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Noor (“Extended general variational inequalities,” 2009, “Auxiliary principle technique for ex-
tended general variational inequalities,” 2008, “Sensitivity analysis of extended general variational
inequalities,” 2009, “Projection iterative methods for extended general variational inequalities,”
2010) introduced and studied a new class of variational inequalities, which is called the extended
general variational inequality involving three different operators. This class of variational inequali-
ties includes several classes of variational inequalities and optimization problems. The main
motivation of this paper is to review some aspects of these variational inequalities including the
iterative methods and sensitivity analysis. We expect that this paper may stimulate future research
in this field along with novel applications.

1. Introduction

Variational inequalities, which were introduced and studied in early sixties, contain a
wealth of new ideas. Variational inequalities can be considered as a natural extension of
the variational principles. It is now well known that the variational inequalities enable us
to study a wide class of problems such as free, moving, obstacle, unilateral, equilibrium, and
fixed points in a unified and simple framework. Variational inequalities are closely connected
with the convexity optimization problem. We would like to point out that the minimum of
a differentiable convex function on a convex set in a normed space can be characterized by
the variational inequalities. This shows that the variational inequalities are closely related
to the convexity. In recent years, the concept of the convexity has been extended and
generalized in several direction using some novel and innovative techniques. We emphasize
that these generalizations of the convexity have played a fundamental and basic part in the
introduction of a new class of variational inequalities. Motivated by these developments,
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Noor [1] considered a new class of variational inequality involving two different operators.
It turned out that a wide class of odd-order and nonsymmetric problems can be studied
via these general variational inequalities. Youness [2] introduced and studied a new class of
convex function with respect to an arbitrary function. This class of functions is usually called
the g-convex functions. These nonconvex functions may not be convex, and the underlying
set may not be a convex set in the classical convex analysis sense. Noor [3] showed that
the minimum of this type of differentiable nonconvex function on the nonconvex (g-convex)
set can be characterized by the general variational inequalities. This result shows that the
general variational inequalities are closely associated with nonlinear optimization. For the
recent developments in general variational inequalities, see [1–42] and the references therein.

Motivated and inspired by the research activities going on in this dynamic field, Noor
[13–16] introduced the nonconvex functions involving two arbitrary functions. This class of
nonconvex functions is called the gh-convex function. This class of nonconvex function is
more general and unifying ones. One can easily show that this class of nonconvex functions
includes the g-convex function introduced by Youness [2] and the classical convex functions
as special cases. Noor [13–16] has shown that the minimum of such type of differentiable
nonconvex (gh-convex) functions can be characterized by a class of variational inequalities
on the nonconvex (gh-convex) sets. This fact motivated Noor [13–16] to introduce and study
a new class of variational inequalities, called the extended general variational inequalities
involving three different operators. It has been shown that for different and suitable choice
of the operators, one can obtain several known and new classes of variational inequalities.
These variational inequalities have important and novel applications in various branches of
engineering, physical, regional, mathematical, physical, social, and natural sciences.

Several numerical techniques have been developed for solving variational inequalities
using different technique and ideas. Using the projection technique, one can establish the
equivalence between the variational inequalities and the fixed point problem. This alternative
equivalent form has been used to study the existence of a solution of the variational
inequalities and related problems. This technique and its variant forms have been used to
develop several iterative methods for solving the extended general variational inequalities
and optimization problems.

Theory of extended general variational inequalities is quite a new one.We shall content
ourselves to give the main flavour of the ideas and techniques involved. The technique used
to analyze the various iterative methods and other results for extended general variational
inequalities are a beautiful blend of ideas of pure and applied sciences. In this paper, we
have presented the main results regarding the various iterative methods, their convergence
analysis, and other aspects. The language used is necessary to be that of functional analysis,
convex analysis, and some knowledge of elementary Hilbert space theory. The framework
chosen should be seen as a model setting for more general results for other classes of
variational inclusions. One of the main purposes of this paper is to demonstrate the close
connection among various classes of iterative methods for solving the extended general
variational inequalities. We would like to emphasize that the results obtained and discussed
in this paper may motivate and bring a large number of novel, innovative, and important
applications, extensions, and generalizations in other fields.

2. Basic Concepts

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let K be a nonempty closed convex set inH.
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For given nonlinear operators T, g, h, we consider the problem of finding u ∈ H :
h(u) ∈ K such that

〈
Tu, g(v) − h(u)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.1)

which is called the extended general variational inequality. Noor [13–16] has shown that the
minimum of a class of differentiable nonconvex functions on hg-convex set K in H can be
characterized by extended general variational inequality (2.1).

For this purpose, we recall the following well-known concepts, see [7].

Definition 2.1 (see [6, 13]). Let K be any set in H. The set K is said to be hg-convex if there
exist two functions g, h : H −→ H such that

h(u) + t
(
g(v) − h(u)

) ∈ K, ∀u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1]. (2.2)

Note that every convex set is an hg-convex set, but the converse is not true, see [6]. If g = h,
then the hg-convex set K is called the g-convex set, which was introduced by Youness [2].

From now onward, we assume that K is an hg-convex set, unless otherwise specified.

Definition 2.2 (see [24, 28]). The function F : K −→ H is said to be hg-convex, if and only if,
there exist two functions h, g such that

F
(
h(u) + t

(
g(v) − h(u)

)) ≤ (1 − t)F(h(u)) + tF
(
g(v)

)
(2.3)

for all u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1]. Clearly, every convex function is a gh-convex, but
the converse is not true. For g = h, Definition 2.2 is due to Youness [2].

We now show that the minimum of a differentiable hg-convex function on the hg-
convex set K in H can be characterized by the extended general variational inequality (2.1).
This result is due to Noor [13–16]. We include all the details for the sake of completeness and
to convey the main idea.

Lemma 2.3 (see [13–16]). Let F : K −→ H be a differentiable hg-convex function. Then u ∈ H :
h(u) ∈ K is the minimum of hg-convex function F onK if and only if u ∈ H : h(u) ∈ K satisfies the
inequality

〈
F ′(h(u)), g(v) − h(u)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.4)

where F ′(u) is the differential of F at h(u) ∈ K.

Proof. Let u ∈ H : h(u) ∈ K be a minimum of hg-convex function F on K. Then

F(h(u)) ≤ F
(
g(v)

)
, ∀v ∈ H : g(v) ∈ K. (2.5)

Since K is an hg-convex set, so, for all u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1], g(vt) = h(u) +
t(g(v) − h(u)) ∈ K. Setting g(v) = g(vt) in (2.5), we have

F(h(u)) ≤ F
(
h(u) + t

(
g(v) − h(u)

))
. (2.6)
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Dividing the above inequality by t and taking t −→ 0, we have

〈
F ′(h(u)), g(v) − h(u)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.7)

which is the required result (2.4).
Conversely, let u ∈ H : h(u) ∈ K satisfy the inequality (2.4). Since F is an hg-convex

function, for all u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1], h(u) + t(g(v) − h(u)) ∈ K, and

F
(
h(u) + t

(
g(v) − h(u)

)) ≤ (1 − t)F(h(u)) + tF
(
g(v)

)
, (2.8)

which implies that

F
(
g(v)

) − F(h(u)) ≥ F
(
h(u) + t

(
g(v) − g(u)

)) − F(h(u))
t

. (2.9)

Letting t → 0 in the above inequality and using (2.4), we have

F
(
g(v)

) − F(h(u)) ≥ 〈
F ′(h(u)), g(v) − h(u)

〉 ≥ 0, (2.10)

which implies

F(h(u)) ≤ F
(
g(v)

)
, ∀v ∈ H : g(v) ∈ K (2.11)

showing that u ∈ K is the minimum of F on K inH.

Lemma 2.3 implies that hg-convex programming problem can be studied via the
extended general variational inequality (2.1) with Tu = F ′(h(u)). In a similar way, one
can show that the extended general variational inequality is the Fritz-John condition of the
inequality constrained optimization problem.

We now list some special cases of the extended general variational inequality (2.1).
(i) If g = h, then problem (2.1) is equivalent to finding u ∈ H : g(u) ∈ K such that

〈
Tu, g(v) − g(u)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.12)

which is known as general variational inequality, introduced and studied by Noor [1] in
1988. It turned out that odd order and nonsymmetric obstacle, free, moving, unilateral, and
equilibrium problems arising in various branches of pure and applied sciences can be studied
via general variational inequalities (2.12), see [1–42] and the references therein.

(ii) For h = I, the identity operator, problem (2.1) is equivalent to finding u ∈ K such
that

〈
Tu, g(v) − u

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.13)

which is also called the general variational inequalities, introduced and studied by Noor [19].
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(iii) For g ≡ I, the identity operator, the extended general variational inequality (2.1)
collapses to: find u ∈ H : h(u) ∈ K such that

〈Tu, v − h(u)〉 ≥ 0, ∀v ∈ K, (2.14)

which is also called the general variational inequality, see Noor [11].
(iv) For g = h = I, the identity operator, the extended general variational inequality

(2.1) is equivalent to finding u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K, (2.15)

which is known as the classical variational inequality and was introduced in 1964 by Stam-
pacchia [40]. For the recent applications, numerical methods, sensitivity analysis, dynamical
systems, and formulations of variational inequalities, see [1–42] and the references therein.

(v) IfK∗ = {u ∈ H; 〈u, v〉 ≥ 0, ∀v ∈ K} is a polar(dual) convex cone of a closed convex
cone K in H, then problem (2.1) is equivalent to finding u ∈ H such that

g(u) ∈ K, Tu ∈ K∗,
〈
g(u), Tu

〉
= 0, (2.16)

which is known as the general complementarity problem, see [1]. If g = I, the identity
operator, then problem (2.16) is called the generalized complementarity problem. For
g(u) = u − m(u), where m is a point-to-point mapping, then problem (2.16) is called the
quasi(implicit) complementarity problem, see [3, 11] and the references therein.

From the above discussion, it is clear that the extended general variational inequalities
(2.1) is most general and includes several previously known classes of variational inequalities
and related optimization problems as special cases. These variational inequalities have
important applications in mathematical programming and engineering science optimization
problems.

We would like to emphasize that problem (2.1) is equivalent to finding u ∈ H : h(u) ∈
K such that

〈
ρTu + h(u) − g(u), g(v) − h(u)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K. (2.17)

This equivalent formulation is also useful from the applications point of view.
If K is convex set, then problem (2.1) is equivalent to finding u ∈ H : h(u) ∈ K such

that

0 ∈ Tu + h(u) − g(u) +NK(h(u)), (2.18)

which is called the extended general variational inclusion problem associated with general
variational inequality (2.1). Here NK(h(u)) denotes the normal cone of K at h(u) in the
sense of nonconvex analysis. This equivalent formulation plays a crucial and basic part in
this paper. We would like to point out that this equivalent formulation allows us to use the
projection operator technique for solving the general nonconvex variational inequalities of
the type (2.1).

We also need the following concepts and results.
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Lemma 2.4. Let K be a closed and convex set in H. Then, for a given z ∈ H, u ∈ K satisfies the
inequality

〈u − z, v − u〉 ≥ 0, ∀v ∈ K, (2.19)

if and only if

u = PKz, (2.20)

where PK is the projection of H onto the closed and convex set K inH.

Definition 2.5. For all u, v ∈ H, an operator T : H −→ H is said to be

(i) strongly monotone if there exists a constant α > 0 such that

〈Tu − Tv, u − v〉 ≥ α‖u − v‖2, (2.21)

(ii) Lipschitz continuous if there exists a constant β > 0 such that

‖Tu − Tv‖ ≤ β‖u − v‖. (2.22)

From (i) and (ii), it follows that α ≤ β.

Remark 2.6. It follows from the strongly monotonicity of the operator T , that

α‖u − v‖2 ≤ 〈Tu − Tv, u − v〉 ≤ ‖Tu − Tv‖‖u − v‖, ∀u, v ∈ H, (2.23)

which implies that

‖Tu − Tv‖ ≥ α‖u − v‖, ∀u, v ∈ H. (2.24)

This observation enables us to define the following concept.

Definition 2.7. The operator T is said to be firmly expanding if

‖Tu − Tv‖ ≥ ‖u − v‖, ∀u, v ∈ H. (2.25)

Definition 2.8. An operator T : H −→ H with respect to the arbitrary operators g, h is said to
be gh-pseudomonotone, if and only if,

〈
ρTu, g(v) − h(u)

〉 ≥ 0 =⇒ −〈Tv, h(v) − g(u)
〉 ≥ 0 ∀u, v ∈ H. (2.26)
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3. Projection Methods

It is known that the extended general variational inequality (2.1) is equivalent to the fixed
point problem. One can also prove this result using Lemma 2.4.

Lemma 3.1 (see [13]). u ∈ H : h(u) ∈ K is a solution of the extended general variational inequality
(2.17) if and only if u ∈ H : h(u) ∈ K satisfies the relation

h(u) = PK

[
g(u) − ρTu

]
, (3.1)

where PK is the projection of H onto the closed and convex set K.

We rewrite the the relation (3.1) in the following form:

F(u) = u − h(u) + PK

[
g(u) − ρTu

]
, (3.2)

which is used to study the existence of a solution of the extended general variational inequal-
ities (2.17).

We now study those conditions under which the extended general variational inequal-
ity (2.1) has a unique solution and this is the main motivation of our next result.

Theorem 3.2 (see [13]). Let the operators T, g, h : H → H be relaxed cocoercive strongly monotone
with constants (γ > 0, α > 0), (γ1 > 0, σ > 0), (γ2 > 0, μ > 0), and Lipschitz continuous with
constants with β > 0, δ > 0, η > 0, respectively. If

∣∣∣∣∣
ρ −

(
α − γβ2

)

β2

∣∣∣∣∣
<

√(
α − γβ2

)2 − β2k(2 − k)

β2
,

α > γβ2 + β
√
k(2 − k), k < 1,

(3.3)

where

k =
√
1 − 2

(
σ − γ1δ2

)
+ δ2 +

√
1 − 2

(
μ − γ2η2

)
+ η2, (3.4)

then there exists a unique solution u ∈ H : h(u) ∈ K of the extended general variational inequality
(2.1).

Proof. From Lemma 3.1, it follows that problems (3.1) and (2.1) are equivalent. Thus it is
enough to show that the map F(u), defined by (3.2), has a fixed point. For all u/=v ∈ H,

‖F(u) − F(v)‖ =
∥∥u − v − (h(u) − h(v)) + PK

[
g(u) − ρTu

] − PK

[
g(v) − ρTv

]∥∥

≤ ‖u − v − (h(u) − h(v))‖ + ∥∥PK

[
g(u) − ρTu

] − PK

[
g(v) − ρTv

]∥∥

+
∥∥u − v − ρ(Tu − Tv)

∥∥,

(3.5)

where we have used the fact that the operator PK is nonexpansive.
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Since the operator T is relaxed cocoercive strongly monotone with constants γ > 0,
α > 0 and Lipschitz continuous with constant β > 0, it follows that

∥
∥u − v − ρ(Tu − Tv)

∥
∥2 ≤ ‖u − v‖2 − 2ρ〈Tu − Tv, u − v〉 + ρ2‖Tu − Tv‖2

≤
(
1 − 2ρ

(
α − γβ2

)
+ ρ2β2

)
‖u − v‖2.

(3.6)

In a similar way, we have

∥
∥u − v − (

g(u) − g(v)
)∥∥2 ≤

(
1 − 2

(
σ − γ1δ

2
)
+ δ2

)
‖u − v‖2,

‖u − v − (h(u) − h(v))‖2 ≤ (
1 − 2

(
μ − γ2η

2) + η2)‖u − v‖2,
(3.7)

where γ1 > 0, σ > 0, γ2 > 0, μ > 0, and δ > 0, η > 0 are the relaxed cocoercive strongly
monotonicity and Lipschitz continuity constants of the operator g and h, respectively.

From (3.4), (3.5), (3.6), and (3.7), we have

‖F(u) − F(v)‖ ≤
(√

1 − 2
(
σ − γ1δ2

)
+ δ2 +

√
1 − 2

(
μ − γ2η2

)
+ η2

+
√
1 − 2ρ

(
α − γβ2

)
+ β2ρ2

)
‖u − v‖

=
(
k + t

(
ρ
))‖u − v‖

= θ‖u − v‖,

(3.8)

where

t
(
ρ
)
=
√
1 − 2ρ

(
α − γβ2

)
+ ρ2β2, (3.9)

θ = k + t
(
ρ
)
. (3.10)

From (3.3), it follows that θ < 1, which implies that the map F(u) defined by (3.2) has a fixed
point, which is a unique solution of (2.1).

Using the fixed point formulation (2.15), we suggest and analyze the following
iterative methods for solving the extended general nonconvex variational inequality (2.1).

Algorithm 3.3. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

h(un+1) = PK

[
g(un) − ρTun

]
, n = 0, 1, . . . , (3.11)

which is called the explicit iterative method. For the convergence analysis of Algorithm 3.3,
see Noor [21].

We again use the fixed point formulation to suggest and analyze the following iterative
method for solving (2.1).
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Algorithm 3.4. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

h(un+1) = PK

[
g(un) − ρTun+1

]
, n = 0, 1, . . . . (3.12)

Algorithm 3.4 is an implicit iterative method for solving the extended general variational in-
equalities (2.1). Using Lemma 2.3, one can rewrite Algorithm 3.4 in the following equivalent
form.

Algorithm 3.5. For a given u0 ∈ H, find the approximate solution un+1 by the iterative schemes

〈
ρTun+1 + h(un+1) − g(un), g(v) − h(un+1)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K. (3.13)

To implement Algorithm 3.4, we use the predictor-corrector technique. We use
Algorithm 3.3 as a predictor and Algorithm 3.4 as a corrector to obtain the following
predictor-corrector method for solving the extended general variational inequality (2.1).

Algorithm 3.6. For a given u0 ∈ H, find the approximate solution un+1 by the iterative schemes

g(wn) = PK

[
g(un) − ρTun

]
,

h(un+1) = PK

[
g(un) − ρTwn

]
, n = 0, 1, . . . .

(3.14)

Algorithm 3.6 is known as the extended extragradient method. This method includes the
extragradient method of Korpelevič [8] for h = g = I. Here we would like to point out
that the implicit method (Algorithm 3.4) and the extragradient method (Algorithm 3.6) are
equivalent.

We now consider the convergence analysis of Algorithm 3.4, and this is the main
motivation of our next result.

Theorem 3.7. Let u ∈ H : h(u) ∈ K be a solution of (2.1), and let un+1 be the approximate solution
obtained from Algorithm 3.4. If the operator T is gh-pseudomonotone, then

∥∥g(u) − h(un+1)
∥∥2 ≤ ∥∥g(u) − g(un)

∥∥2 − ∥∥(g(un) − h(un+1)
∥∥2
. (3.15)

Proof. Let u ∈ H : h(u) ∈ K be a solution of (2.1). Then

〈
ρTv, h(v) − g(u)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (3.16)

since the operator T is gh-pseudomonotone. Take v = un+1 in (3.16); we have

〈
ρTun+1, h(un+1) − g(u)

〉 ≥ 0. (3.17)

Taking v = u in (3.13), we have

〈
ρTun+1 + h(un+1) − g(un), g(u) − h(un+1)

〉 ≥ 0. (3.18)
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From (3.17) and (3.18), we have

〈
h(un+1) − g(un), g(u) − h(un+1)

〉 ≥ 0. (3.19)

It is well known that

2〈v, u〉 = ‖u + v‖2 − ‖v‖2 − ‖u‖2, ∀u, v ∈ H. (3.20)

Using (3.19), from (3.20), one can easily obtain

∥
∥g(u) − h(un+1)

∥
∥2 ≤ ∥

∥g(u) − g(un)
∥
∥2 − ∥

∥g(un) − h(un+1)
∥
∥2
, (3.21)

the required result (3.15).

Theorem 3.8. Let u ∈ H : h(u) ∈ K be a solution of (2.1), and let un+1 be the approximate solution
obtained from Algorithm 3.4. Let H be a finite dimensional space. Then limn→∞(h(un+)) = g(u).

Proof. Let u ∈ H : h(u) ∈ K be a solution of (2.1). Then the sequence {‖h(un) − g(u)‖} is
nonincreasing and bounded and

∞∑

n=0

∥∥h(un+1) − g(un)
∥∥2 ≤ ∥∥g(u0) − g(u)

∥∥2
, (3.22)

which implies

lim
n→∞

∥∥h(un+1) − g(un)
∥∥ = 0. (3.23)

Let û be a cluster point of {un}. Then there exists a subsequence {uni} such that {uni}
converges to û. Replacing un+1 by uni in (3.13), taking the limits in (3.13), and using (3.23),
we have

〈
ρTû, g(v) − h(û)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K. (3.24)

This shows that û ∈ H : h(û) ∈ K solves the extended general variational inequality (2.1)
and

∥∥h(un+1) − g(û)
∥∥2 ≤ ∥∥g(un) − g(û)

∥∥2
, (3.25)

which implies that the sequence {un} has a unique cluster point and limn→∞(h(un+1)) = g(û)
is the solution of (2.1), the required result.

We again use the fixed point formulation (3.1) to suggest the following method for
solving (2.1).
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Algorithm 3.9. For a given u0 ∈ H, find the approximate solution un+1 by the iterative schemes

h(un+1) = PK

[
g(un+1) − ρTun+1

]
, n = 0, 1, 2, . . . , (3.26)

which is also known as an implicit method. To implement this method, we use the prediction-
correction technique. We use Algorithm 3.3 as the predictor and Algorithm 3.9 as the
corrector. Consequently, we obtain the following iterative method.

Algorithm 3.10. For a given u0 ∈ H, find the approximate solution un+1 by the following
iterative schemes:

h
(
yn

)
= PKr

[
g(un) − ρTun

]
,

h(un+1) = PKr

[
g
(
yn

) − ρTyn

]
, n = 0, 1, 2, . . . .

(3.27)

Algorithm 3.10 is called the two-step or predictor-corrector method for solving the extended
general variational inequality (2.1).

For a given step size η > 0, one can suggest and analyze the following two-step
iterative method of the form.

Algorithm 3.11. For a given u0 ∈ H, find the approximate solution by the iterative schemes:

h
(
yn

)
= PKr

[
g(un) − ρTun

]
,

h(un+1) = PKr

[
g(un) − η

{
g(un) − g

(
yn

)
+ ρTyn

}]
, n = 0, 1, 2, . . . .

(3.28)

Note that for η = 1, Algorithm 3.11 reduces to Algorithm 3.10. Using the technique of Noor
[12], one may study the convergence analysis of Algorithms 3.6 and 3.7.

4. Auxiliary Principle Technique

In this section, we use the auxiliary principle technique to study the existence of a solution of
the extended general variational inequality (2.1).

Theorem 4.1. Let T be a strongly monotone with constant α > 0 and Lipschitz continuous with
constant β > 0. Let g be a strongly monotone and Lipschitz continuous operator with constants σ > 0
and δ > 0, respectively. If the operator h is firmly expanding and there exists a constant ρ > 0 such
that

∣∣∣∣ρ − α

β2

∣∣∣∣ <

√
α2 − β2k(2 − k)

β2
, α > β

√
k(2 − k), k < 1, (4.1)

where

k =
√
1 − 2σ + δ2, (4.2)

then the extended general variational inequality (2.1) has a unique solution.
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Proof. We use the auxiliary principle technique to prove the existence of a solution of (2.1).
For a given u ∈ H : g(u) ∈ K satisfying the extended general variational inequality (2.1), we
consider the problem of finding a solution w ∈ H : h(w) ∈ K such that

〈
ρTu + h(w) − g(u), g(v) − h(w)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (4.3)

where ρ > 0 is a constant.
The inequality of type (4.3) is called the auxiliary extended general variational

inequality associated with the problem (2.1). It is clear that the relation (2.5) defines a
mapping u −→ w. It is enough to show that the mapping u −→ w defined by the relation
(4.3) has a unique fixed point belonging to H satisfying the extended general variational
inequality (2.1). Let w1 /=w2 be two solutions of (2.1) related to u1, u2 ∈ H, respectively. It is
sufficient to show that for a well-chosen ρ > 0,

‖w1 −w2‖ ≤ θ‖u1 − u2‖, (4.4)

with 0 < θ < 1, where θ is independent of u1 and u2. Taking g(v) = h(w2) (resp. h(w1)) in
(4.3) related to u1 (resp., u2), adding the resultant, we have

〈h(w1) − h(w2), h(w1) − h(w2)〉 ≤ 〈
g(u1) − g(u2) − ρ(Tu1 − Tu2), h(w1) − h(w2)

〉
, (4.5)

from which we have

‖h(w1) − h(w2)‖ ≤ ∥∥g(u1) − g(u2) − ρ(Tu1 − Tu2)
∥∥

≤ ∥∥u1 − u2 −
(
g(u1) − g(u2)

)∥∥ +
∥∥u1 − u2 − ρ(Tu1 − Tu2)

∥∥.
(4.6)

Since T is both strongly monotone and Lipschitz continuous operator with constants α > 0
and β > 0, respectively, it follows that

∥∥u1 − u2 − ρ(Tu1 − Tu2)
∥∥2 ≤ ‖u2 − u2‖2 − 2ρ〈u1 − u2, Tu1 − Tu2〉 + ρ2‖Tu1 − Tu2‖2

≤
(
1 − 2ρα + ρ2β2

)
‖u1 − u2‖2.

(4.7)

In a similar way, using the stronglymonotonicity with constant σ > 0 and Lipschitz continuity
with constant δ > 0, we have

∥∥u1 − u2 −
(
g(u1) − g(u2)

)∥∥ ≤
√
1 − 2σ + δ2‖u1 − u2‖. (4.8)

From (4.6), (4.7), (4.2), and using the fact that the operator h is firmly expanding, we have

‖w1 −w2‖ ≤
{
k +

√
1 − 2ρα + ρ2β2

}
‖u1 − u2‖

= θ‖u1 − u2‖.
(4.9)
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From (4.1) and (4.2), it follows that θ < 1 showing that the mapping defined by (4.3) has a
fixed point belonging to K, which is the solution of (2.1), the required result.

We note that, if w = u, then clearly w is a solution of the extended general variational
inequality (2.17). This observation enables to suggest and analyze the following iterative
method for solving the extended general variational inequalities (2.1).

Algorithm 4.2. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

〈
ρTun + h(un+1) − g(un), g(v) − h(un+1)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K. (4.10)

We remark that Algorithm 4.2 can be rewritten in the equivalent form using the projection
technique as follows.

Algorithm 4.3. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

h(un+1) = PK

[
g(un) − ρTun

]
, n = 0, 1, 2, . . . , (4.11)

which is exactly Algorithm 3.3.

We now use the auxiliary principle technique to suggest the implicit iterative method
for solving the extended general variational inequality (2.1). For a given u ∈ H : g(u) ∈
K satisfying the extended general variational inequality (2.1), we consider the problem of
finding a solution w ∈ H : h(w) ∈ K such that

〈
ρTw + h(w) − g(u), g(v) − h(w)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (4.12)

where ρ > 0 is a constant.
It is clear that, if w = u, then w is a solution of the extended general variational

inequality (2.17). We use this fact to suggest another iterative method for solving (2.1).

Algorithm 4.4. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

〈
ρTun+1 + h(un+1) − g(un), g(v) − h(un+1)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K. (4.13)

We remark that Algorithm 4.4 can be rewritten in the equivalent form using the projection
technique as follows.

Algorithm 4.5. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

h(un+1) = PK

[
g(un) − ρTun+1

]
, n = 0, 1, 2, . . . , (4.14)

which is exactly Algorithm 3.4.

The auxiliary principle technique can be used to develop several two-step, three-step,
and alternating direction methods for solving the extended general variational inequalities.
This is an interesting problem for further research.
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We now define the residue vector R(u) by

R(u) = h(u) − PK

[
g(u) − ρTu

]
. (4.15)

It is clear from Lemma 2.4 that the extended general variational inequality (2.1) has solution
u ∈ H; h(u) ∈ K, if and only if, u ∈ H : h(u) ∈ K is a zero of the equation

R(u) = 0. (4.16)

For a positive step size γ ∈ (0, 2), (4.16) can be written as

h(u) + ρTu = h(u) + ρTu − γR(u). (4.17)

This fixed point formulation can be used to suggest and analyze the following iterative
method for solving the extended general variational inequality (2.1).

Algorithm 4.6. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

h(un+1) = h(un) + ρTun − ρTun+1 − γR(un), n = 0, 1, 2, . . . , (4.18)

which is an implicit method.

It is worth mentioning that one can suggest and analyze a wide class of iterative
methods for solving the extended general variational inequality and its variant forms by
using the technique of Noor [11]. We leave this to the interested readers.

5. Conclusion

In this paper, we have introduced and considered a new class of variational inequalities,
which is called the extended general variational inequalities. We have established the
equivalent between the extended general variational inequalities and fixed point problem
using the technique of the projection operator. This equivalence is used to study the existence
of a solution of the extended general variational inequalities as well as to suggest and analyze
some iterative methods for solving the extended general variational inequalities. Several
special cases are also discussed. Results proved in this paper can be extended for multivalued
and system of extended general variational inequalities using the technique of this paper. The
comparison of the iterative method for solving extended general variational inequalities is
an interesting problem for future research. Using the technique of Noor [11], one can study
the sensitivity analysis and the properties of the associated dynamical system related to the
extended general variational inequalities. We hope that the ideas and technique of this paper
may stimulate further research in this field.
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[8] G. M. Korpelevič, “An extragradient method for finding saddle points and for other problems,”
Èkonomika i Matematicheskie Metody, vol. 12, no. 4, pp. 747–756, 1976.

[9] Q. Liu and J. Cao, “A recurrent neural network based on projection operator for extended general
variational inequalities,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 40, no. 3, Article ID
5339227, pp. 928–938, 2010.

[10] Q. Liu and Y. Yang, “Global exponential system of projection neural networks for system of
generalized variational inequalities and related nonlinear minimax problems,” Neurocomputing, vol.
73, no. 10–12, pp. 2069–2076, 2010.

[11] M. Aslam Noor, “Some developments in general variational inequalities,” Applied Mathematics and
Computation, vol. 152, no. 1, pp. 199–277, 2004.

[12] M. A. Noor, “Iterative schemes for nonconvex variational inequalities,” Journal of Optimization Theory
and Applications, vol. 121, no. 2, pp. 385–395, 2004.

[13] M. A. Noor, “Extended general variational inequalities,” Applied Mathematics Letters, vol. 22, no. 2, pp.
182–186, 2009.

[14] M. A. Noor, “Auxiliary principle technique for extended general variational inequalities,” Banach
Journal of Mathematical Analysis, vol. 2, no. 1, pp. 33–39, 2008.

[15] M. A. Noor, “Sensitivity analysis of extended general variational inequalities,” Applied Mathematics
E-Notes, vol. 9, pp. 17–26, 2009.

[16] M. A. Noor, “Projection iterative methods for extended general variational inequalities,” Journal of
Applied Mathematics and Computing, vol. 32, no. 1, pp. 83–95, 2010.

[17] M. A. Noor, “Solvability of extended general mixed variational inequalities,” Albanian Journal of
Mathematics, vol. 4, no. 1, pp. 13–17, 2010.

[18] M. A. Noor, “Extended general quasi-variational inequalities,” Nonlinear Analysis Forum, vol. 15, pp.
33–39, 2010.

[19] M. A. Noor, “Differentiable non-convex functions and general variational inequalities,” Applied Math-
ematics and Computation, vol. 199, no. 2, pp. 623–630, 2008.

[20] M. A. Noor, “Some iterative methods for general nonconvex variational inequalities,” Mathematical
and Computer Modelling, vol. 21, pp. 87–96, 2010.

[21] M. A. Noor, “Some classes of general nonconvex variational inequalities,” Albanian Journal of
Mathematics, vol. 3, no. 4, pp. 175–188, 2009.

[22] M. A. Noor, “Nonconvex quasi variational inequalities,” Journal of Advanced Mathematical Studies, vol.
3, no. 1, pp. 59–72, 2010.

[23] M. A. Noor, “Projection methods for nonconvex variational inequalities,” Optimization Letters, vol. 3,
no. 3, pp. 411–418, 2009.

[24] M. A. Noor, “Implicit iterative methods for nonconvex variational inequalities,” Journal of Optimiza-
tion Theory and Applications, vol. 143, no. 3, pp. 619–624, 2009.

[25] M. A. Noor, “Iterative methods for general nonconvex variational inequalities,” Albanian Journal of
Mathematics, vol. 3, no. 3, pp. 117–127, 2009.

[26] M. A. Noor, “An extragradient algorithm for solving general nonconvex variational inequalities,”
Applied Mathematics Letters, vol. 23, no. 8, pp. 917–921, 2010.

[27] M. A. Noor, “Some iterative methods for general nonconvex variational inequalities,” Mathematical
and Computer Modelling , vol. 54, pp. 2953–2961, 2011.



16 Abstract and Applied Analysis

[28] M.A.Noor andK. I. Noor, “Some iterativemethods for solving general bifunction variational inequal-
ities,” Journal of Advanced Mathematical Studies, vol. 20, no. 6, 2012.

[29] M. A. Noor, K. I. Noor, and T. M. Rassias, “Some aspects of variational inequalities,” Journal of
Computational and Applied Mathematics, vol. 47, no. 3, pp. 285–312, 1993.

[30] M. A. Noor, K. I. Noor, and E. Al-Said, “Iterative projection methods for general nonconvex
variational inequalities,” Applied and Computational Mathematics, vol. 10, no. 2, pp. 309–320, 2011.

[31] M. A. Noor, K. I. Noor, and E. Al-Said, “On new proximal pint methods for solving the variational
inequalities,” Journal of Applied Mathematics, vol. 2012, Article ID 412413, 7 pages, 2012.

[32] M. Aslam Noor, S. Ullah, K. Inayat Noor, and E. Al-Said, “Iterative methods for solving extended
general mixed variational inequalities,” Computers & Mathematics with Applications, vol. 62, no. 2, pp.
804–813, 2011.

[33] M. A. Noor, K. I. Noor, Y. Z. Huang, and E. Al-Said “Implicit schemes for solving extended general
nonconvex variational inequalities,” Journal of Applied Mathematics, vol. 2012, Article ID 646259, 10
pages, 2012.

[34] M. A. Noor, K. I. Noor, and E. Al-Said, “Resolvent iterative methods for solving system of extended
general variational inclusions,” Journal of Inequalities and Applications, vol. 2011, Article ID 371241, 10
pages, 2011.

[35] M. A. Noor, K. I. Noor, and E. Al-Said, “Auxiliary principle technique for solving bifunction varia-
tional inequalities,” Journal of Optimization Theory and Applications, vol. 149, no. 2, pp. 441–445, 2011.

[36] M. A. Noor, K. I. Noor, and E. Al-Said, “Iterative methods for solving nonconvex equilibrium
variational inequalities,” Applied Mathematics & Information Sciences, vol. 6, no. 1, pp. 65–69, 2012.

[37] M.A. Noor, K. I. Noor, and E. Al-Said, “Some iterativemethods for trifunction equilibrium variational
inequalities,” International Journal of the Physical Sciences, vol. 6, no. 22, pp. 5223–5229, 2011.

[38] M. A. Noor, S. Zainab, K. I. Noor, and E. Al-Said, “Mixed equilibrium problems,” International Journal
of Physical Sciences, vol. 6, no. 23, pp. 5412–5418, 2011.

[39] M. Sun, “Merit functions and equivalent differentiable optimization problems for the extended
general variational inequalities,” International Journal of Pure and Applied Mathematics, vol. 63, no. 1,
pp. 39–49, 2010.

[40] G. Stampacchia, “Formes bilinéaires coercitives sur les ensembles convexes,” Comptes Rendus
Mathematique, vol. 258, pp. 4413–4416, 1964.

[41] Y. Yao, M. A. Noor, Y. C. Liou, and S. M. Kang, “Iterative algorithms for general multivalued
variational inequalities,” Abstract and Applied Analysis, vol. 2012, Article ID 768272, 10 pages, 2012.

[42] Y. Zhao and D. Sun, “Alternative theorems for nonlinear projection equations and applications to
generalized complementarity problems,” Nonlinear Analysis, vol. 46, no. 6, pp. 853–868, 2001.


