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This work is focused on studying interface waves for three canonical models, that is, interfaces
formed by vacuum-solid, solid-solid, and liquid-solid. These interfaces excited by dynamic loads
cause the emergence of Rayleigh’s, Stoneley’s, and Scholte’s waves, respectively. To perform the
study, the indirect boundary element method is used, which has proved to be a powerful tool
for numerical modeling of problems in elastodynamics. In essence, the method expresses the dif-
fracted wave field of stresses, pressures, and displacements by a boundary integral, also known as
single-layer representation, whose shape can be regarded as a Fredholm’s integral representation
of second kind and zero order. This representation can be considered as an exemplification of
Huygens’ principle, which is equivalent to Somigliana’s representation theorem. Results in frequ-
ency domain for the three types of interfaces are presented; then, using the fourier discrete trans-
form, we derive the results in time domain, where the emergence of interface waves is highlighted.

1. Introduction

The study of interface waves has always attracted the interest of the scientific community
because of the importance and complexity of the waves that propagate in such interfaces.
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For example, Rayleigh’s waves are one of the three types of interface waves, which travel in
vacuum-solid surfaces. In isotropic solids the particle motion is elliptical and retrograde, for
shallow depths, with respect to the direction of propagation (Rayleigh, [1]). Today, many
engineering and seismology studies (e.g., [2–5]) are focused on understanding Rayleigh’s
waves. Recent research concerning Rayleigh’s waves is also carried out on nondestructive
testing for detecting defects.

Stoneley’s waves occur at the interface between two solids [6]. The higher energy, as
well as Rayleigh’s waves, is present in the interface and shows an exponential decay away
from the interface. Important applications around this type of interface waves can be found
in [7–10].

Scholte’s waves are presented at the interface of fluid-solid media [11–13]. Similarly,
most of the energy in this type of wave is presented in the interface and decays exponentially
into the solid medium and fluid one. Some applications, mainly applied to seabed, can be
seen in [8, 14–17].

To model realistic problems and complex geometries, numerical methods are a good
option. Methods like finite element [18], finite difference [19], boundary element [20, 21],
spectral and pseudospectral elements [22–24] have been extensively used.

Particularly, the boundary element method (BEM) has been useful to deal with inter-
face problems. For instance, based on the BEM, a coupledmodel was developed to investigate
the dynamic interaction between an offshore pile, a porous seabed, and seawater when
subjected to the pseudo-Stoneley wave along the seabed and the seawater interface [25]. They
found that the maximum pore pressure of the seabed usually occurs at the region near the
interfaces between the seabed and the seawater.

Numerical modeling to simulate the propagation of acoustic and elastic waves gener-
ated by a borehole source embedded in a layered medium was formulated in terms of the
boundary element technique, where Green’s functions were calculated by the discrete wave-
number method. Results display Stoneley’s wave reflections at the bed boundaries and show
the importance of the diffraction that takes place where the borehole wall intersects the layer
interfaces [26].

Characterization of surface cracks using Rayleigh’s wave excitations was dealt by an
indirect boundary element method. The variations of spectral ratios between the transmitted
and incident waves were studied as a function of the crack depth. They were used to design
an efficient procedure for the determination of crack depths [27].

BEM formulations have been also used to study scattering of Rayleigh’s wave by cavit-
ies [28]. Moreover, BEM methods were developed to study reflection and transmission of
Rayleigh’s surface waves by a juncture normal to free surface, between identical or different
materials [29].

Propagation of Scholte’s waves in a water-filled borehole in an anisotropic solid by
a time-domain boundary element method was studied in [30], where detailed arrival iden-
tification and interpretation of acoustic and elastic waves propagating along the fluid-solid
interfaces were pointed out.

In this paper, a numerical method known as the indirect boundary element method
(IBEM) is used to study, in frequency and time domain, the behavior of three canonical
models of interface giving rise to the emergence of Rayleigh’s, Stoneley’s, and Scholte’s
waves. To validate the equations used here, we included in The appendix, a comparison bet-
ween the IBEM and discrete wave number (DWN), for the case of a fluid-solid interface,
where an initial pressure is applied in the fluid using a Hankel’s function of second kind and
zero order.
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2. Indirect Boundary Element Method Formulation

For the three interface models studied in this work, the resulting state of tractions, displace-
ments, and pressures at any point of the models can be expressed as the sum of an incident
field and a diffracted one. All interface models, vacuum-solid, solid-solid, fluid-solid, are
considered as the union of two half spaces or regions. The source generates, in the region
where it acts, an incident field of pressures and displacements for the fluid or an incident
field of tractions and displacement for solids. In the region where the source is not applied,
only diffracted fields are expected.

For comparison and validation, the results obtained by this numerical technique are
compared with respect to those obtained by the DWN. This comparison was performed for
the case of a fluid-solid interface using a source in the fluid, which was represented by a
Hankel’s function of second kind and zero order; this validation is detailed in The appendix.
However, for the purpose of making comparisons between the three interface models, the
source is applied in the solid S1, as shown in Figure 1.

Therefore, for each model, the total field for the S1 region can be expressed as tS
1
(x) =

toS
1
(x) + tdS

1

(x) for tractions, and uS
1
(x) = uoS

1
(x) + udS

1

(x) for displacements. The regions S2

and F will only have diffracted wave fields, because no sources are applied in such regions.
The superindexes o and d stand for incident and diffracted wave field, respectively.

3. Integral Representations of Diffracted Fields

The diffracted wave field of displacements and tractions for the elastic solid S1 can be exp-
ressed by means of

ud
S1

i (x) =
∫
∂S1

GS1

ij (x, ξ)φ
S1

j (ξ)dSξ,

td
S1

i (x) = c1φS
1

i (x) +
∫
∂S1

TS
1

ij (x, ξ)φ
S1

j (ξ)dSξ,

(3.1)

where ui(x) represents the ith component of the displacement at point x, Gij(x; ξ) represents
Green’s function, which is the displacement produced in the direction i at x due to the
application of a unit force in direction j at point ξ and φj(ξ) is the force density in direction j
at point ξ. This integral representation can be obtained from Somigliana’s identity [4]. ti(x) is
the ith component of traction, c1 = 0.5, if x tends to the boundary S “from inside” the region,
c1 = −0.5 if x tends to S “from outside” the región, and c1 = 0 if x is not at S. Tij(x; ξ) is the
traction Green’s function, that is, the traction in the direction i at a point x, associated to the
unit vector ni(x), due to the application of a unit force in the direction j at ξ on S. The 2D
Green functions for unbounded spaces can be obtained in [5, 31]. Diffracted wave field for
the region S2 has similar form to (3.1).

For the region F (fluid in Figure 1(c)), the diffracted fields for displacements and pres-
sures are written as

ud
F

n (x) = c2Ψ(x) +
1

ρFω2

∫
∂F

∂GF(x, ξ)Ψ(ξ)dSξ
∂n

,

pd
F

(x) =
∫
∂F

GF(x, ξ)Ψ(ξ)dSξ,

(3.2)
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Figure 1: Canonical interface models to be solved by means of the indirect boundary element method.
(a) Vacuum-solid interface, (b) solid-solid interface, and (c) fluid-solid interface.

where

GF(x, ξ) =
ρω2

4i
H

(2)
0

(
ωr

cF

)
. (3.3)

Ψ(·) represents the force density for the fluid, GF(·) is the Green function for the fluid, and c2
defines the region orientation and can assume a value of −0.5, 0, or 0.5 (see explanation for c1,
given above). ρ is the mass density, and ω represents the circular frequency.

3.1. Boundary Conditions

Boundary conditions for each of the models presented in Figure 1 are set as follows:
Vacuum-solid interface

tS
1

i (x) = 0, ∀x ∈ ∂S1. (3.4)

Solid-solid interface

tS
1

i (x) = tS
2

i (x), ∀x ∈ ∂S1, ∂S2,

uS
1

i (x) = uS
2

i (x), ∀x ∈ ∂S1, ∂S2.
(3.5)
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Fluid-solid interface

uF3 (x) = u
S1

3 (x), ∀x ∈ ∂S1, ∂F,

tS
1

1 (x) = 0, ∀x ∈ ∂S1,

tS
1

3 (x) = −pF(x), ∀x ∈ ∂S1, ∂F.

(3.6)

Equation (3.4) represents the traction state on a free surface, which promotes the emergence of
Rayleigh’s waves. Boundary conditions (3.5) ensure continuity between two materials with
different mechanical properties and exhibit the existence of Stoneley’s waves. Finally, (3.6)
are the appropriate boundary conditions between an acoustic medium and an elastic solid
one.

4. Discretization Scheme

For purposes of exemplification, the discretization procedure for the equations corresponding
to the interface of Figure 1(b) is illustrated, such interface is related to the emergence and
propagation of Stoneley’s waves, which exist in the interface between two elastic solids. Then,
from the equation of continuity (3.5), it can be said that the traction and displacement states
may be expressed, respectively, as

to
S1

i (x) + td
S1

i (x) = td
S2

i (x), ∀x ∈ ∂S1, ∂S2, (4.1)

uo
S1

i (x) + ud
S1

i (x) = ud
S2

i (x), ∀x ∈ ∂S1, ∂S2. (4.2)

Reordering these last two equations, one has

td
S1

i (x) − tdS
2

i (x) = −toS
1

i (x), ∀x ∈ ∂S1, ∂S2,

ud
S1

i (x) − udS
2

i (x) = −uoS
1

i (x), ∀x ∈ ∂S1, ∂S2.

(4.3)

According to the integral representations (3.1), (4.3) can be written as

c1φ
S1

i (x) +
∫
∂S1

TS
1

ij (x, ξ)φ
S1

j (ξ)dSξ − c2φS2

i (x) −
∫
∂S2

TS
2

ij (x, ξ)φ
S2

j (ξ)dSξ = −toS
1

i , ∀x ∈ ∂S1, ∂S2,

∫
∂S1

GS1

ij (x, ξ)φ
S1

j (ξ)dSξ −
∫
∂S2

GS2

ij (x, ξ)φ
S2

j (ξ)dSξ = −uoS
1

i , ∀x ∈ ∂S1, ∂S2,

(4.4)

where to
S1

i and uo
S1

i represent, respectively, the stress and displacement wave fields produced
by the source, both applied in the region S1.
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Figure 2: Boundary element mesh for Stoneley’s problem.

In general, the interface between two solids may be discretized according to Figure 2.
If we assume that the force densities φi(x) are constant in each boundary element that

forms the surfaces of the regions S1 and S2 and the Gaussian integration is performed (or
analytical integration where Green’s function is singular), then (4.4) can be rewritten as

N∑
n=1

φS
1

j (ξn)tS
1

ij (xl, ξn) −
N∑
n=1

φS
2

j (ξn)tS
2

ij (xl, ξn) = −toS
1

i (xl), l = 1,N,

N∑
n=1

φS
1

j (ξn)uS
1

ij (xl, ξn) −
N∑
n=1

φS
2

j (ξn)uS
2

ij (xl, ξn) = −uoS
1

i (xl), l = 1,N,

(4.5)

where

tij(xl, ξn) = c1δijδln +
∫
ΔSn

Tij(xl, ξn)dSξ,

gij(xl, ξn) =
∫
ΔSn

Gij(xl, ξn)dSξ,

(4.6)

where δij represents the Kronecker delta and ΔSn is the length of each boundary element.
Equations (4.5) represent the system of Fredholm’s integral equations to be solved.

Once the unknowns are found, it is possible to determine the state of tractions and displace-
ment at any point within the regions S1 and S2 using (3.1), plus the incident wave field.

For the other types of interface, it is possible to follow the same discretization scheme,
applying the corresponding boundary conditions. Our integral representations can be used
to handle nonflat interfaces, which is the subject of our current research.

5. Numerical Examples

For validation purposes we refer the reader to the appendix. There, results achieved by the
IBEM are compared with those obtained by the DWN method, for the case of fluid-solid
interfaces. Good agreement is seen between both methods.

In this section, numerical simulations for the three canonical interfacemodels are deve-
loped. Flat interfaces are considered for the three models. Thematerial properties used for the
analysis are shown in Table 1; these material properties were consulted from [32–34]. α and
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Table 1: Material properties used for numerical simulations.

Interface model Materials 1 Materials 2
α β ρ α β ρ α β ρ α β ρ

Vacuum-solid Solid (S1) Solid (S1)
2670 1090 2200 4810 2195 2500

Solid-solid Solid (S1) Solid (S2) Solid (S1) Solid (S2)
2670 1090 2200 4810 2195 2500 4810 2195 2500 2670 1090 2200

Fluid-solid Fluid (F) Solid (S1) Fluid (F) Solid (S1)
1501 1000 2670 1090 2200 1501 1000 4810 2195 2500

β are the compressional and shear wave velocities (ms−1), respectively, and ρ is the material
density (kgm−3). Materials with α = 2670ms−1 correspond to sandstone, while those with α =
4810ms−1 correspond to limestone. Results are described in the following paragraphs.

Figure 3 presents the displacement spectra, for the three interfaces models studied,
for the first receiver detailed in Figure 1. The depth to which the source is applied is H =
0.05m and the horizontal distance from the source to the receiver is 20H = 1.0m. The response
corresponding to Materials 1 is shown in Figures 3(a) and 3(b), while that associated with the
Materials 2 are graphed in Figures 3(c) and 3(d). For the analysis, a frequency increment of
150Hz was considered and a maximum frequency of 19200Hz was reached.

Results associated with Materials 1 show clear amplifications for vacuum-solid and
water-solid interfaces for both directions of displacement. At low frequencies, these two inter-
faces describe similar amplitudes (for frequencies lower than 1000Hz). For frequencies close
to 19000Hz, the behavior becomes asymptotic and almost negligible. For the model formed
by water and sandstone, strong variations of displacement are noted for the range of 1000 to
12000Hz, mainly for the x3 component. As was expected, the model formed by the S1 and
S2 shows amplitudes of displacement that are much smaller, and its behavior describes soft
patterns. From the frequency of 10000Hz, the behavior is almost negligible in both directions.

The response obtained from Materials 2 for the three models is depicted in Figures
3(c) and 3(d). It is possible to appreciate that for both directions of displacement, the spectra
show soft trajectories and almost negligible from the frequency of 8000Hz. This behavior can
be attributed to the great rigidity of the bottom material (limestone) in comparison with the
top material (air, wáter, or sandstone). This stiffness not only has dominion or control in the
response (displacements), but also, provides a certain similarity in the spectra, and therefore,
on the Rayleigh’s, Stoneley’s and Scholte’s interface waves for these materials.

Figure 4 shows synthetic seismograms of displacement for the directions x1 and x3
(left and right, resp.), measured by 25 receivers located as depicted in Figure 1. The first recei-
ver is located at a horizontal distance of 20H = 1.0m from the source. The other receivers are
located using a distance increment of 0.04m. For each of the interface models studied is
evident the emergence of their corresponding interface waves, that is, Rayleigh’s, Stoneley’s,
and Scholte’s waves, for vacuum-solid, solid-solid, and water-solid interfaces, Figures 4(a),
4(b), and 4(c), respectively.

Figure 4(a) shows the arrival of P waves at a speed of approximately 2670ms−1; also
the arrival of Rayleigh’s waves traveling close to 1021ms−1 is observed. Here, the amount of
energy carrying Rayleigh’s waves is clear. For the case of two-solid interface, limestone (top)
and sandstone (bottom), the emergence of Stoneley’s waves is expected. In Figure 4(b), it is
possible to look at three wave fronts, which propagate at speeds of 4810ms−1, 1.850ms−1, and
1078ms−1. The first wave front is associated with the speed of compressional waves of the
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Figure 3: Spectra of displacement for three interfacemodels. Results forMaterials 1 (see Table 1) are plotted
(a) and (b), while those obtained from Materials 2 are presented in (c) and (d).

limestone, the second is close to the shear waves velocity of limestone, and the last shows
a velocity of less than the shear wave velocity of sandstone and can be associated with the
propagation of Stoneley’s waves. In Figure 4(c) two wave fronts are highlighted. The first
traveling at a velocity of 2670ms−1 and is associated with the compressional wave velocity of
sandstone. The second front corresponds to the propagation of Scholte’s waves whose speed
is 970ms−1 and obviously carries a significant amount of energy, mainly in its x3 component.

In the case of interface waves for Materials 2 of Table 1, it should be emphasized that
results for this material describes similar behavior toMaterials 1. In general, the amplitudes of
displacement, for both components x1 and x3, are lower than those obtained for Materials 1.
This is due to the great rigidity of limestone compared with sandstone. In the synthetic seis-
mograms presented in Figure 5, different wave front arrivals and their corresponding speeds
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Figure 4: Synthetic seismograms for three different interfaces. (a) Vacuum-solid interface; (b) solid-solid
interface, and (c) fluid-solid interface. x1 (left) and x3 (right) components of displacement are plotted.
Materials 1 from the Table 1 are used for the analysis.

are highlighted. It can be seen the amount of energy that leads the different waves that pro-
pagate in the interface, manifesting itself in the amplitudes of the displacement generated. In
Figure 3(c), it is important to mention the influence of fluid layer, showing a wave front that
propagates at a speed of 1501ms−1.

Figures 6(a) and 6(b) show the time response for the entire 2D water-sandstone inter-
face model. To this purpose, a net of 51 × 51 receivers, spaced using a distance increment of
0.04m, is required. Column (a) plots the results of pressure in the fluid and displacements in
the x1 direction for the solid, while the column (b) plots pressures in the fluid and displace-
ments in the x3 direction for the solid. This numerical simulation is shown for three different
times.
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Figure 5: Synthetic seismograms for three different interfaces. (a) Vacuum-solid interface, (b) solid-solid
interface, and (c) fluid-solid interface. x1 (left) and x3 (right) components of displacement are plotted.
Materials 2 from the Table 1 are used for the analysis.

For the time t = 0.000911 s, the source has hit the solid boundary and a diffracted wave
in the fluid and reflected waves in the solid can be seen, generating the emergence of P y S
wave fronts. For the time t = 0.001432 s, the above mentioned waves go away from the source
while the presence of interface waves is clearly evident to this time. These are the Scholte’s
waves and are highlighted using circles in Figures 6(a) and 6(b). For the time t = 0.001953 s,
the propagation of interface waves is very visibly and shows a delay with respect to the P and
Swave fronts in the solid. Scholte’s waves for this case propagate with a velocity of 970ms−1.

6. Conclusions

In this work, we expand the use of the indirect boundary element method to study the pro-
pagation of elastic waves in vacuum-solid, solid-solid, and fluid-solid interfaces. In this
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Figure 6: Snapshots by IBEM for the complete 2D water-sandstone interface model are shown. A grid of
51 × 51 receivers, spaced using a distance increment of 0.04m, is required. Column (a) plots the results of
pressures in the fluid and displacements in the x1 direction for the solid, while the column (b) plots pressu-
res in the fluid and displacements in the x3 direction for the solid.

numerical technique, based on Huygens’ principle and the Somigliana’s representation theo-
rem, the fields of pressures, tractions, and displacements are expressed in terms of single-
layer boundary integral equations.

Green’s functions for tractions and displacements, for unbounded space, were used,
but they are enforced to meet the proper boundary conditions that prevail for each interface
model studied.

Firstly, spectra of displacements were included, and some aspects about the behavior
for the two groups of materials studied were pointed out. Therefore, a fast fourier transform
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algorithmwas applied to obtain time responses for the three interface models. In all cases, the
existence and propagation of Rayleigh, Stoneley, and Scholte’s waves are manifested, high-
lighting the important amount of energy that they transport.

The results obtained from our numerical technique were compared with the DWN;
a good agreement between the different approaches was evident. Therefore, the IBEM can be
considered as a good technique to model interface problems. Complex geometries solved by
means of IBEM are the target of our current research.

Appendix

This section presents the validation of the indirect boundary element method for the solution
of interface problems and compares results by IBEMwith those obtained by the discrete wave
number. For this purpose, a fluid-solid interface has been selected. In this case, a source is ap-
plied in the fluid, which is represented by a Hankel’s function of second kind and zero order.
The following is a brief description of the DWNmethod [35].

The discrete wave number method is one of the techniques to simulate earthquake
ground motions. The seismic wave radiated from a source is expressed as a wavenumber
integration [29]. The main idea of the method is to represent a source as a superposition of
homogenous plane waves propagating in discrete angles. As long as the medium has no ine-
lastic damping, the denominator of the integrand becomes zero for a particular wavenumber
and, consequently, the numerical integration becomes impossible. To solve this problem, a
method to incorporate a complex frequency was proposed as early as the proposal of the dis-
crete wavenumber method itself.

The incident pulse at the fluid (source) can be expressed as

p0
F

(x) = C(ω)H(2)
0

(
ωr

cF

)
=
C(ω)
π

∫∞

−∞

e−ikx3−iη|x1|

η
dk ≈ C(ω)

π

N∑
n=−N

e−iknx3−iηn|x1|

ηn
Δk, (A.1)

where p0
F
(x) is the incident pulse at the fluid, x = {x1, x3}, C(ω) represents a scale factor for

the incident pulse, H(2)
0 (·) is Hankel’s function of second kind and zero order, ω is circular

frequency, cF represents the compressional wave velocity for the fluid, and r = r(x) is the

distance from the receiver to the source. k is the wavenumber, η =
√
(ω2/cF2) − k2 with

Imη 〈 0. If we express k in discrete values, then we have kn = nΔk and ηn =
√
(ω2/cF2) − k2n

with Imηn 〈 0.
If we assume that the whole pressure and displacement field in the fluid, that is, free

and diffracted field, can be expressed, respectively, by

pF(x) = p0
F

(x) + pd
F

(x) = p0
F

(x) +
N∑

n=−N
Ane

−iknx3+iηn(x1−a), (A.2)

uF1 (x) =
1
ρω2

∂pF(x)
∂x1

=
1
ρω2

{
N∑

n=−N

−isig(x1)
π

e−iknx3−iηn|x1|Δk +
N∑

n=−N
iAnηne

−iknx3+iηn|x1−a|Δk

}
.

(A.3)
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Figure 7: Spectra of pressures for water-sandstone (left) and water-limestone (right) interfaces. Results
obtained by IBEM are plotted using dotted lines, while those obtained by means of DWN are drawn with
continuous lines. Good agreement between IBEM and DWN is observed.

An represents the unknown coefficient to evaluate the diffracted field in the fluid and a is the
distance from the source to the elastic solid.

For the solid, we assume that the potential of displacement has the form φ =∑
Bne

−iknx3e−iγn(x1−a) and ψ =
∑
Cne

−iknx3e−iυn(x1−a), where γn =
√
(ω2/α2) − kn2 with Im γn〈 0

and υn =
√
(ω2/β2) − kn2 with Im υn〈 0. α and β are the compressional and shear wave velo-

cities, respectively.
The displacement field for the solid can be expressed as u = ∂φ/∂x1 − ∂ψ/∂x3 and

w = ∂φ/∂x3 + ∂ψ/∂x1. The stress field can be obtained by the well-known equation:

σij(x) = λεkkδij + 2μεij , (A.4)

where σij(x) is stress tensor, λ and μ are Lamé’s constants, εij is strain tensor and δij is
Kronecker’s delta.

The boundary conditions to be enforced are represented by (3.6). Once the boundary
conditions have been applied, the unknown coefficients An, Bn, and Cn are obtained, the
whole pressure field in the fluid is finally determined by means of (A.2).

For validation purposes, water-sandstone and water-limestone interfaces are consid-
ered (for material properties see Table 1). Figure 7 shows the spectra of pressures for the
models analyzed. For all cases, the initial pressure (source)was generated in the fluid at a dis-
tance of 0.05m from the elastic solid boundary. The receiver is placed at a horizontal distance
of 1.0m from the source. The frequency analysis is done considering a frequency increment of
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150Hz and reaching a maximum of 19200Hz. In Figure 7, results from IBEM are plotted with
dotted line, while those obtained by DWN are drawn with continuous line. It can be seen that
both techniques coincide acceptably.
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