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A numerical method to solve Lane-Emden equations as singular initial value problems is presented
in this work. This method is based on the replacement of unknown functions through a truncated
series of hybrid of block-pulse functions and Chebyshev polynomials. The collocation method
transforms the differential equation into a system of algebraic equations. It also has application
in a wide area of differential equations. Corresponding numerical examples are presented to
demonstrate the accuracy of the proposed method.

1. Introduction

In recent years, studies on singular initial value problems in second-order ordinary
differential equations have attracted much attention among mathematicians and physicists.
One of the equations describing this type of problem is the Lane-Emden equation which can
be written in the following form:

y′′ +
2
x
y′ + f

(
y
)
= 0, 0 < x ≤ 1, (1.1)

y(0) = A, y′(0) = B, (1.2)

where A and B are constants, and f(y) is a real-valued continuous function. This equation has
been used in the fields of mathematical physics and astrophysics to model several problems
such as the stellar structure theory, the thermal behavior of a spherical gas cloud, isothermal
gas spheres, and the thermionic current theory [1–3].
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On the other hand, another type of singular initial value problems of the Lane-Emden
equation can also be given in the following form:

y′′ +
2
x
y′ + f

(
x, y

)
= g(x), (1.3)

y(0) = A, y′(0) = B, (1.4)

where A and B are constants, f(x, y) is a continuous real-valued function, and g(x) ∈ C [0, 1].
Many methods have been used to solve Lane-Emden equations. However, most

algorithms in current use to deal with Lane-Emden problems are based on either series
solutions or perturbation techniques. For instance, approximate solutions to (1.1) were
presented by Shawagfeh [4] and Wazwaz [5, 6] using the Adomian decomposition method
which provides a convergent series solution. Ramos [7] presented a series approach to the
Lane-Emden equation and made comparisons with He’s homotopy perturbation method.
Dehghan and Shakeri [8] first applied exponential transformation to the Lane-Emden
equation in order to address the difficulty of a singular point at x = 0 and solve the
resulting nonsingular problem using the variational iteration method. Yousefi [9] applied
an integral operator, converted Lane-Emden equations to integral equations, and solved
these integral equations using Legendre wavelets. Recently, Parand et al. [10] proposed
an approximation algorithm for the solution of the nonlinear Lane-Emden type equation
using Hermite functions collocation method. Moreover, Adibi and Rismani [11] introduced a
modified Legendre-spectral method for solving (1.1). Wazwaz [12] applied the variational
iteration method to solve the singular initial problems or boundary value problems of
Emden-Fowler type of equations.

In this work, we present a reliable algorithm based on hybrid functions and the
collocation method in order to obtain approximate solutions for (1.3).

The main advantage of our proposed method is its direct application to all types of
differential equations whether linear or nonlinear, homogeneous or inhomogeneous, and
with constant coefficients or with variable coefficients. Furthermore, the method can greatly
reduce the size of computational work while still maintaining the numerical solution’s high
accuracy because it does not employ numerical integration [9, 11, 13].

2. Properties of Hybrid Functions

2.1. Hybrid Functions of Block-Pulse and Chebyshev Polynomials

Hybrid functions hnm(x), n = 1, 2, . . . ,N, m = 0, 1, 2, . . . ,M − 1, are defined on the interval
[0, 1) as

hnm(x) =

⎧
⎨

⎩
Tm(2Nx − 2n + 1), x ∈

[(
n − 1
N

)
,
n

N

)

0, otherwise.
(2.1)
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Here, Tm(x) are the well-known Chebyshev polynomials of order m which satisfy the follow-
ing recursive formula:

T0(x) = 1, T2(x) = x

Tm+1(x) = 2xTm(x) − Tm−1(x), m = 1, 2, 3, . . . .
(2.2)

2.2. Function Approximation

A function y(x) defined over the interval 0 to t may be expanded as

y(x) =
∞∑

n=1

∞∑

m=0

cnmhnm(x), (2.3)

where

cnm =
(
y(x), hnm(x)

)
. (2.4)

in which (·, ·) denotes the inner product.
If the infinite series in (2.3) is truncated, then (2.3) can be written as

y(x) ≈ yNM(x) =
N∑

n=1

M−1∑

m=0

cnmhnm(x) = CTH(x) = HT (x)C, (2.5)

where

C = [c10, c11, . . . , c1M−1, c20, . . . , c2M−1, . . . cN0, . . . , cNM−1]T , (2.6)

H(x) = [h10(x), h11(x), . . . , h1M−1(x), h20(x), . . . , h2M−1(x), . . . hN0(x), . . . , hNM−1(x)]
T . (2.7)

In (2.5) and (2.6), cnm, n = 1, 2, . . . ,N, m = 0, 1, . . . ,M − 1, are the coefficients expansions of
the function y(x) and hnm(x), n = 1, 2, . . . ,N, m = 0, 1, . . . ,M − 1, are defined in (2.1).

2.3. Operational Matrix of the Integration

The integration of the vector H(x) defined in (2.7) can be obtained as

∫x

0
H(t)dt ≈ PH(x), (2.8)

where P is NM × NM matrix, that is called the operational matrix for integration and is
given in [14].
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3. Numerical Solution Using the Hybrid Functions and the
Collocation Method

We then consider the Lane-Emden equations given in (1.3). First, we assume that the un-
known function y′′(x) is given by

y′′(x) =
N∑

n=1

M−1∑

m=0

cnmhnm(x) = CTH(x). (3.1)

Then using Condition (1.4), we obtain

y′(x) = CTPH(x) + B,

y(x) = CTP 2H(x) + Bx +A.
(3.2)

Substituting (3.1) and (3.2) into (1.3), we obtain

CTH(x) +
2
x

(
CTPH(x) + B

)
+ f

(
x,CTP 2H(x) + Bx +A

)
= g(x). (3.3)

Rewriting (3.3) in the form

xCTH(x) + 2
(
CTH(x) + B

)
+ xf

(
x,CTH(x) + Bx +A

)
= xg(x). (3.4)

We now collocate (3.4) at NM points xnm as

xnmC
TH(xnm) + 2

(
CTH(xnm) + B

)
+ xnmf

(
xnm,C

TH(xnm) + Bxnm +A
)
= xnmg(xnm).

(3.5)

Suitable collocation points are zeros of Chebyshev polynomials

xnm =
1

2N
cos

(
mπ

M − 1
+ 2n − 1

)
, m = 0, 1, 2, . . . , M − 1, n = 1, 2, . . . ,N. (3.6)

System (3.5) consists of NM nonlinear equations which can be solved using conventional it-
erative methods such as Newton’s method or the simplex method.

4. Accuracy of Solution

We can easily verify the accuracy of the method. Given that the truncated hybrid functions
series in (2.5) are an approximate solution of (1.3), it must have approximately satisfied these
equations. Thus, for each xi ∈ (0, 1]

E(xi) = CTH(xi) +
2
xi

(
CTPH(xi) + B

)
+ f

(
xi, C

TP 2H(xi) + Bxi +A
)
− g(xi) ≈ 0. (4.1)
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If max E(xi) = 10−k (k is any positive integer) is prescribed, then the truncation limit N,M
is increased until the difference E(xi) at each of the points xi becomes smaller than the pre-
scribed 10−k.

Proposition 4.1. Let y(x) ∈ Hk(−1, 1) (Sobolev space) and yN(x) =
∑N

i=0 aiTi(x) be the best
approximation polynomial of y(x) in L2

ω-norm. Thus, the truncation error is

∥
∥y(x) − yN(x)

∥
∥
L2
ω[−1,1] ≤ C0N

−k∥∥y(x)
∥
∥
Hk(−1,1), (4.2)

where C0 is a positive constant, which is dependent on the selected norm and independent of y(x) and
N (proof [15]).

Proposition 4.2. Let y(x) ∈ Hk(0, 1), In = [(n − 1)/N, n/N] then

∥∥y(x) − yNM(x)
∥∥
L2
ω[0,1]

≤ C0M
−k max

0≤n≤N

∥∥y(x)
∥∥
Hk(In)

. (4.3)

By using of Proposition 4.1, it is obvious [16].

5. Numerical Examples

In the section, we demonstrate the accuracy of the proposed method in solving the Lane-
Emden equation. In all the examples, we use the relations shown in Section 3 to convert a
differential equation to a system of nonlinear equations. The numerical results are presented
in tabular form to illustrate the efficiency of the method. All computations were carried out
using Matlab7.0.

Example 5.1. We consider the linear singular initial value problem [6]

y′′ +
2
x
y′ + y = 6 + 12x + x2 + x3, 0 < x ≤ 1, (5.1)

y(0) = 0, y′(0) = 0. (5.2)

We applied the method presented in this paper and solved (5.1) with M = 4, N = 1. For this
equation, we find

c0 = 7.5000000000000000e − 001,

c1 = 1.500000000000000e + 000,

c2 = 7.500000000000000e − 001.

(5.3)

Using (2.6), we obtain

y(x) = x2 + x3, (5.4)

which is the exact solution.
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Example 5.2. We consider the linear singular initial value problem [6, 13]

y′′ +
2
x
y′ + y = 2

(
2x2 + 3

)
y, 0 < x ≤ 1, (5.5)

y(0) = 1, y′(0) = 0. (5.6)

The exact solution for this problem is y(x) = ex
2
. We assume that

y′′(x) =
N∑

n=1

M−1∑

m=0

cnmhnm(x) = CTH(x). (5.7)

Using the boundary condition in (5.7), we derive

y′(x) = CTPH(x) + 0, (5.8)

y(x) = CTP 2H(x) + 0x + 1. (5.9)

Now, by inserting (5.7)–(5.9) into (5.5), we obtain

xCTH(x) + 2
(
CTPH(x)

)
+ x

(
CTP 2H(x) + 1

)
= x · 2

(
2x2 + 3

)(
CTP 2H(x) + 1

)
. (5.10)

The collocation points are

xnm =
1

2N
cos

(
mπ

M − 1
+ 2n − 1

)
, m = 0, 1, 2, . . . ,M − 1, n = 1, 2, . . . ,N. (5.11)

Using these points, we obtain

xnmC
TH(xnm) + 2

(
CTPH(xnm)

)
+ xnm

(
CTP 2H(xnm) + 1

)

−xnm · 2
(

2xnm
2 + 3

)(
CTP 2H(xnm) + 1

)
= 0.

(5.12)

By solving (5.12), we obtain the coefficients ci’s. Using (5.9), we then derive the approximate
solution. Table 1 shows the absolute error of the exact and approximate solution for N = 2,
M = 3 and N = 2, M = 5.

Example 5.3. We consider the nonlinear singular initial value problem [6, 10, 13]

y′′ +
2
x
y′ + 4

(
2ey + ey/2

)
= 0, 0 < x ≤ 1, (5.13)

y(0) = 0, y′(0) = 0, (5.14)

with the exact solution y(x) = −2 ln(1 + x2).
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Table 1: Comparison of the absolute errors for Example 5.2.

x
Method in [10] Present method Present method

(n = 30) (N = 2, M = 3) (N = 2, M = 5)

0 0 0 0
0.1 1.78e−08 5.73e−006 2.52e−009
0.2 2.09e−08 7.22e−006 3.05e−010
0.5 2.62e−08 1.17e−005 2.61e−009
0.7 3.27e−08 1.22e−006 1.28e−009
0.8 3.79e−08 1.88e−006 6.19e−009
0.9 5.48e−08 1.31e−006 2.02e−010
1.0 2.51e−09 8.49e−006 1.30e−010

Table 2: Absolute error of Example 5.3 ′s exact and approximated solution.

x Approximated solution Exact solution Absolute error

0 0 0 0
0.1 −1.990065975846963e−002 −1.990066170633618e−002 1.947866552082234e−009
0.2 −7.844142227675365e−002 −7.844142630656266e−002 4.029809014260977e−009
0.3 −1.723553877014332e−001 −1.723553924821048e−001 4.780671636339662e−009
0.4 2.968400304512400e−001 −2.968400102365468e−001 2.021469319712921e−008
0.5 −4.462871382464894e−001 −4.462871026284195e−001 3.561806982688154e−008
0.6 −6.149693761315079e−001 −6.149693994959211e−001 2.336441318195881e−008
0.7 −7.975522016254086e−001 −7.975522399147356e−001 3.828932693128451e−008
0.8 −9.893925027250091e−001 −9.893924836722143e−001 1.905279478631172e−008
0.9 −1.186653691831187e+000 −1.186653690555469e+000 1.275718419790906e−009
1.0 −1.386294358347456e+000 −1.386294361119891e+000 2.772434948283831e−009
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Figure 1: Comparison of absolute errors using the present method and method in [10] for Example 5.3.
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We solved (5.13) using the method presented in this paper. Table 2 shows the absolute
errors of exact and approximate solutions in some points of the interval [0, 1] obtained by
presented method for N = 2, M = 5. The comparison of absolute errors using present method
and the method in [10] with m = 30 is shown in Figure 1. It is easily found that the present
approximations are more efficient.

6. Conclusion

We have solved the Lane-Emden equation by using hybrid functions and the collocation
method. The properties of the hybrid functions are used to reduce the equation to the solution
of nonlinear algebraic equations. Illustrative examples are given to demonstrate the validity
and applicability of the proposed method. We believe that the proposed method is applicable
to higher-order differential equations and to other sets of orthogonal polynomials.
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