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It is known that strictly pseudocontractive mappings have more powerful applications than
nonexpansive mappings in solving inverse problems. In this paper, we devote to study computing
the fixed points of strictly pseudocontractive mappings by the iterations. Two iterative methods
(one implicit and another explicit) for finding the fixed point of strictly pseudocontractive
mappings have been constructed in Hilbert spaces. As special cases, we can use these twomethods
to find the minimum norm fixed point of strictly pseudocontractive mappings.

1. Introduction

In this paper, we devote to study computing the fixed points of strictly pseudocontractive
mappings by the iterations. Our motivations are mainly in two respects.

Motivation 1

Iterative methods for finding fixed points of nonexpansive mappings have received vast
investigations due to its extensive applications in a variety of applied areas of inverse
problem, partial differential equations, image recovery, and signal processing; see [1–35] and
the references therein. It is known [36] that strictly pseudocontractive mappings have more
powerful applications than nonexpansive mappings in solving inverse problems. Therefore
it is interesting to develop the algorithms for strictly pseudocontractive mappings.
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Motivation 2

In many problems, it is needed to find a solution with minimum norm. In an abstract way,
we may formulate such problems as finding a point x† with the property

x† ∈ C,
∥
∥
∥x†

∥
∥
∥ = min

x∈C
‖x‖, (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H. A typical example is
the least-squares solution to the constrained linear inverse problem [37]. Some related works
for finding the minimum-norm solution (or fixed point of nonexpansive mappings) have
been considered by some authors. The reader can refer to [38–41].

In the present paper, we present two iterative methods (one implicit and another
explicit) for finding the fixed point of strictly pseudocontractive mappings in Hilbert spaces.
As special cases, we can use these two methods to find the minimum norm fixed point of
strictly pseudocontractive mappings.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be a
nonempty closed convex subset of H.

2.1. Some Concepts

Recall that a mapping T : C → C is called nonexpansive, if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, (2.1)

for all x, y ∈ C. And a mapping T : C → C is said to be strictly pseudocontractive if there
exists a constant 0 ≤ λ < 1 such that

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + λ

∥
∥(I − T)x − (I − T)y

∥
∥
2
, (2.2)

for all x, y ∈ C. For such a case, we also say that T is a λ-strictly pseudocontractive mapping.
It is clear that, in a real Hilbert space H, (2.2) is equivalent to

〈

Tx − Ty, x − y
〉 ≤ ∥

∥x − y
∥
∥
2 − 1 − λ

2
∥
∥(I − T)x − (I − T)y

∥
∥
2
, (2.3)

for all x, y ∈ C. It is clear that the class of strictly pseudocontractivemappings strictly includes
the class of nonexpansive mappings.

Recall that the nearest point (or metric) projection fromH ontoC is defined as follows:
for each point x ∈ H, PC[x] is the unique point in C with the property:

‖x − PCx‖ ≤ ∥
∥x − y

∥
∥, y ∈ C. (2.4)
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Note that PC is characterized by the inequality:

PCx ∈ C,
〈

x − PCx, y − PCx
〉 ≤ 0, y ∈ C. (2.5)

Consequently, PC is nonexpansive.

2.2. Several Useful Lemmas

Lemma 2.1 (see [42]). LetH be a real Hilbert space. There holds the following identity:

∥
∥x + y

∥
∥
2 = ‖x‖2 + 2

〈

x, y
〉

+
∥
∥y

∥
∥
2
, (2.6)

for all x, y ∈ H.

Lemma 2.2 (see [43]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → C be a λ-strict pseudocontraction. Then,

(i) F(T) is closed convex so that the projection PF(T) is well defined;

(ii) κI + (1 − κ)T for κ ∈ [λ, 1), is nonexpansive.

Lemma 2.3 (see [42]). Let C be a nonempty closed convex of a real Hilbert spaceH. Let T : C → C
be a λ-strictly pseudocontractive mapping. Then I − T is demiclosed at 0 that is if xn ⇀ x ∈ C and
xn − Txn → 0, then x = Tx.

Lemma 2.4 (see [44]). Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose that

xn+1 =
(

1 − βn
)

yn + βnxn (2.7)

for all n ≥ 0 and

lim sup
n→∞

(∥
∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖

) ≤ 0. (2.8)

Then limn→∞‖yn − xn‖ = 0.

Lemma 2.5 (see [45]). Let {an}∞n=0 be a sequence of nonnegative real numbers satisfying

an+1 ≤
(

1 − γn
)

an + γnσn, n ≥ 0, (2.9)

where {γn}∞n=0 ⊂ (0, 1) and {σn}∞n=0 satisfy
(i)

∑∞
n=0 γn = ∞,

(ii) either lim supn→∞σn ≤ 0 or
∑∞

n=0 |γnσn| < ∞.

Then {an}∞n=0 converges to 0.
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We use the following notation:

(i) Fix(T) stands for the set of fixed points of T ;

(ii) xn ⇀ x stands for the weak convergence of (xn) to x;

(iii) xn → x stands for the strong convergence of (xn) to x.

3. Iterations and Convergence Analysis

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
a λ-strictly pseudocontractive mapping with Fix(T)/= ∅. Let κ ∈ (0, 1) be a constant. For u ∈ H and
any x0 ∈ C, let {xn} be the sequence defined by the following implicit manner:

xn = κTxn + (1 − κ)PC[αnu + (1 − αn)xn], n ≥ 0. (3.1)

Then the sequence {xn} converges strongly to PFix(T)(u).

Proof. Step 1. The sequence {xn} is well defined.
Set β = κ/(1 − (1 − κ)λ). It is easily to check that β ∈ (0, 1). Then, we can rewrite (3.1)

as

xn =
β(1 − λ)
1 − βλ

Txn +
1 − β

1 − βλ
PC[αnu + (1 − αn)xn], n ≥ 0, (3.2)

which is equivalent to the following:

xn = β(λxn + (1 − λ)Txn) +
(

1 − β
)

PC[αnu + (1 − αn)xn], n ≥ 0. (3.3)

Note that λI + (1 − λ)T is nonexpansive (see Lemma 2.2). For fix n, we define a mapping
Sn : C → C by

Snx = β(λx + (1 − λ)Tx) +
(

1 − β
)

PC[αnu + (1 − αn)x], x ∈ C. (3.4)

For x, y ∈ C, we have

∥
∥Snx − Sny

∥
∥ =

∥
∥β(λI + (1 − λ)T)x +

(

1 − β
)

PC[αnu + (1 − αn)x]

−β(λI + (1 − λ)T)y − (

1 − β
)

PC

[

αnu + (1 − αn)y
]∥
∥

≤ β
∥
∥x − y

∥
∥ +

(

1 − β
)

(1 − αn)
∥
∥x − y

∥
∥

=
[

1 − (

1 − β
)

αn

]∥
∥x − y

∥
∥,

(3.5)

which implies that Sn is a self-contraction of C for every n. Hence Sn has a unique fixed point
xn ∈ C which is the unique solution of the fixed point equation (3.3).
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Step 2. The sequence {xn} is bounded.
Pick up any x∗ ∈ Fix(T). From (3.3), we have

‖xn − x∗‖ =
∥
∥β(λxn + (1 − λ)Txn) +

(

1 − β
)

PC[αnu + (1 − αn)xn] − x∗∥∥

≤ β‖λxn + (1 − λ)Txn − x∗‖ + (

1 − β
)‖PC[αnu + (1 − αn)xn] − x∗‖

≤ β‖xn − x∗‖ + (

1 − β
)‖αn(u − x∗) + (1 − αn)(xn − x∗)‖

≤ β‖xn − x∗‖ + (

1 − β
)

[(1 − αn)‖xn − x∗‖ + αn‖u − x∗‖].

(3.6)

It follows that

‖xn − x∗‖ ≤ ‖u − x∗‖. (3.7)

Hence, {xn} is bounded and so is {Txn}.
Step 3. limn→∞‖xn − Txn‖ = 0.
From (3.3), we have

‖xn − Txn‖ ≤ βλ‖xn − Txn‖ +
(

1 − β
)‖PC[αnu + (1 − αn)xn] − PC[Txn]‖

≤ βλ‖xn − Txn‖ +
(

1 − β
)

(αn‖u − Txn‖ + (1 − αn)‖xn − Txn‖)
=
[

1 − (1 − αn − λ)β
]‖xn − Txn‖ +

(

1 − β
)

αn‖u − Txn‖.
(3.8)

It follows that

‖xn − Txn‖ ≤ 1 − β

(1 − αn − λ)β
αn‖u − Txn‖ −→ 0. (3.9)

Step 4. xn → x ∈ PFix(T)(u).
Since {xn} is bounded, there exists a subsequence {xni} of {xn}, which converges

weakly to a point x ∈ C. Noticing (3.9) we can use Lemma 2.3 to get x ∈ Fix(T).
By using the convexity of the norm and Lemma 2.1, for any x̃ ∈ Fix(T), we have

‖xn − x̃‖2 = ∥
∥β(λxn + (1 − λ)Txn − x̃) +

(

1 − β
)

(PC[αnu + (1 − αn)xn] − x̃)
∥
∥
2

≤ β‖λxn + (1 − λ)Txn − x̃‖2 + (

1 − β
)‖PC[αnu + (1 − αn)xn] − x̃‖2

≤ β‖xn − x̃‖2 + (

1 − β
)‖αn(u − x̃) + (1 − αn)(xn − x̃)‖2

= β‖xn − x̃‖2 + (

1 − β
)[

(1 − αn)2‖xn − x̃‖2 + 2αn(1 − αn)〈u − x̃, xn − x̃〉 + α2
n‖u − x̃‖2

]

= β‖xn − x̃‖2 + (

1 − β
)[‖xn − x̃‖2 − 2αn‖xn − x̃‖2 + 2αn〈u − x̃, xn − x̃〉

+α2
n

(

‖u − x̃‖2 + ‖xn − x̃‖2 − 2〈u − x̃, xn − x̃〉
)]

.

(3.10)
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It turns out that

‖xn − x̃‖2 ≤ 〈u − x̃, xn − x̃〉 + αn

2

(

‖u − x̃‖2 + ‖xn − x̃‖2 + 2‖u − x̃‖‖xn − x̃‖
)

≤ 〈u − x̃, xn − x̃〉 + αnM,

(3.11)

where M > 0 is some constant such that

sup
1
2

{

‖u − x̃‖2 + ‖xn − x̃‖2 + 2‖u − x̃‖‖xn − x̃‖
}

≤ M. (3.12)

Therefore we can substitute x̃ for x in (3.11) to get

‖xn − x‖2 ≤ 〈u − x, xn − x〉 + αnM. (3.13)

However, xn ⇀ x. This together with (3.13) guarantees that xn → x. It is clear that x =
PFix(T)(u). As a matter of fact, in (3.11), if we let n → ∞, then we get

〈u − x̃, x − x̃〉 ≥ 0, ∀x̃ ∈ Fix(T). (3.14)

This is equivalent to

〈u − x, x − x̃〉 ≥ 0, ∀x̃ ∈ Fix(T). (3.15)

Hence, x = PFix(T)(u). Therefore, xn → x = PFix(T)(u). This completes the proof.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let T : C → C a
nonexpansive mapping with Fix(T)/= ∅. Let κ ∈ (0, 1) be a constant. For u ∈ H and any x0 ∈ C, let
{xn} be the sequence defined by the following implicit manner:

xn = κTxn + (1 − κ)PC[αnu + (1 − αn)xn], n ≥ 0. (3.16)

Then the sequence {xn} converges strongly to PFix(T)(u).

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
a λ-strictly pseudocontractive mapping with Fix(T)/= ∅. Let κ ∈ (0, 1) be a constant. For any x0 ∈ C,
let {xn} be the sequence defined by the following implicit manner:

xn = κTxn + (1 − κ)PC[(1 − αn)xn], n ≥ 0. (3.17)

Then the sequence {xn} converges strongly to PFix(T)(0) which is the minimum norm fixed point of T .
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Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let T : C → C a
nonexpansive mapping with Fix(T)/= ∅. Let κ ∈ (0, 1) be a constant. For any x0 ∈ C, let {xn} be the
sequence defined by the following implicit manner:

xn = κTxn + (1 − κ)PC[(1 − αn)xn], n ≥ 0. (3.18)

Then the sequence {xn} converges strongly to PFix(T)(0) which is the minimum norm fixed point of T .

Next, we introduce an explicit algorithm for finding the fixed point of T .

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let T : C → C a
λ-strictly pseudocontractive mapping with Fix(T)/= ∅. Let β and δ be two constants in (0, 1) satisfying
β+δ < 1. For u ∈ H and any x0 ∈ C, let {xn} be the sequence defined by the following explicit manner:

xn+1 =
(

βλ + δ
)

xn + β(1 − λ)Txn +
(

1 − β − δ
)

PC[αnu + (1 − αn)xn], n ≥ 0, (3.19)

where αn ∈ (0, 1) satisfies the following conditions:

(C1) limn→∞αn = 0,

(C2)
∑∞

n=0 αn = ∞.

Then the sequence {xn} converges strongly to PFix(T)(u).

Proof. Step 1. The sequence {xn} is bounded.
First, we can rewrite (3.19) as

xn+1 = β(λxn + (1 − λ)Txn) + δxn +
(

1 − β − δ
)

PC[αnu + (1 − αn)xn], n ≥ 0. (3.20)

Take x∗ ∈ Fix(T). From (3.20), we have

‖xn+1−x∗‖ =
∥
∥β(λxn+(1−λ)Txn−x∗)+δ(xn−x∗)+

(

1−β−δ)(PC[αnu+(1 − αn)xn] − x∗)
∥
∥

≤ β‖λxn + (1 − λ)Txn − x∗‖ + δ‖xn − x∗‖
+
(

1 − β − δ
)‖PC[αnu + (1 − αn)xn] − x∗‖

≤ β
∥
∥xn − p

∥
∥ + δ‖xn − x∗‖ + (

1 − β − δ
)

(αn‖u − x∗‖ + (1 − αn)‖xn − x∗‖)
=
[

1 − (

1 − β − δ
)

αn

]‖xn − x∗‖ + (

1 − β − δ
)

αn‖u − x∗‖
≤ max{‖xn − x∗‖, ‖u − x∗‖}.

(3.21)

By induction,

‖xn+1 − x∗‖ ≤ max{‖xn − x∗‖, ‖u − x∗‖}. (3.22)

Hence, the sequence {xn} is bounded and {Txn} is also bounded.
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Step 2. limn→∞‖xn − Txn‖ = 0.
We can rewrite (3.20) as

xn+1 = δxn + (1 − δ)yn, (3.23)

where

yn =
β

1 − δ
(λxn + (1 − λ)Txn) +

1 − β − δ

1 − δ
PC[αnu + (1 − αn)xn], n ≥ 0. (3.24)

It follows that

∥
∥yn+1 − yn

∥
∥ ≤ β

1 − δ
‖(λxn+1 + (1 − λ)Txn+1) − (λxn + (1 − λ)Txn)‖

+
1 − β − δ

1 − δ
‖PC[αn+1u + (1 − αn+1)xn+1] − PC[αnu + (1 − αn)xn]‖

≤ β

1 − δ
‖xn+1 − xn‖ +

1 − β − δ

1 − δ
|αn+1 − αn|(‖u‖ + ‖xn‖)

+
1 − β − δ

(1 − δ)
(1 − αn+1)‖xn+1 − xn‖

≤ ‖xn+1 − xn‖ +
1 − β − δ

1 − δ
|αn+1 − αn|(‖u‖ + ‖xn‖).

(3.25)

Thus,

lim sup
n→∞

(∥
∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖

) ≤ lim sup
n→∞

1 − β − δ

1 − δ
|αn+1 − αn|(‖u‖ + ‖xn‖) = 0. (3.26)

This together with Lemma 2.4 implies that

lim
n→∞

∥
∥yn − xn

∥
∥ = 0. (3.27)

Note that

‖xn − Txn‖ ≤ ∥
∥xn − yn

∥
∥ +

∥
∥yn − Txn

∥
∥

=
∥
∥xn − yn

∥
∥ +

∥
∥
∥
∥

β

1 − δ
(λxn + (1 − λ)Txn) +

1 − β − δ

1 − δ
PC[αnu + (1 − αn)xn] − Txn

∥
∥
∥
∥

≤ ∥
∥xn − yn

∥
∥ +

β

1 − δ
λ‖xn − Txn‖ +

1 − β − δ

1 − δ
‖PC[αnu + (1 − αn)xn] − Txn‖
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≤ ∥
∥xn − yn

∥
∥ +

β

1 − δ
λ‖xn − Txn‖ +

1 − β − δ

1 − δ
αn‖u − Txn‖

+
1 − β − δ

1 − δ
(1 − αn)‖xn − Txn‖.

(3.28)

It follows that

‖xn − Txn‖ ≤ 1 − δ

β(1 − λ)

∥
∥xn − yn

∥
∥ +

1 − β − δ

β(1 − λ)
αn‖u − Txn‖. (3.29)

Thus,

lim
n→∞

‖xn − Txn‖ = 0. (3.30)

Step 3. lim supn→∞〈u − x̃, xn − x̃〉 ≤ 0, where x̃ = PFix(T)(u).
To see this, we can take a subsequence {xnk} of {xn} satisfying the properties

lim sup
n→∞

〈u − x̃, xn − x̃〉 = lim
k→∞

〈u − x̃, xnk − x̃〉, (3.31)

xnk ⇀ x∗ as k −→ ∞. (3.32)

By the demiclosed principle (see Lemma 2.3) and (3.30), we have that x∗ ∈ Fix(T). So,

lim sup
n→∞

〈u − x̃, xn − x̃〉 = 〈u − x̃, x∗ − x̃〉 ≤ 0. (3.33)

Step 4. xn → x̃.
From (3.20), we get

‖xn+1 − x̃‖2 ≤ β‖λxn + (1 − λ)Txn − x̃‖2 + δ‖xn − x̃‖2

+
(

1 − β − δ
)‖PC[αnu + (1 − αn)xn] − x̃‖2

≤ (

β + δ
)‖xn − x̃‖2 + (

1 − β − δ
)‖αn(u − x̃) + (1 − αn)(xn − x̃)‖2

=
(

β + δ
)‖xn − x̃‖2 + (

1 − β − δ
)[

(1 − 2αn)‖xn − x̃‖2 + 2αn〈u − x̃, xn − x̃〉

+α2
n

(

‖u − x̃‖2 + ‖xn − x̃‖2 − 2〈u − x̃, xn − x̃〉
)]

=
[

1 − 2
(

1 − β − δ
)

αn

]‖xn − x̃‖2

+2
(

1−β−δ)αn

(

〈u−x̃, xn−x̃〉+ αn

2

(

‖u−x̃‖2+‖xn−x̃‖2−2〈u−x̃, xn−x̃〉
))

= (1 − δn)‖xn − x̃‖2 + δnθn, (3.34)
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where δn = 2(1 − β − δ)αn and

θn = 〈u − x̃, xn − x̃〉 + αn

2

(

‖u − x̃‖2 + ‖xn − x̃‖2 − 2〈u − x̃, xn − x̃〉
)

. (3.35)

It is easy to see that limn→∞δn = 0 and lim supn→∞θn ≤ 0. We can therefore apply Lemma 2.5
to (3.34) and conclude that xn+1 → x̃ as n → ∞. This completes the proof.

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
a nonexpansive mapping with Fix(T)/= ∅. Let β and δ be two constants in (0, 1) satisfying β + δ < 1.
For u ∈ H and any x0 ∈ C, let {xn} be the sequence defined by the following explicit manner:

xn+1 =
(

βλ + δ
)

xn + β(1 − λ)Txn +
(

1 − β − δ
)

PC[αnu + (1 − αn)xn], n ≥ 0, (3.36)

where αn ∈ (0, 1) satisfies the following conditions:

(C1) limn→∞αn = 0,

(C2)
∑∞

n=0 αn = ∞.

Then the sequence {xn} converges strongly to PFix(T)(u).

Corollary 3.7. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let T : C → C a
λ-strictly pseudocontractive mapping with Fix(T)/= ∅. Let β and δ be two constants in (0, 1) satisfying
β + δ < 1. For any x0 ∈ C, let {xn} be the sequence defined by the following explicit manner:

xn+1 =
(

βλ + δ
)

xn + β(1 − λ)Txn +
(

1 − β − δ
)

PC[(1 − αn)xn], n ≥ 0, (3.37)

where αn ∈ (0, 1) satisfies the following conditions:

(C1) limn→∞αn = 0,

(C2)
∑∞

n=0 αn = ∞.

Then the sequence {xn} converges strongly to PFix(T)(0) which is the minimum norm fixed point of T .

Corollary 3.8. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
a nonexpansive mapping with Fix(T)/= ∅. Let β and δ be two constants in (0, 1) satisfying β + δ < 1.
For any x0 ∈ C, let {xn} be the sequence defined by the following explicit manner:

xn+1 =
(

βλ + δ
)

xn + β(1 − λ)Txn +
(

1 − β − δ
)

PC[(1 − αn)xn], n ≥ 0, (3.38)

where αn ∈ (0, 1) satisfies the following conditions:

(C1) limn→∞αn = 0;

(C2)
∑∞

n=0 αn = ∞.

Then the sequence {xn} converges strongly to PFix(T)(0) which is the minimum norm fixed point of T .
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4. Conclusion

Finding fixed points of nonlinear mappings (especially, nonexpansive mappings) has
received vast investigations due to its extensive applications in a variety of applied areas
of inverse problem, partial differential equations, image recovery and signal processing. It is
wellknown that strictly pseudocontractive mappings have more powerful applications than
nonexpansivemappings in solving inverse problems. In this paper, we devote to construct the
methods for computing the fixed points of strictly pseudocontractivemappings. Two iterative
methods have been presented. Especially, we can use these twomethods to find theminimum
norm fixed point of strictly pseudocontractive mappings. The ideas contained in the present
paper can help us to solve the minimum norm problems in the applied science.
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