, . . . , ak} and
1 ≤ i ≤ k. The sequence

x0 = (a1)α1
, x1 = (a2)α2

, . . . , xk−2 = (ak−1)αk−1 , (2.5)

where

(au)αu
=

⎧
⎪⎨

⎪⎩

aua
li
u−k
k

if αu = 1,

a
li
u−k
k

au if αu = 2
(2.6)
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such that 1 ≤ u ≤ k − 1 and 1 ≤ αu ≤ 2, xk−1 = a
li0
k , xk+β =

∏k
j=1xβ+j−1 for β ≥ 0, is called

the ith generalized order-k Lucas orbit of G with respect to the generating set A and the
α1, α2, . . . , αk−1 constants, denoted by l

i,{α1,α2,...,αk−1}
A (G).

Example 2.3. The 3 rd generalized order-4 Lucas orbits l
3,{1,1,1}
{a1,a2,a3,a4}(G), l

3,{1,2,1}
{a1,a2,a3,a4}(G),

l
3,{1,1,2}
{a1,a2,a3,a4}(G), l3,{1,2,2}{a1,a2,a3,a4}(G), l3,{2,1,1}{a1,a2,a3,a4}(G), l3,{2,2,1}{a1,a2,a3,a4}(G), l

3,{2,1,2}
{a1,a2,a3,a4}(G), and l

3,{2,2,2}
{a1,a2,a3,a4}(G) of

the finitely generated group G = 〈A〉, where A = {a1, a2, a3, a4}, respectively, are as follows:

x0 = a1a
l3−3
4 = a1, x1 = a2a

l3−2
4 = a2a

−1
4 , x2 = a3a

l3−1
4 = a3a

2
4, x3 = a

l30
4 = e, x4+β =

4∏

j=1

xβ+j−1

(
β ≥ 0

)
,

x0 = a1a
l3−3
4 = a1, x1 = a

l3−2
4 a2 = a−1

4 a2, x2 = a3a
l3−1
4 = a3a

2
4, x3 = a

l30
4 = e, x4+β =

4∏

j=1

xβ+j−1

(
β ≥ 0

)
,

x0 = a1a
l3−3
4 = a1, x1 = a2a

l3−2
4 = a2a

−1
4 , x2 = a

l3−1
4 a3 = a2

4a3, x3 = a
l30
4 = e, x4+β =

4∏

j=1

xβ+j−1

(
β ≥ 0

)
,

x0 = a1a
l3−3
4 = a1, x1 = a

l3−2
4 a2 = a−1

4 a2, x2 = a
l3−1
4 a3 = a2

4a3, x3 = a
l30
4 = e, x4+β =

4∏

j=1

xβ+j−1

(
β ≥ 0

)
,

x0 = a
l3−3
4 a1 = a1, x1 = a2a

l3−2
4 = a2a

−1
4 , x2 = a3a

l3−1
4 = a3a

2
4, x3 = a

l30
4 = e, x4+β =

4∏

j=1

xβ+j−1

(
β ≥ 0

)
,

x0 = a
l3−3
4 a1 = a1, x1 = a

l3−2
4 a2 = a−1

4 a2, x2 = a3a
l3−1
4 = a3a

2
4, x3 = a

l30
4 = e, x4+β =

4∏

j=1

xβ+j−1

(
β ≥ 0

)
,

x0 = a
l3−3
4 a1 = a1, x1 = a2a

l3−2
4 = a2a

−1
4 , x2 = a

l3−1
4 a3 = a2

4a3, x3 = a
l30
4 = e, x4+β =

4∏

j=1

xβ+j−1

(
β ≥ 0

)
,

x0 = a
l3−3
4 a1 = a1, x1 = a

l3−2
4 a2 = a−1

4 a2, x2 = a
l3−1
4 a3 = a2

4a3, x3 = a
l30
4 = e, x4+β =

4∏

j=1

xβ+j−1

(
β ≥ 0

)
.

(2.7)
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It is well known that a sequence of group elements is periodic if, after a certain point, it
consists only of repetitions of a fixed subsequence. The number of elements in the repeating
subsequence is the period of the sequence.

Theorem 2.4. The ith generalized order-k Lucas orbits in a finite group are periodic.

Proof. The proof is similar to the proof of Theorem 1 in [10] and is omitted.

We denote the length of the period of the sequence l
i,{α1,α2,...,αk−1}
A (G) by

LENAl
i,{α1,α2,...,αk−1}(G) and call it the ith generalized order-k Lucas length of G with respect

to the generating set A and the constants α1, α2, . . . , αk−1.
From the definition it is clear that the ith generalized order-k Lucas length of a group

depends on the chosen generating set and the order in which the assignments of x0, x1, . . . xn−1
are made.

We will now address the ith generalized order-k Lucas lengths in specific classes of
groups.

The binary polyhedral group 〈l,m, n〉, for l,m, n > 1, is defined by the presentation

〈
x, y, z | xl = ym = zn = xyz

〉
(2.8)

or

〈
x, y | xl = ym =

(
xy

)n〉
. (2.9)

The binary polyhedral group 〈l,m, n〉 is finite if, and only if, the number k = lmn(1/l+1/m+
1/n − 1) = mn + nl + lm − lmn is positive. Its order is 4lmn/k.

For more information on these groups, see [15, pages 68–71].
The polyhedral group (l,m, n), for l,m, n > 1, is defined by the presentation

〈
x, y, z | xl = ym = zn = xyz = e

〉
(2.10)

or

〈
x, y | xl = ym =

(
xy

)n = e
〉
. (2.11)

The polyhedral group (l,m, n) is finite if, and only if, the number k = lmn(1/l+1/m+1/n−1) =
mn + nl + lm − lmn is positive. Its order is 2lmn/k.

For more information on these groups, see [15, pages 67-68].

Theorem 2.5. The ith generalized order-3 Lucas lengths of the binary polyhedral group 〈n, 2, 2〉 for
every i integer such that 1 ≤ i ≤ 3 and the generating triple {x, y, z} are as follows:

(i) LEN{x,y,z}l1,{α1,α2}(〈n, 2, 2〉) = 8 for 1 ≤ α1, α2 ≤ 2,

(ii) LEN{x,y,z}l2,{α1,α2}(〈n, 2, 2〉) = h3(2n) for 1 ≤ α1, α2 ≤ 2,
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(iii) (1) LEN{x,y,z}l3,{1,1}(〈n, 2, 2〉) = LEN{x,y,z}l3,{1,2}(〈n, 2, 2〉) = 8,
(2) LEN{x,y,z}l3,{2,1}(〈n, 2, 2〉) = LEN{x,y,z}l3,{2,2}(〈n, 2, 2〉) = 4n if n is even, 8n if n is

odd.

Proof. We prove the result by direct calculation. We first note that in the group defined by
〈x, y, z | xn = y2 = z2 = xyz〉, |x| = 2n (where |x| means the order of x), |y| = 4, |z| = 4,
x = zy3, y = x−1z, and z = xy.

(i) The 1st generalized order-3 Lucas orbits of the group 〈n, 2, 2〉 for generating triple
{x, y, z} and every constant α1, α2 such that 1 ≤ α1, α2 ≤ 2 are the same and are as follows:

x0 = x, x1 = y, x2 = z−1, x3 = e, x4 = yz−1, x5 = xz−1, x6 = z−1,

x7 = xn, x8 = x, x9 = y, x10 = z−1, . . . .
(2.12)

Since the elements succeeding x8, x9, and x10 depend on x, y, and z−1 for their values,
the cycle is again the 8th element; that is, x0 = x8, x1 = x9, x2 = x10, . . .. Thus,
LEN{x,y,z}l1,{α1,α2}(〈n, 2, 2〉) = 8 for 1 ≤ α1, α2 ≤ 2.

(ii) Firstly, let us consider the orbits l
2,{1,1}
{x,y,z}(〈n, 2, 2〉) and l

2,{2,1}
{x,y,z}(〈n, 2, 2〉). The orbits

l
2,{1,1}
{x,y,z}(〈n, 2, 2〉) and l

2,{2,1}
{x,y,z}(〈n, 2, 2〉) are the same and are as follows:

x0 = x, x1 = x−1, x2 = z2, x3 = z2, x4 = x−1, x5 = x−1, x6 = x−2z2,

x7 = x−4z2, x8 = x−7, x9 = x−13, x10 = x−24z2, x11 = x−44z2, . . . .
(2.13)

For m > 3 we can see that the sequence will separate into some natural layers and each layer
will be of the form

xm =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xum if m ≡ 0(mod 4),

xum if m ≡ 1(mod 4),

xumz2 if m ≡ 2(mod 4),

xumz2 if m ≡ 3(mod 4),

(2.14)

where

um = um−3 + um−2 + um−1, u0 = 1, u1 = −1, u2 = 0. (2.15)

Now the proof is finished when we note that the sequence will repeat when xh3(2n) =
x, xh3(2n)+1 = x−1, and xh3(2n)+2 = z2, where h3(2n) is the 3-step Wall number of the
positive integer 2n and h3(2n) = 4μ (μ ∈ N). Letting L = LEN{x,y,z}l2,{1,1}(〈n, 2, 2〉) =
LEN{x,y,z}l2,{2,1}(〈n, 2, 2〉), we have

xL = xuL , xL+1 = xuL+1 , xL+2 = xuL+2z2. (2.16)
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Using Lemma 1.4, we obtain uL = u0 = 1, uL+1 = u1 = −1, and uL+2 = u2 = 0. In this case the
above equalities give

xL = xuL = x, xL+1 = xuL+1 = x−1, xL+2 = xuL+2z2 = x0z2 = z2. (2.17)

The smallest nontrivial integer satisfying the above conditions occurs when the period is
h3(2n).

Secondly, let us consider the orbits l
2,{1,2}
{x,y,z}(〈n, 2, 2〉) and l

2,{2,2}
{x,y,z}(〈n, 2, 2〉). The orbits

l
2,{1,2}
{x,y,z}(〈n, 2, 2〉) and l

2,{2,2}
{x,y,z}(〈n, 2, 2〉) are the same and are as follows:

x0 = x, x1 = x, x2 = z2, x3 = x2z2, x4 = x3, x5 = x5, x6 = x10z2,

x7 = x18z2, x8 = x33, x9 = x61, x10 = x112z2, x11 = x206z2, . . . .

(2.18)

For m > 3 we can see that the sequence will separate into some natural layers and each layer
will be of the form

xm =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xvm if m ≡ 0(mod 4),

xvm if m ≡ 1(mod 4),

xvmz2 if m ≡ 2(mod 4),

xvmz2 if m ≡ 3(mod 4),

(2.19)

where

vm = vm−3 + vm−2 + vm−1, v0 = 1, v1 = 1, v2 = 0. (2.20)

Now the proof is finished when we note that the sequence will repeat when xh3(2n) =
x, xh3(2n)+1 = x and xh3(2n)+2 = z2. Letting L = LEN{x,y,z}l2,{1,2}(〈n, 2, 2〉) =
LEN{x,y,z}l2,{2,2}(〈n, 2, 2〉), we have

xL = xvL , xL+1 = xvL+1 , xL+2 = xvL+2z2. (2.21)

Using Lemma 1.4, we obtain vL = v0 = 1, vL+1 = v1 = 1, and vL+2 = v2 = 0. In this case the
above equalities give

xL = xvL = x, xL+1 = xvL+1 = x, xL+2 = xvL+2z2 = x0z2 = z2. (2.22)

The smallest nontrivial integer satisfying the above conditions occurs when the period is
h3(2n).
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(iii) (1) The orbits l3,{1,1}{x,y,z}(〈n, 2, 2〉) and l
3,{1,2}
{x,y,z}(〈n, 2, 2〉) are the same and are as follows:

x0 = xz−1, x1 = y3, x2 = e, x3 = xn+2, x4 = yx2,

x5 = y3, x6 = xn, x7 = xn−2, x8 = xz−1, x9 = y3, x10 = e, . . . .
(2.23)

So, we get LEN{x,y,z}l3,{1,1}(〈n, 2, 2〉) = LEN{x,y,z}l3,{1,2}(〈n, 2, 2〉) = 8.

(2) The orbits l3,{2,1}{x,y,z}(〈n, 2, 2〉) and l
3,{2,2}
{x,y,z}(〈n, 2, 2〉) are the same and are as follows:

x0 = y3, x1 = xn+1, x2 = e, x3 = yx, x4 = x−1, x5 = x−2, x6 = y3x−3,

x7 = x−3yx−3, x8 = y3, x9 = xn+1, x10 = x4, x11 = yx5, x12 = y3,

x13 = x−1, x14 = x−6, x15 = y3x−7, x16 = y3, x17 = xn+1, x18 = x8, . . . .

(2.24)

The sequence can be said to form layers of length eight. Using the above, the
sequence becomes

x0 = y3, x1 = xn+1, x2 = e, . . . ,

x8 = y3, x9 = xn+1, x10 = x4, . . . ,

x16 = y3, x17 = xn+1, x18 = x8, . . . ,

x8i = y3, x8i+1 = xn+1, x8i+2 = x4i, . . . .

(2.25)

So we need the smallest i ∈ N such that 4i = 2nk for k ∈ N.

If n is even, then i = n/2. Thus, 8i = 4n and LEN{x,y,z}l3,{2,1}(〈n, 2, 2〉) =
LEN{x,y,z}l3,{2,2}(〈n, 2, 2〉) = 4n.

If n is odd, then i = n. Thus, 8i = 8n and LEN{x,y,z}l3,{2,1}(〈n, 2, 2〉) =
LEN{x,y,z}l3,{2,2}(〈n, 2, 2〉) = 8n.

Theorem 2.6. The ith generalized order-2 Lucas lengths of the binary polyhedral group 〈n, 2, 2〉 for
every i such that 1 ≤ i ≤ 2 and the generating pair {x, y} are 6.

Proof. We prove the result by direct calculation. We first note that in the group defined by

〈
x, y | xn = y2 =

(
xy

)2〉
, |x| = 2n,

∣∣y
∣∣ = 4, xy = yx−1, yx = x−1y. (2.26)

Firstly, let us consider the orbits l1,{1}{x,y}(〈n, 2, 2〉) and l
1,{2}
{x,y}(〈n, 2, 2〉). The orbits l1,{1}{x,y}(〈n, 2, 2〉)

and l
1,{2}
{x,y}(〈n, 2, 2〉) are the same and are as follows:

x0 = x, x1 = y−1, x2 = xy−1, x3 = xn−1, x4 = x2y, x5 = y−1x−1, x6 = x, x7 = y−1, . . . . (2.27)

So, we get LEN{x,y}l1,{1}(〈n, 2, 2〉) = LEN{x,y}l1,{2}(〈n, 2, 2〉) = 6.
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Secondly, let us consider the orbit l2, {1}{x,y} (〈n, 2, 2〉). The orbit l
2, {1}
{x,y} (〈n, 2, 2〉) is as follows:

x0 = xy−1, x1 = xn, x2 = xy, x3 = xy−1, x4 = e, x5 = xy−1, x6 = xy−1, x7 = xn, . . . . (2.28)

So, we get LEN{x,y}l2,{1}(〈n, 2, 2〉) = 6.
Thirdly, let us consider the orbit l2,{2}{x,y}(〈n, 2, 2〉). The orbit l

2,{2}
{x,y}(〈n, 2, 2〉) is as follows:

x0 = y−1x, x1 = xn, x2 = yx, x3 = y−1x, x4 = e, x5 = y−1x, x6 = y−1x, x7 = xn, . . . . (2.29)

So, we get LEN{x,y}l2,{2}(〈n, 2, 2〉) = 6.

Theorem 2.7. The ith generalized order-3 Lucas lengths of the binary polyhedral group 〈2, n, 2〉 for
every i integer such that 1 ≤ i ≤ 3 and the generating triple {x, y, z} are as follows:

(i) LEN{x,y,z}l1,{α1,α2}〈2, n, 2〉 = 8 for 1 ≤ α1, α2 ≤ 2,

(ii) LEN{x,y,z}l2,{α1,α2}〈2, n, 2〉 = 8 for 1 ≤ α1, α2 ≤ 2,

(iii) LEN{x,y,z}l3,{α1,α2}〈2, n, 2〉 = h3(2n) for 1 ≤ α1, α2 ≤ 2.

Proof. The proof is similar to the proof of Theorem 2.5 and is omitted.

Theorem 2.8. The ith generalized order-2 Lucas lengths of the binary polyhedral group 〈2, n, 2〉 for
every i such that 1 ≤ i ≤ 2 and the generating pair {x, y} are 6.

Proof. The proof is similar to the proof of Theorem 2.6 and is omitted.

Theorem 2.9. The ith generalized order-3 Lucas lengths of the binary polyhedral group 〈2, 2, n〉 for
every i integer such that 1 ≤ i ≤ 3 and the generating triple {x, y, z} are as follows:

(i)

LEN{x,y,z}l1,{α1,α2}(〈2, 2, n〉) =
⎧
⎨

⎩

4n if n is even,

8n if n is odd
for 1 ≤ α1, α2 ≤ 2, (2.30)

(ii)

LEN{x,y,z}l2,{α1,α2}(〈2, 2, n〉) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2n if n ≡ 0 mod 4,

4n if n ≡ 2 mod 4,

8n otherwise

for 1 ≤ α1, α2 ≤ 2, (2.31)

(iii)

LEN{x,y,z}l3,{α1,α2}(〈2, 2, n〉) = 8 for 1 ≤ α1, α2 ≤ 2 (2.32)
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Proof. We prove the result by direct calculation. We first note that in the group defined by
〈x, y, z | x2 = y2 = zn = xyz〉, |x| = 4, |y| = 4, |z| = 2n, x = yz, y = xz−1 and z = yx−1.

(i) the 1st generalized order-3 Lucas orbits of the group 〈2, 2, n〉 for generating triple
{x, y, z} and every constant α1, α2 such that 1 ≤ α1, α2 ≤ 2 are the same and are as follows:

x0 = x, x1 = y, x2 = z−1, x3 = yz2y, x4 = y2z3y, x5 = y, x6 = y2z,

x7 = y2z4, x8 = xz4, x9 = y, x10 = z−1, x11 = yz6y, x12 = y2z7y,

x13 = y, x14 = y2z, x15 = y2z8, x16 = xz8, x17 = y, x18 = z−1, . . . .

(2.33)

The sequence can be said to form layers of length eight. Using the above, the sequence
becomes

x0 = x, x1 = y, x2 = z−1, . . . ,

x8 = xz4, x9 = y, x10 = z−1, . . . ,

x16 = xz8, x17 = y, x18 = z−1, . . . ,

x8i = xz4i, x8i+1 = y, x8i+2 = z−1, . . . .

(2.34)

So, we need the smallest i ∈ N such that 4i = 2nk for k ∈ N.
If n is even, then i = n/2. Thus, 8i = 4n and LEN{x,y,z}l1,{α1,α2}(〈2, 2, n〉) = 4n for

1 ≤ α1, α2 ≤ 2.
If n is odd, then i = n. Thus, 8i = 8n and LEN{x,y,z}l1,{α1,α2}(〈2, 2, n〉) = 8n for 1 ≤

α1, α2 ≤ 2.
(ii) The orbits l2,{1,1}{x,y,z}(〈2, 2, n〉) and l

2,{2,1}
{x,y,z}(〈2, 2, n〉) are the same and are as follows:

x0 = x, x1 = yz−1, x2 = z2, x3 = zn, x4 = xzn, x5 = z2x, x6 = xz2x,

x7 = xz4x, x8 = z8x, x9 = yz−1, x10 = z2, x11 = zn+8, x12 = xzn+8,

x13 = z2x, x14 = xz2x, x15 = xz12x, x16 = z16x, x17 = yz−1, x18 = z2, . . . .

(2.35)

The sequence can be said to form layers of length eight. Using the above, the sequence
becomes

x0 = x, x1 = yz−1, x2 = z2, . . . ,

x8 = z8x, x9 = yz−1, x10 = z2, . . . ,

x16 = z16x, x17 = yz−1, x18 = z2, . . . ,

x8i = z8ix, x8i+1 = yz−1, x8i+2 = z2, . . . .

(2.36)

So, we need the smallest i ∈ N such that 4i = 2nk for k ∈ N.
If n ≡ 0 mod 4, then i = n/4. Thus, 8i = 2n and LEN{x,y,z}l2,{1,1}(〈2, 2, n〉) =

LEN{x,y,z}l2,{1,1}(〈2, 2, n〉) = 2n.
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If n ≡ 2 mod 4, then i = n/2. Thus, 8i = 4n and LEN{x,y,z}l2,{1,1}(〈2, 2, n〉) =
LEN{x,y,z}l2,{1,1}(〈2, 2, n〉) = 4n.

If n ≡ 1 mod 4 or n ≡ 3 mod 4, then i = n. Thus, 8i = 8n and
LEN{x,y,z}l2,{1,1}(〈2, 2, n〉) = LEN{x,y,z}l2,{1,1}(〈2, 2, n〉) = 8n.

The orbits l2,{1,1}{x,y,z}(〈2, 2, n〉) and l
2,{2,1}
{x,y,z}(〈2, 2, n〉) are the same. The proofs for these orbits

are similar to the above and are omitted.
(iii) The orbits l3,{1,1}(〈2, 2, n〉), l3,{1,2}(〈2, 2, n〉), l3,{2,1}(〈2, 2, n〉), and l3,{2,2}(〈2, 2, n〉),

respectively, are as follows:

x0 = y, x1 = xz, x2 = e, x3 = zn+2, x4 = xzn+3, x5 = xz,

x6 = zn, x7 = xz2x, x8 = y, x9 = xz, x10 = e, . . . ,

x0 = y, x1 = z2y, x2 = e, x3 = xzy, x4 = z4y3, x5 = z2y,

x6 = zn, x7 = zn+2, x8 = y, x9 = z2y, x10 = e, . . . ,

x0 = xz, x1 = xz, x2 = e, x3 = zn, x4 = xzn+1, x5 = xz,

x6 = zn, x7 = zn, x8 = xz, x9 = xz, x10 = e, . . . ,

x0 = xz, x1 = z2y, x2 = e, x3 = yz4y, x4 = zn+6y, x5 = z2y,

x6 = zn, x7 = zn+4, x8 = xz, x9 = z2y, x10 = e, . . . ,

(2.37)

which have period 8.

Theorem 2.10. The ith generalized order-2 Lucas lengths of the binary polyhedral group 〈2, 2, n〉 for
every i integer such that 1 ≤ i ≤ 2 and the generating triple {x, y} are as follows:

(i) LEN{x,y}l1,{1}(〈2, 2, n〉) = LEN{x,y}l1 {2}(〈2, 2, n〉) = 6,

(ii) LEN{x,y}l2,{1}(〈2, 2, n〉) = LEN{x,y}l2,{2}(〈2, 2, n〉) = h2(2n).

Proof. We prove the result by direct calculation. We first note that in the group defined by
〈x, y | x2 = y2 = (xy)n〉, |x| = 4, |y| = 4, and |xy| = 2n.

(i) The orbits l1,{1}{x,y}(〈2, 2, n〉) and l
1,{2}
{x,y}(〈2, 2, n〉) are the same and are as follows:

x0 = x, x1 = y3, x2 = xy3, x3 = yxy, x4 = y3, x5 = yx, x6 = x, x7 = y3, . . . , (2.38)

which have period 6.

(ii) The orbits l2,{1}{x,y}(〈2, 2, n〉) and l
2,{2}
{x,y}(〈2, 2, n〉) are the same and are as follows:

x0 =
(
xy

)n−1
, x1 =

(
xy

)n
, . . . . (2.39)

We consider the recurrence relation defined by the following:

um = um−2 + um−1, u0 = n − 1, u1 = n. (2.40)
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Then a routine induction shows that xm = (xy)um . Using Lemma 1.4, we obtain uL = u0 = n−1
and uL+1 = u1 = n. In this case the equalities xm = (xy)um give

xL =
(
xy

)uL =
(
xy

)n−1
, xL+1 =

(
xy

)uL+1 =
(
xy

)n
. (2.41)

The smallest nontrivial integer satisfying the above conditions occurs when the period is
h2(2n).

Theorem 2.11. The ith generalized order-3 Lucas lengths of the polyhedral group (n, 2, 2) for every i
integer such that 1 ≤ i ≤ 3 and the generating triple {x, y, z} are as follows:

(i) LEN{x,y,z}l1,{α1,α2}((n, 2, 2)) = 6 for 1 ≤ α1, α2 ≤ 2,

(ii) LEN{x,y,z}l2,{α1,α2}((n, 2, 2)) = h3(n) for 1 ≤ α1, α2 ≤ 2,

(iii) (1) LEN{x,y,z}l3,{1,1}((n, 2, 2)) = LEN{x,y,z}l3,{1,2}((n, 2, 2)) = 8,
(2) LEN{x,y,z}l3,{2,1}((n, 2, 2)) = LEN{x,y,z}l3,{2,2}((n, 2, 2)) = 4.

Proof. (i)We follow the proof given in [13].
The proofs of (ii) and (iii) are similar to the proofs of Theorem 2.5(ii) and 2.5(iii) and

are omitted.

Theorem 2.12. The ith generalized order-2 Lucas lengths of the polyhedral group (n, 2, 2) for every i
integer such that 1 ≤ i ≤ 2 and the generating triple {x, y} are as follows:

(i) LEN{x,y}l1,{1}((n, 2, 2)) = LEN{x,y}l1,{2}((n, 2, 2)) = 6,

(ii) LEN{x,y}l2,{1}((n, 2, 2)) = LEN{x,y}l2,{2}((n, 2, 2)) = 3.

Proof. (i) The orbits l1,{1}((n, 2, 2)) and l1,{2}((n, 2, 2)) are the natural extension of the result of
dihedral groups given in [16].

(ii) The orbits l2,{1}{x,y}((n, 2, 2)) and l
2,{2}
{x,y}((n, 2, 2)), respectively, are as follows:

x0 = xy, x1 = e, x2 = xy, x3 = xy, x4 = e, . . . ,

x0 = yx, x1 = e, x2 = yx, x3 = yx, x4 = e, . . . ,
(2.42)

which have period 3.

Theorem 2.13. The ith generalized order-3 Lucas lengths of the polyhedral group (2, n, 2) for every i
integer such that 1 ≤ i ≤ 3 and the generating triple {x, y, z} are as follows:

(i) LEN{x,y,z}l1,{α1,α2}((2, n, 2)) = 6 for 1 ≤ α1, α2 ≤ 2,

(ii) (1) LEN{x,y,z}l2,{1,1}((2, n, 2)) = LEN{x,y,z}l2,{2,1}((2, n, 2)) = 4,
(2) LEN{x,y,z}l2,{1,2}((2, n, 2)) = LEN{x,y,z}l2,{2,2}((2, n, 2)) = 8,

(iii) LEN{x,y,z}l3,{α1,α2}((2, n, 2)) = h3(n) for 1 ≤ α1, α2 ≤ 2.

Proof. (i)We follow the proof given in [13].
The proofs of (ii) and (iii) are similar to the proofs of Theorem 2.5(ii) and 2.5(iii) and

are omitted.
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Theorem 2.14. The ith generalized order-2 Lucas lengths of the polyhedral group (2, n, 2) for every i
such that 1 ≤ i ≤ 2 and the generating pair {x, y} are 6.

Proof. The proof is similar to the proof of Theorem 2.6 and is omitted.

Theorem 2.15. The ith generalized order-3 Lucas lengths of the polyhedral group (2, 2, n) for every i
integer such that 1 ≤ i ≤ 3 and the generating triple {x, y, z} are as follows:

(i)

LEN{x,y,z}l1,{α1,α2}(2, 2, n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2n if n ≡ 0 mod 4,

4n if n ≡ 2 mod 4,

8n otherwise,

for 1 ≤ α1, α2 ≤ 2 (2.43)

(ii)

LEN{x,y,z}l2,{α1,α2}((2, 2, n)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n if n ≡ 0 mod 8,

2n if n ≡ 4 mod 8,

4n if n ≡ 2 mod 8,
8n otherwise,

for 1 ≤ α1, α2 ≤ 2 (2.44)

(iii) (1)

LEN{x,y,z}l3,{1,1}((2, 2, n)) = LEN{x,y,z}l3,{1,2}((2, 2, n))

= LEN{x,y,z}l3,{2,2}((2, 2, n)) = 8,
(2.45)

(2)

LEN{x,y,z}l3,{2,1}((2, 2, n)) = 4. (2.46)

Proof. The proof is similar to the proof of Theorem 2.9 and is omitted.

Theorem 2.16. The ith generalized order-2 Lucas lengths of the polyhedral group (2, 2, n) for every i
integer such that 1 ≤ i ≤ 2 and the generating triple {x, y} are as follows:

(i) LEN{x,y}l1,{1}((2, 2, n)) = LEN{x,y}l1,{2}((2, 2, n)) = 6,

(ii) LEN{x,y}l2,{1}((2, 2, n)) = LEN{x,y}l2,{2}((2, 2, n)) = h2(n).

Proof. (i) The orbits l1,{1}((2, 2, n)) and l1,{2}((2, 2, n)) are the natural extension of the result of
dihedral groups given in [16].

(ii) The proof is similar to the proof of Theorem 2.10(ii) and is omitted.
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