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We will prove the stability of the functional equation 2f(
∑n

i=1 xi) +
∑

1≤i,j≤n,i /= j f(xi − xj) = (n +
1)
∑n

i=1 f(xi) + (n − 1)
∑n

i=1 f(−xi) in non-Archimedean normed spaces.

1. Introduction

A classical question in the theory of functional equations is “when is it true that a function,
which approximately satisfies a functional equation, must be somehow close to an exact
solution of the equation?” Such a problem, called a stability problem of the functional equation,
was formulated by Ulam in 1940 (see [1]). In the following year, Hyers [2] gave a partial
solution of Ulam’s problem for the case of approximate additive functions. Subsequently,
his result was generalized by Aoki [3] for additive functions and by Rassias [4] for linear
functions. Indeed, they considered the stability problem for unbounded Cauchy differences.
During the last decades, the stability problems of functional equations have been extensively
investigated by a number of mathematicians (see [5–23]).

A non-Archimedean field is a field K equipped with a function (valuation) | · | : K →
[0,∞) such that
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(F1) |r| = 0 if and only if r = 0;

(F2) |rs| = |r||s|;
(F3) |r + s| ≤ max{|r|, |s|} for all r, s ∈ K.

Clearly, it holds that |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N.
Let X be a vector space over a scalar field K with a non-Archimedean and nontrivial

valuation | · |. A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it satisfies
the following conditions:

(N1) ‖x‖ = 0 if and only if x = 0;

(N2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;

(N3) ‖x + y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ X.

Then (X, ‖ · ‖) is called a non-Archimedean space. Due to the fact that

‖xn − xm‖ ≤ max
m≤i<n

‖xi+1 − xi‖ (n > m), (1.1)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-Archimedean
space. A complete non-Archimedean space is a non-Archimedean space in which every
Cauchy sequence is convergent.

Recently, Moslehian and Rassias [24] proved the Hyers-Ulam stability of the Cauchy
functional equation

f
(
x + y

)
= f(x) + f

(
y
)
, (1.2)

and the quadratic functional equation

f
(
x + y

)
+ f
(
x − y

)
= 2f(x) + 2f

(
y
)

(1.3)

in non-Archimedean normed spaces.
We now consider the n-dimensional mixed-type quadratic and additive functional equation

2f

(
n∑

i=1

xi

)

+
∑

1≤i,j≤n,i /= j

f
(
xi − xj

)
= (n + 1)

n∑

i=1

f(xi) + (n − 1)
n∑

i=1

f(−xi), (1.4)

whose solution is called a quadratic-additive function.
In 2009, Towanlong and Nakmahachalasint [25] obtained a stability result for the

functional equation (1.4), in which they constructed a quadratic-additive function F by
composing an additive function A and a quadratic function Q, where A and Q approximate
the odd part and the even part of the given function f , respectively.

In this paper, we investigate a general stability problem for the n-dimensional mixed-
type quadratic and additive functional equation (1.4) in non-Archimedean normed spaces.
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2. Solutions of (1.4)

In this section, we prove the generalized Hyers-Ulam stability of the n-dimensional mixed-
type quadratic and additive functional equation (1.4). Assume that H is an additive group
and X is a complete non-Archimedean space.

For a given function f : H → X, we use the abbreviations

fe(x) :=
f(x) + f(−x)

2
,

fo(x) :=
f(x) − f(−x)

2
,

Af
(
x, y
)
:= f
(
x + y

) − f(x) − f
(
y
)
,

Qf
(
x, y
)
:= f
(
x + y

)
+ f
(
x − y

) − 2f(x) − 2f
(
y
)
,

Dnf(x1, x2, . . . , xn) := 2f

(
n∑

i=1

xi

)

+
∑

1≤i,j≤n,i /= j

f
(
xi − xj

)

− (n + 1)
n∑

i=1

f(xi) − (n − 1)
n∑

i=1

f(−xi)

(2.1)

for all x, y, x1, x2, . . . , xn ∈ H and for an arbitrarily fixed n ∈ N.

Theorem 2.1. Assume that n ≥ 2 is an integer. Let H and X be an additive group and a complete
non-Archimedean space, respectively. A function f : H → X is a solution of (1.4) if and only if fe is
quadratic, fo is additive, and fe(0) = 0.

Proof. If a function f : H → X is a solution of (1.4), then we have fe(0) = 0,

Qfe
(
x, y
)
= fe
(
x + y

)
+ fe
(
x − y

) − 2fe(x) − 2fe
(
y
)

=
1
2
Dnfe

(
x, y, 0, . . . , 0

)
+
1
2
(n − 2)(n + 3)fe(0)

= 0,

Afo
(
x, y
)
= fo

(
x + y

) − fo(x) − fo
(
y
)
=

1
2
Dnfo

(
x, y, 0, . . . , 0

)
= 0

(2.2)

for all x, y ∈ H, that is, fe is quadratic and fo is additive.
Conversely, assume that fe is quadratic, fo is additive, and fe(0) = 0. We apply an

induction on j to prove Dnfe(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ H. For j = 2, we have

Dnfe(x1, x2, 0, . . . , 0)

= 2fe(x1 + x2) + 2fe(x1 − x2) − 4fe(x1) − 4fe(x2) − (n − 2)(n + 3)fe(0)

= 0.

(2.3)
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If n > 2 andDnfe(x1, x2, . . . , xj , 0, . . . , 0) = 0 for some integer j (2 ≤ j < n) and for all x1, x2, . . . ,
xj ∈ H, then a routine calculation yields

Dnfe
(
x1, x2, . . . , xj+1, 0, . . . , 0

)

= Qfe
(
x1 + · · · + xj , xj+1 − xj

)
+
1
2
Dnfe

(
x1, . . . , xj−1, 2xj , 0, . . . , 0

)

+
1
2
Dnfe

(
x1, . . . , xj−1, 2xj+1, 0, . . . , 0

) −
j−1∑

k=1

(
Qfe
(
xk, xj

)
+Qfe

(
xk, xj+1

))

− j

2
Qfe
(
xj+1, xj+1

) − j

2
Qfe
(
xj , xj

)

= 0

(2.4)

for all x1, x2, . . . , xj+1 ∈ H. Hence, we conclude that

Dnfe(x1, x2, . . . , xn) = 0 (2.5)

for all x1, x2, . . . , xn ∈ H.
Since fo is additive, a long calculation yields

Dnfo(x1, x2, . . . , xn)

=
∑

1≤i,j≤n,i /= j

Afo
(
xi,−xj

)
+ 2

n−1∑

i=1

Afo

⎛

⎝
i∑

j=1

xj , xi+1

⎞

⎠

= 0.

(2.6)

Hence, it follows from (2.5) and (2.6) that

Dnf(x1, x2, . . . , xn) = Dnfe(x1, x2, . . . , xn) +Dnfo(x1, x2, . . . , xn) = 0 (2.7)

for all x1, x2, . . . , xn ∈ H; that is, f is a solution of (1.4).

3. Generalized Hyers-Ulam Stability of (1.4)

In the following theorem, we will investigate the stability problem of the functional equation
(1.4).

Theorem 3.1. Assume that n ≥ 2 is an integer. Let H and X be an additive group and a complete
non-Archimedean space, respectively. Assume that ϕ : Hn → [0,∞) is a function such that

lim
m→∞

ϕ(nmx1, n
mx2, . . . , n

mxn)

|n|2m
= 0 (3.1)
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for all x1, x2, . . . , xn ∈ H. Moreover, assume that the limit

ϕ̃(x) := lim
m→∞

max
0≤i<m

{
ϕ
(
nix, . . . , nix

)

|4||n|2i+2
,
ϕ
(−nix, . . . ,−nix

)

|4||n|2i+2
}

(3.2)

exists for each x ∈ H. If a function f : H → X satisfies the inequality

∥
∥Dnf(x1, x2, . . . , xn)

∥
∥ ≤ ϕ(x1, x2, . . . , xn) (3.3)

for any x1, x2, . . . , xn ∈ H, then there exists a unique quadratic-additive function T : H → X such
that

∥
∥f(x) − T(x)

∥
∥ ≤ ϕ̃(x) (3.4)

for each x ∈ H. In particular, T is given by

T(x) = lim
m→∞

(
f(nmx) + f(−nmx)

2n2m
+
f(nmx) − f(−nmx)

2nm

)

(3.5)

for all x ∈ H.

Proof. If we replace xi in (3.1)with 0 for each i ∈ {1, 2, . . . , n}, then we have

lim
m→∞

ϕ(0, 0, . . . , 0)

|n|2m
= 0. (3.6)

Since |n| ≤ 1, it holds that ϕ(0, 0, . . . , 0) = 0 and

∥
∥(n − 1)(n + 2)f(0)

∥
∥ =
∥
∥Dnf(0, 0, . . . , 0)

∥
∥ ≤ ϕ(0, 0, . . . , 0) = 0. (3.7)

Hence, we conclude that f(0) = 0.
Let Jmf : H → Y be a function defined by

Jmf(x) =
f(nmx) + f(−nmx)

2n2m
+
f(nmx) − f(−nmx)

2nm
(3.8)
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for all x ∈ H and m ∈ {0, 1, 2, . . .}. A tedious calculation, together with (F2), (N3), and (3.3),
yields

∥
∥Jif(x) − Ji+1f(x)

∥
∥ =

∥
∥
∥
∥
∥
−Dnf

(
nix, . . . , nix

)

4n2i+2
− Dnf

(−nix, . . . ,−nix
)

4n2i+2

− Dnf
(
nix, . . . , nix

)

4ni+1
+
Dnf

(−nix, . . . ,−nix
)

4ni+1

∥
∥
∥
∥
∥

≤ max

{
‖Dnf

(
nix, . . . , nix

)‖
|4||n|2i+2

,
‖Dnf

(−nix, . . . ,−nix
)‖

|4||n|2i+2
,

∥
∥Dnf

(
nix, . . . , nix

)∥
∥

|4||n|i+1
,

∥
∥Dnf

(−nix, . . . ,−nix
)∥
∥

|4||n|i+1
}

≤ max

{
ϕ
(
nix, . . . , nix

)

|4||n|2i+2
,
ϕ
(−nix, . . . ,−nix

)

|4||n|2i+2
}

(3.9)

for all x ∈ H and i ∈ {0, 1, 2, . . .}. It follows from (3.1) and (3.9) that the sequence {Jmf(x)} is
Cauchy. Since X is complete, we conclude that {Jmf(x)} is convergent.

Let us define

T(x) := lim
m→∞

Jmf(x) (3.10)

for any x ∈ H. It follows from (N3) and (3.9) that

∥
∥f(x) − Jmf(x)

∥
∥ =

∥
∥
∥
∥
∥

m−1∑

i=0

(
Jif(x) − Ji+1f(x)

)
∥
∥
∥
∥
∥

≤ max
0≤i<m

∥
∥Jif(x) − Ji+1f(x)

∥
∥

≤ max
0≤i<m

{
ϕ
(
nix, . . . , nix

)

|4||n|2i+2
,
ϕ
(−nix, . . . ,−nix

)

|4||n|2i+2
}

(3.11)

for all m ∈ {0, 1, 2, . . .} and x ∈ H. In view of (3.2), if we let m → ∞ in (3.11), then we obtain
the inequality (3.4).

Replacing xi in (3.3) with nmxi for i ∈ {1, 2, . . . , n} and considering (F2) and (N3), we
get

∥
∥DnJmf(x1, x2, . . . , xn)

∥
∥ =
∥
∥
∥
∥
Dnf(nmx1, . . . , n

mxn) −Dnf(−nmx1, . . . ,−nmxn)
2nm

+
Dnf(nmx1, . . . , n

mxn) +Dnf(−nmx1, . . . ,−nmxn)
2n2m

∥
∥
∥
∥
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≤ max

{
ϕ(nmx1, . . . , n

mxn)
|2||n|m ,

ϕ(−nmx1, . . . ,−nmxn)
|2||n|m ,

ϕ(nmx1, . . . , n
mxn)

|2||n|2m
,
ϕ(−2mx1, . . . ,−2mxn)

|2||n|2m
}

(3.12)

for all m ∈ {0, 1, 2, . . .} and x1, x2, . . . , xn ∈ H. If we let m → ∞ in the last inequality, then it
follows from the condition (3.1) that DnT(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ H; that is,
T is a quadratic-additive function.

Assume that T ′ : H → X is another quadratic-additive function satisfying (3.4). By
the definition of Dn, a routine calculation yields

− DnT
′(nix, . . . , nix

)

4n2i+2
− DnT

′(−nix, . . . ,−nix
)

4n2i+2
− DnT

′(nix, . . . , nix
)

4ni+1
+
DnT

′(−nix, . . . ,−nix
)

4ni+1

= − 1
2n2(i+1)

(
T ′
(
ni+1x

)
+ T ′
(
−ni+1x

))
+

1
2n2i

(
T ′
(
nix
)
+ T ′
(
−nix

))

− 1
2ni+1

(
T ′
(
ni+1x

)
− T ′
(
−ni+1x

))
+

1
2ni

(
T ′
(
nix
)
− T ′
(
−nix

))

(3.13)

for each i ∈ {0, 1, 2, . . .} and x ∈ H. Hence, it follows from (3.8) that

k−1∑

i=0

(

−DnT
′(nix, . . . , nix

)

4n2i+2
− DnT

′(−nix, . . . ,−nix
)

4n2i+2

−DnT
′(nix, . . . , nix

)

4ni+1
+
DnT

′(−nix, . . . ,−nix
)

4ni+1

)

= T ′(x) − JkT
′(x)

(3.14)

for any k ∈ N and x ∈ H. Since T ′ is a solution of (1.4), it follows from the last equality that

T ′(x) = JkT
′(x) (3.15)

for any k ∈ N and x ∈ H. Obviously, this equality also holds for T .
Consequently, by considering that |n| ≤ 1, it follows from (N3), (3.1), (3.4), and (3.8)

that

∥
∥T(x) − T ′(x)

∥
∥

= lim
k→∞

∥
∥JkT(x) − JkT

′(x)
∥
∥

≤ lim
k→∞

max
{∥
∥JkT(x) − Jkf(x)

∥
∥,
∥
∥Jkf(x) − JkT

′(x)
∥
∥
}
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≤ lim
k→∞

|2|−1|n|−2k max
{∥
∥
∥T
(
nkx
)
− f
(
nkx
)∥
∥
∥,
∥
∥
∥T
(
−nkx

)
− f
(
−nkx

)∥
∥
∥,

∥
∥
∥f
(
nkx
)
− T ′
(
nkx
)∥
∥
∥,
∥
∥
∥f
(
−nkx

)
− T ′
(
−nkx

)∥
∥
∥
}

≤ lim
k→∞

lim
m→∞

max
k≤i<m+k

{
ϕ
(
nix, . . . , nix

)

|8||n|2i+2
,
ϕ
(−nix, . . . ,−nix

)

|8||n|2i+2
}

= 0

(3.16)

for all x ∈ H. Therefore, T = T ′, which proves the uniqueness of T .

Corollary 3.2. Let X and Y be non-Archimedean normed spaces over K with |n| < 1. If Y is complete
and f : X → Y satisfies the inequality

∥
∥Df(x1, x2, . . . , xn)

∥
∥ ≤ θ

n∑

i=1

‖xi‖r (3.17)

for all x1, x2, . . . , xn ∈ X and for some r > 2, then there exists a unique quadratic-additive function
T : X → Y such that

∥
∥f(x) − T(x)

∥
∥ ≤ nθ

|4||n|2
‖x‖r (3.18)

for all x ∈ X.

Proof. Let ϕ(x1, x2, . . . , xn) = θ
∑n

i=1 ‖xi‖r . Since |n| < 1 and r − 2 > 0, we get

lim
m→∞

|n|−2mϕ(nmx1, n
mx2, . . . , n

mxn) = lim
m→∞

|n|m(r−2)ϕ(x1, x2, . . . , xn) = 0 (3.19)

for all x1, x2, . . . , xn ∈ X. Therefore, the conditions of Theorem 3.1 are satisfied. Indeed, it is
easy to see that ϕ̃(x) = nθ(|4|−1|n|−2)‖x‖r . By Theorem 3.1, there exists a unique quadratic-
additive function T : X → Y such that (3.18) holds.
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