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We study traveling waves for a two-dimensional lattice dynamical system with bistable
nonlinearity in periodic media. The existence and the monotonicity in time of traveling waves
can be derived in the same way as the one-dimensional lattice case. In this paper, we derive the
uniqueness of nonzero speed traveling waves by using the comparison principle and the sliding
method.

1. Introduction

In this paper, we study the following two-dimensional (2D) lattice dynamical system:

u̇i,j(t) :=
d

dt
ui,j(t) = D2

[
ui,j

]
(t) + f

(
ui,j(t)

)
, i, j ∈ Z, t > 0, (1.1)

where f is a C2 function in R and

D2
[
ui,j

]
:= pi+1,jui+1,j + pi,jui−1,j + qi,j+1ui,j+1 + qi,jui,j−1 − di,jui,j ,

di,j := pi+1,j + pi,j + qi,j+1 + qi,j .
(1.2)
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We assume that the coefficients pi,j , qi,j are positive and bounded such that

pi+N,j = pi,j = pi,j+N, qi+N,j = qi,j = qi,j+N, ∀i, j ∈ Z, (1.3)

for some positive integerN. Furthermore, we consider the case of bistable nonlinearity, name-
ly,

f(0) = f(1) = f(a) = 0, f ′(0) < 0 < f ′(a), f ′(1) < 0, (1.4)

for some constant a ∈ (0, 1). For simplicity, we only consider the case when a ∈ (0, 1/2].
We are interested in (planar) traveling wave solutions of (1.1) such that

ui,j

(
t +

kNr +mNs

c

)
= ui−kN,j−mN(t) ∀k,m ∈ Z, t ∈ R, (1.5)

for some (speed) c /= 0 and

lim
ri+sj→−∞

ui,j(t) = 0, lim
ri+sj→+∞

ui,j(t) = 1, (1.6)

for any t ∈ R in the direction (r, s) := (cos θ, sin θ) for some θ ∈ (0, π/2).
The study of lattice dynamical systems has attracted a lot of attention for past years.

In particular, traveling wave solutions are important due to the wide applications of these
special solutions. For example, the invading of one species to another can be described by
traveling wave solutions (see, e.g., [1, 2]). The lattice dynamical system arises, for example,
when the habitat is divided into discrete niches in certain biology models. We refer the reader
to, for example, [3–9] for monostable nonlinearity and [10–16] for bistable nonlinearity in a
one-dimensional lattice. In particular, in [16] the authors studied a very general model with
bistable nonlinearity in a 1D lattice. Our purpose of this paper is to extend the result of [16]
to the case of multidimensional lattice. For the study of multidimensional lattice, we refer to
[17–19]. For the simplicity of presentation, we will only consider the 2D lattice dynamical
system (1.1). Our results can be easily extended to the more general case with a convection
term or spatially dependent nonlinearity as in [16].

In a similar manner as that in [16] for 1D lattice case, we can prove the existence
of traveling wave solutions of (1.1)–(1.6) with profile {Ui,j}i,j∈Z

and speed c ∈ R, by
transforming the problem (1.1)–(1.6) into an integral formulation. Moreover, if the speed
c > 0, then we can obtain U̇i,j(t) < 0 for all i, j ∈ Z and t ∈ R. We will not repeat the proof here
and focus on the study of the uniqueness of nonzero speed traveling waves. The uniqueness
is in the sense that if there exist two traveling waves with nonzero speeds, then these two
speeds are the same, and two wave profiles are the same except a translation. Due to that the
nonlinearity is independent of spatial variable, our proof of the uniqueness is simpler and
more transparent than that in [16]. In fact, motivated by the work of Fife and McLeod [20],
Lemma 3.1 (below) provides some estimations in terms of a given traveling wave solution
for the solution to the initial value problem for (1.1) with certain initial condition. Moreover,
with Lemma 3.1, we employ the idea of moving coordinate and a sliding method to complete
the proof of uniqueness (see Theorem 3.3).
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This paper is organized as follows. In Section 2, we give some preliminaries including
a comparison principle. Then we prove uniqueness of traveling wave with nonzero speed in
Section 3.

2. Preliminaries

The following lemma can be easily deduced from (1.5) and (1.6).

Lemma 2.1. Let {ui,j}i,j∈Z
be a solution of (1.1)–(1.6). If c > 0(< 0), then ui,j(t) → 0(→ 1) as

t → ∞ and ui,j(t) → 1(→ 0) as t → −∞ for each i, j.

We can determine the sign of the speed c (when c /= 0) as follows.

Lemma 2.2. Suppose that c /= 0, then c has the same sign as [− ∫1
0 f(s)ds].

Proof. For K ≥ max{1,N/|c|}, an integration by parts gives

∫K

−K

[
u̇i,j(t)

]2
dt =

∫K

−K
u̇i,j(t)

{
D2

[
ui,j

]
(t) + f

(
ui,j(t)

)}
dt

=
∫K

−K
pi+1,j u̇i,jui+1,jdt −

∫K

−K
pi,jui,j u̇i−1,jdt + pi,jui−1,jui,j |K−K

+
∫K

−K
qi,j+1u̇i,jui,j+1dt −

∫K

−K
qi,jui,j u̇i,j−1dt + qi,jui,j−1ui,j |K−K

− 1
2
di,ju

2
i,j |K−K +

∫K

−K
u̇i,jf

(
ui,j

)
dt for 1 ≤ i, j ≤ N.

(2.1)

Then 1 ≤ ∀j ≤ N,

N∑

i=1

∫K

−K

[
u̇i,j(t)

]2
dt =

∫K

−K
pN+1,j u̇N,juN+1,jdt −

∫K

−K
p1,j u̇0,ju1,jdt

+
N∑

i=1

pi,jui−1,jui,j |K−K +
N∑

i=1

∫K

−K
qi,j+1u̇i,jui,j+1dt +

N∑

i=1

qi,jui,j−1ui,j |K−K

−
N∑

i=1

∫K

−K
qi,jui,j u̇i,j−1dt −

N∑

i=1

1
2
di,ju

2
i,j |K−K +

N∑

i=1

∫K

−K
u̇i,jf

(
ui,j

)
dt.

(2.2)
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Therefore,

N∑

j=1

N∑

i=1

∫K

−K

[
u̇i,j(t)

]2
dt =

N∑

j=1

p1,j

{∫K

−K
u̇N,juN+1,jdt −

∫K

−K
u̇0,ju1,jdt

}

+
N∑

i=1

qi,1

{∫K

−K
u̇i,Nui,N+1dt −

∫K

−K
u̇i,0ui,1dt

}

+
N∑

j=1

N∑

i=1

{
pi,jui−1,jui,j |K−K + qi,jui,j−1ui,j |K−K − 1

2
di,ju

2
i,j |K−K

}

+
N∑

j=1

N∑

i=1

∫K

−K
u̇i,jf

(
ui,j

)
dt.

(2.3)

Sending K to∞, using (1.5) and Lemma 2.1, it follows that

N∑

j=1

N∑

i=1

∫∞

−∞

[
u̇i,j(t)

]2
dt = − sgn(c)N2

∫1

0
f(s)ds. (2.4)

Hence, the lemma follows.

As a simple consequence of Lemma 2.2, we have c = 0 if f is of balanced type, that is,
∫1
0 f(s)ds = 0. Notice that we cannot guarantee the speed c is zero or not by using the method
developed in [16]. In fact, for the 1D lattice case, the classical work of Keener [21] indicates
that the propagation failure (i.e., c = 0) occurs when the diffusion coefficient is sufficiently
small, even when f is of unbalanced type. A similar result for 1D periodic case can be found
in [22]. For our model, the problem for the propagation failure is still open.

Set u := {ui,j}i,j∈Z
. Define Ni,ju(t) := u̇i,j(t) −D2[ui,j](t) − f(ui,j(t)). Then we have the

following comparison principle.

Lemma 2.3. Assume that t0 ∈ R, i0, j0 ∈ Z ∪ {∞} and c ∈ R. Suppose that u:= {ui,j(t)}i,j∈Z
and

v := {vi,j(t)}i,j∈Z
are bounded and continuous on

{(
i, j, t

) ∈ Z
2 × R | t ≥ t0, ri + sj + ct ≤ ri0 + sj0 + 1

}
, (2.5)

such that

Ni,ju ≥ Ni,jv ∀t > t0, ri + sj + ct ≤ ri0 + sj0,

ui,j(t0) ≥ vi,j(t0) ∀ri + sj + ct0 < ri0 + sj0,

ui,j(t) ≥ vi,j(t) ∀t ≥ t0, ri0 + sj0 ≤ ri + sj + ct ≤ ri0 + sj0 + 1,

(2.6)
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then ui,j(t) ≥ vi,j(t) for all t > t0, ri + sj + ct ≤ ri0 + sj0. Moreover, if there exists some (i1, j1)
with ri1 + sj1 + ct0 < ri0 + sj0 such that ui1,j1(t0) > vi1,j1(t0), then ui,j(t) > vi,j(t) for all t > t0,
ri + sj + ct < ri0 + sj0.

Since the proof is quite similar to the one given in [16, Lemma 1], we safely omit it
here.

3. Uniqueness

In this section, we will study the uniqueness of traveling waves of (1.1)–(1.6). Firstly, apply-
ing a method of Fife-McLeod [20], we can derive the following result.

Lemma 3.1. Suppose that u := {ui,j(t)}i,j∈Z
is a solution of (1.1) for t > 0, such that

lim sup
ri+sj→−∞

ui,j(0) < a < lim inf
ri+sj→∞

ui,j(0) (3.1)

and 0 < ui,j(t) < 1 for all t ≥ 0. If Uc
i,j(t) is a traveling wave solution with speed c /= 0, then there exist

a sufficiently large positive integer i0 and j0, depending on the initial value, and positive numbers β0
(depending on the value of f ′(s) near s = 0 and s = 1), δ0 = δ0(β0, l, f,Uc) > 0, such that for all
i, j ∈ Z, t > 0,

Uc
i−i0N, j−j0N

(
t − δe−βt

)
− le−βt ≤ ui,j(t) ≤ Uc

i+i0N, j+j0N

(
t + δe−βt

)
+ le−βt (3.2)

if β ∈ (0, β0], δ ≥ δ0,

l ∈
[

max

{

lim sup
ri+sj→−∞

ui,j(0), 1 − lim inf
ri+sj→∞

ui,j(0)

}

,min{a − ε, 1 − a − ε}
]

, (3.3)

for some small ε > 0.

Proof. We will only consider the case when c > 0. In this case, we have U̇c
i,j(t) < 0 for all t ∈ R.

First, we let

Φ
(
0, p

)
=

⎧
⎨

⎩

[
f(0) − f

(
p
)]
/p, p > 0,

−f ′(0), p = 0.
(3.4)

Clearly, Φ(0, p) is continuous. Fixing ε with

0 < ε < min

{

a − lim sup
ri+sj→−∞

ui,j(0), lim inf
ri+sj→∞

ui,j(0) − a

}

, (3.5)

there exists μ1 > 0, such that [f(0)−f(p)]/p ≥ 2μ1 for all 0 < p ≤ a−ε. Since f(s) is continuous,
we would find Δ1 > 0, such that (f(u) − f(u + p))/p ≥ μ1 for all 0 ≤ u ≤ Δ1, 0 < p ≤ a − ε. By
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the same reasoning, there exist μ2 > 0 and Δ2 > 0, such that (f(u) − f(u + p))/p ≥ μ2 for all
p ≤ a − ε, 1 −Δ2 ≤ u ≤ 1.

Define ũ := {ũi,j}i,j∈Z
, where

ũi,j(t) := min
{
1, Uc

i+ĩ0N, j+j̃0N

(
t + δ̃e−β̃t

)
+ l̃e−β̃t

}
. (3.6)

Choose l̃ satisfying lim supri+sj→−∞ui,j(0) < l̃ < a− ε < a, and let i0, j0 be determined later. We
claim that

ui,j(0) ≤ Uc

i+ĩ0N, j+j̃0N

(
δ̃
)
+ l̃, ∀i, j ∈ Z, (3.7)

for some ĩ0 and j̃0. Since lim supri+sj→−∞ui,j(0) < l̃, there exists m, such that

ui,j(0) < l̃, ∀ri + sj ≤ m. (3.8)

Moreover, since limri+sj→∞Ui,j(0) = 1, there exist ĩ0 and j̃0, such that

ui,j(0) ≤ Uc

i+ĩ0N, j+j̃0N

(
δ̃
)
+ l̃, ∀ri + sj ≥ m. (3.9)

Combining (3.8) and (3.9), we have proved the claim (3.7).
Now, we prove Ni,j ũ ≥ 0. If ũi,j(t) = Uc

i+ĩ0N, j+j̃0N
(t + δ̃e−β̃t) + l̃e−β̃t, then

Ni,j ũ =
(
1 − δ̃β̃e−β̃t

)(
Uc

i+ĩ0N, j+j̃0N

)′(
t + δ̃e−β̃t

)
− l̃ β̃e−β̃t

−D2

[
Uc

i+ĩ0N, j+j̃0N

(
t + δ̃e−β̃t

)
+ l̃e−β̃t

]
− f

(
Uc

i+ĩ0N, j+j̃0N

(
t + δ̃e−β̃t

)
+ l̃e−β̃t

)

= −δ̃β̃e−β̃t
(
Uc

i+ĩ0N, j+j̃0N

)′(
t + δ̃e−β̃t

)
− l̃ β̃e−β̃t

+ f
(
Uc

i+ĩ0N, j+j̃0N

(
t + δ̃e−β̃t

))
− f

(
Uc

i+ĩ0N, j+j̃0N

(
t + δ̃e−β̃t

)
+ l̃e−β̃t

)
.

(3.10)

Divide into three cases.

Case 1. 0 ≤ Uc
i,j ≤ Δ := min{Δ1,Δ2}. From the above discussion, since l̃e−β̃t ≤ l̃ < a − ε, we

have

f
(
Uc

i,j

)
− f

(
Uc

i,j + l̃e−β̃t
)
≥ μ1 l̃e

−β̃t. (3.11)

Since U̇c
i,j < 0, Ni,j ũ ≥ −l̃ β̃e−β̃t + μ1 l̃e

−β̃t = (μ1 − β̃)l̃e−β̃t. Choosing β̃ ≤ μ1, we have Ni,j ũ ≥ 0 in
this case.



Abstract and Applied Analysis 7

Case 2. 1 − Δ ≤ Uc
i,j ≤ 1. As in Case 1, we have μ2 > 0 such that Ni,j ũ ≥ −l̃ β̃e−β̃t + μ2 l̃e

−β̃t =

(μ2 − β̃)l̃e−β̃t ≥ 0 if β̃ ≤ μ2.

Case 3. Δ ≤ Uc
i,j ≤ 1 − Δ. If σ := minΔ≤Uc

i,j≤1−Δ|U̇c
i,j | > 0 and k := maxs∈[0,1]|f ′(s)| > 0, then

Ni,j ũ ≥ δ̃β̃σe−β̃t − l̃β̃e−β̃t − kl̃e−β̃t = (δ̃β̃σ − l̃β̃ − kl̃)e−β̃t. Choosing δ̃ ≥ l̃(β̃ + k)/β̃σ, we have
Ni,j ũ ≥ 0 in this case.

Then Ni,j ũ ≥ 0 for all cases. Hence, the second inequality of (3.2) follows from a
comparison principle. By the same way, we have the first inequality of (3.2). This proves
the lemma.

Note that we have the following different type of super- and sub-solutions which can
be verified by a similar way as that of Lemma 3.1.

Lemma 3.2. Suppose that w := {wi,j(t)}i,j∈Z
is a solution of (1.1)–(1.6). For any t0 ∈ R, l̃ ∈ (0, l0),

l0 := min{a − ε, 1 − a − ε}, ε is a small number, and σ1 ≥ σ0 = σ0(β, f,wc
i,j) > 0, and let w± =

{w±
i,j(t)}i,j∈Z

, where

w±
i,j(t) := wi,j

(
t + t0 ∓ σ1 l̃

(
1 − e−βt

))
± l̃e−βt, (3.12)

then ±Ni,jw± ≥ 0.

We now prove the following uniqueness result.

Theorem 3.3. Suppose that {Uc
i,j}, {U

c
i,j} are two traveling wave solutions of (1.1)–(1.6) with c,

c /= 0, then one has c = c and Uc
i,j(ξ) = U

c

i,j(ξ + ξ∗) for some ξ∗ ∈ R.

Proof. As before, we only consider the case when both c and c are positive. Since

lim
ri+sj→−∞

Ui,j(0) = 0 < a < lim
ri+sj→∞

Ui,j(0) = 1, (3.13)

by Lemma 3.1, we have

Uc
i−i0N, j−j0N

(
t − δe−βt

)
− le−βt ≤ U

c

i,j(t) ≤ Uc
i+i0N, j+j0N

(
t + δe−βt

)
+ le−βt, (3.14)

for all t > 0, i, j ∈ Z with the constants i0, j0, l, β, δ defined in Lemma 3.1.
Let Ik = I + kN, Jm = J +mN, and I, J ∈ {1, . . . ,N}, k,m ∈ Z. Take (i, j) = (Ik, Jm). We

get for all t > 0, k,m ∈ Z,

Uc
I+kN−i0N, J+mN−j0N

(
t − δe−βt

)
− le−βt ≤ U

c

I+kN, J+mN(t)

≤ Uc
I+kN+i0N, J+mN+j0N

(
t + δe−βt

)
+ le−βt, ∀I, J.

(3.15)
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By the property (1.5) for all t > 0, k,m ∈ Z,

Uc
I−i0N, J−j0N

(
t − (rk + sm)N

c
− δe−βt

)
− le−βt ≤ U

c

I,J

(
t − (rk + sm)N

c

)

≤ Uc
I+i0N, J+j0N

(
t − (rk + sm)N

c
+ δe−βt

)
+ le−βt, ∀I, J.

(3.16)

Setting the moving coordinate

ξ := t − (rk + sm)N
c

, (3.17)

we have for any ξ ∈ R, for all I, J ,

Uc
I−i0N,J−j0N

(
ξ + (rk + sm)

(
N

c
− N

c

)
− δe−βt

)
− le−βt

≤ U
c

I,J(ξ)

≤ Uc
I+i0N,J+j0N

(
ξ + (rk + sm)

(
N

c
− N

c

)
+ δe−βt

)
+ le−βt.

(3.18)

Suppose that c /= c. We may assume that c < c. Fixing ξ and sending t → ∞, this leads that

eitherU
c

I,J(ξ) ≡ 0 or U
c

I,J(ξ) ≡ 1, which is a contradiction. Hence, c = c.
We now suppress the dependence of c, and we obtain

UI−i0N, J−j0N(ξ) ≤ UI,J(ξ) ≤ UI+i0N, J+j0N(ξ), ∀ξ ∈ R, ∀I, J. (3.19)

For ξ0 := (ri0 + sj0)N/c, we have

UI,J(ξ + ξ0) ≤ UI,J(ξ) ≤ UI,J(ξ − ξ0), ∀ξ ∈ R, ∀I, J. (3.20)

Define

ξ∗ := inf
{
ξ̃ | UI,J

(
ξ + ξ̃

)
≤ UI,J(ξ), ∀ξ ∈ R, ∀I, J

}
,

ξ∗ := sup
{
ξ̃ | UI,J(ξ) ≤ UI,J

(
ξ + ξ̃

)
, ∀ξ ∈ R, ∀I, J

}
.

(3.21)

Since U̇i,j(t) < 0 due to c > 0, we have ξ∗ ≤ ξ∗. Assume that ξ∗ < ξ∗. By the strong comparison
principle, we know that

UI,J(ξ) < UI,J(ξ + ξ∗), ∀ξ ∈ R, ∀I, J. (3.22)
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Since lim|ξ|→∞U̇I,J(ξ) = 0, there exists M > 0 such that

2σ1
∣∣U̇I,J(ξ)

∣∣ ≤ 1, ∀|ξ | ≥ M, ∀I, J, (3.23)

where σ1 is the number mentioned in Lemma 3.2. If |ξ + ξ∗| ≤ M + 1, by the continuity ofUI,J ,
we would find h ∈ (0, η), η := min{1/(2σ1), l0}, such that

UI,J(ξ) < UI,J(ξ + ξ∗ + 2σ1h), ∀I, J. (3.24)

If |ξ + ξ∗| ≥ M + 1, then

UI,J(ξ + ξ∗ + 2σ1h) −UI,J(ξ) > UI,J(ξ + ξ∗ + 2σ1h) −UI,J(ξ + ξ∗)

= U̇I,J(ξ + ξ∗ + θ2σ1h)(2σ1h), θ ∈ (0, 1)

≥ −h, ∀I, J.

(3.25)

Combining (3.24) and (3.25), we get

UI,J(ξ) ≤ UI,J(ξ + ξ∗ + 2σ1h) + h, ∀ξ ∈ R, ∀I, J. (3.26)

Hence,

UI,J(0) ≤ UI,J(ξ∗ + 2σ1h) + h, ∀I, J. (3.27)

By Lemma 3.2 and the comparison principle, we have

UI,J(ξ) ≤ UI,J

(
ξ + ξ∗ + 2σ1h − σ1h

(
1 − e−βt

))
+ he−βt, ∀ξ ∈ R, ∀I, J. (3.28)

Fixing ξ and sending t → ∞,

UI,J(ξ) ≤ UI,J(ξ + ξ∗ + σ1h). (3.29)

This contradicts with the definition of ξ∗. Hence, Ui,j(ξ) = Ui,j(ξ + ξ∗).

Hence, we obtain the uniqueness (up to translations) of the traveling wave solution
with nonzero speed.
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