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The exponentiated gamma (EG) distribution and Fisher information matrices for complete, Type
I, and Type II censored observations are obtained. Asymptotic variances of the different estimators
are derived. Also, we consider different estimators and compare their performance throughMonte
Carlo simulations.

1. Introduction

Gupta et al. [1] introduced the exponentiated gamma (EG) distribution. This model is flexible
enough to accommodate both monotonic as well as nonmonotonic failure rates. The EG
distribution has the distribution function (c.d.f.):

F(x; θ, λ) =
[
1 − e−λx(λx + 1)

]θ
, θ, λ, x > 0. (1.1)

Therefore, EG distribution has the density function:

f(x; θ, λ) = θλ2xe−λx
[
1 − e−λx(λx + 1)

]θ−1
, θ, λ, x > 0, (1.2)

the survival function

R(x; θ, λ) = 1 −
[
1 − e−λx(λx + 1)

]θ
, θ, λ, x > 0, (1.3)
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and the hazard function

h(x; θ, λ) =
θλ2 xe−λx

[
1 − e−λx(λx + 1)

]θ−1

1 − [1 − e−λx(λx + 1)
]θ , θ, λ, x > 0, (1.4)

here θ, and λ are the shape and scale parameters, respectively. The two-parameter EG
distribution will be denoted by EG(θ, λ). For details, see Bakoban [2], Coronel-Brizio et al.
[3] and Shawky and Bakoban [4–10].

Computation of Fisher information for any particular distribution is quite important,
see, for example, Zheng [11]. Fisher information matrix can be used to compute the
asymptotic variances of the different functions of the estimators, for example, maximum
likelihood estimators (MLEs). The problem is quite important when the data are censored.We
compute Fisher information matrices of EG distribution for complete and censored samples.
We then study the properties of the MLEs of EG distribution under complete and censored
samples in great details. Also, we consider different estimators of EG distribution and study
how the estimators of the different unknown parameter(s) behave for different sample
sizes and for different parameter values. We mainly compare the MLEs, estimators based
on percentiles (PCEs), least squares estimators (LSEs), weighted least squares estimators
(WLSEs), method of moment estimators (MMEs) and the estimators based on the linear
combinations of order statistics (LMEs) by using extensive simulation techniques. It is
important to mention that many authors interested with estimating parameters of such
distributions, for example, Wingo [12] derived MLEs of Burr XII distribution parameters
under type II censoring. Estimations based on order statistics under complete and censored
samples compared with MLE which in turn based on a complete sample were studied by
Raqab [13] for the Burr X distribution. Also, Gupta and Kundu [14] presented the properties
of MLE’s for generalized exponential (GE) distribution, and they discussed other methods
for GE in [15]. Kundu and Raqab [16] discussed the generalized Rayleigh distribution too.
Hossain and Zimmer [17] compared several methods for estimatingWeibull parameters with
complete and censored samples. Surles and Padgett [18] considered the MLEs and discussed
the asymptotic properties of these estimators for complete and censored samples from Burr
X distribution.

The rest of the paper is organized as follows. In Section 2, we obtain the Fisher
information matrices of EG distribution. In Section 3, we derive MLEs of EG distribution and
study its properties. In Sections 4 to 7, we describe other methods of estimations. Simulation
results and discussions are provided in Section 8.

2. Fisher Information Matrix

2.1. Fisher Information Matrix for Complete Sample

Let X be a continuous random variable with the cumulative distribution function (c.d.f.)
F(x;Ω) and the probability density function (p.d.f.) f(x;Ω). For the simplicity, we consider
only two parameters θ and λ, although the results are true for any finite-dimensional vector.
Under the standard regularity conditions (Gupta and Kundu [19]), the Fisher information
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matrix for the parameter vector Ω = (θ, λ) based on an observation in terms of the expected
values of the first and second derivatives of the log-likelihood function is

I(θ, λ) =
1
n

⎡
⎢⎢⎢⎢⎢⎣

E

(
−∂

2 lnL(θ, λ)
∂θ2

)
E

(
−∂

2 lnL(θ, λ)
∂θ∂λ

)

E

(
−∂

2 lnL(θ, λ)
∂λ∂θ

)
E

(
−∂

2 lnL(θ, λ)
∂λ2

)

⎤
⎥⎥⎥⎥⎥⎦

=
[
a11 a12

a21 a22

]
,

(2.1)

where for i, j = 1, 2,

aij =
∫∞

−∞

(
∂

∂Ωi
ln f(x,Ω)

)(
∂

∂Ωj
ln f(x,Ω)

)
f(x,Ω)dx. (2.2)

Now, we will derive Fisher information matrix of EG(θ, λ) under complete sample. It can be
shown that

ln f(x; θ, λ) = ln θ + 2 lnλ − λx + lnx + (θ − 1) ln
[
1 − e−λx(λx + 1)

]
. (2.3)

Differentiating (2.3)with respect to θ and λ respectively, we have

∂ ln f(x; θ, λ)
∂θ

=
1
θ
+ ln

[
1 − e−λx(λx + 1)

]
,

∂ ln f(x; θ, λ)
∂λ

=
2
λ
− x + (θ − 1)λx2e−λx

[
1 − e−λx(λx + 1)

]−1
.

(2.4)

Therefore, the second derivatives are

∂2 ln f(x; θ, λ)
∂θ2

= − 1
θ2

,

∂2 ln f(x; θ, λ)
∂λ2

= − 2
λ2

− (θ − 1)λx3e−λx
[
1 − e−λx(λx + 1)

]−1

+ (θ − 1)x2e−λx
[
1 − e−λx(λx + 1)

]−1 − (θ − 1)λ2x4e−λx
[
1 − e−λx(λx + 1)

]−2
,

∂2 ln f(x; θ, λ)
∂λ∂θ

= λx2e−λx
[
1 − e−λx(λx + 1)

]−1
.

(2.5)

Thus, the elements of Fisher information matrix for single observation from EG(θ, λ) are in
the forms:

a11 = E

(
−∂

2 ln f(x; θ, λ)
∂θ2

)
=

1
θ2

, (2.6)
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a12 = a21 = E

(
−∂

2 ln f(x; θ, λ)
∂θ∂λ

)
=

2 − θ[2 +A1(θ)]
λ(θ − 1)

, (2.7)

a22 = E

(
−∂

2 ln f(x; θ, λ)
∂λ2

)
=

θ2[A2(θ) − (4 + 2/θ)A1(θ) − 2]
λ2(θ − 2)

, (2.8)

where

Ar(θ) =
∞∑
j=1

j∑
k=0

(−1)j
(
θ − 1
j

)(
j
k

)
Γ(r + k + 2)
(
1 + j

)r+k+2 , r = 1, 2, . . . . (2.9)

Moreover, Fisher information matrix for a complete sample of size n from EG(θ, λ) is simply
nI(θ, λ).

2.2. Fisher Information Matrix under Type II Censoring

Let X1, X2, . . . , Xn be a random sample of size n from F(x;Ω). In life-time analysis, n items
are on test. The test continues until the rth smallest outcome is observed, 1 < r < n. Thus,
we observe the smallest r-order statistics from F(x;Ω), denoted by X1:n ≤ X2:n ≤ · · · ≤ Xr:n,
which are called the Type II censored data.

Denote Xr:n by X[np]:n, where [np] is the integer part of np, 0 < p < 1. Thus, r/n → p
as n → ∞. Denote Fisher information matrix in X1:n, X2:n, . . . , X[np]:n by I1···[np]:n(Ω) (see,
Zheng [11]), where Ω = (θ, λ) in the case of the EG(θ, λ) distribution, and define

I[0, p](Ω) = lim
n→∞

1
n
I1···[np]:n(Ω). (2.10)

The estimates based onX1:n, X2:n, . . . , X[np]:n, under suitable conditions, are asymptot-
ically normal, where the asymptotic covariance matrix is the inverse of I[0, p](Ω).

Assuming the regularity conditions hold, the following expression for I[0, p](Ω), where
Ω is any finite-dimensional vector, can be expressed as

I[0, p](Ω) =
∫vp

−∞

[
∂

∂Ω
lnh(x;Ω)

][
∂

∂Ω
lnh(x;Ω)

]T
f(x;Ω)dx, (2.11)

where vp is the pth percentile of F(x;Ω), T denotes the transpose, and h(x;Ω) is the hazard
function.

If there is no censoring (p = 1), then (2.11) becomes the usual Fisher information in a
single variable (2.1).
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In the following, we use (2.11) to obtain Fisher information matrix under Type II
censoring for the EG(θ, λ) distribution. For Ω = (θ, λ), denote Fisher information matrix
I[0, p](Ω) as

I[0, p](Ω) =
[
I[0, p](θ) I[0, p](θ, λ)
I[0, p](θ, λ) I[0, p](λ)

]
, (2.12)

where I[0, p](θ), I[0, p](λ), and I[0, p](θ, λ) can be obtained by (2.11).
It can be shown that

lnh(x; θ, λ) = ln θ + 2 lnλ + lnx − λx + (θ − 1) ln
[
1 − e−λx(λx + 1)

]

− ln
{
1 −

[
1 − e−λx(λx + 1)

]θ}
.

(2.13)

Differentiating (2.13) with respect to θ and λ, respectively, we have

∂ lnh(x; θ, λ)
∂θ

=
1
θ
+

ln
[
1 − e−λx(λx + 1)

]

1 − [1 − e−λx(λx + 1)
]θ ,

∂ lnh(x; θ, λ)
∂λ

=
2
λ
− x

(
1 − e−λx

)

1 − e−λx(λx + 1)
+

θλx2e−λx
[
1 − e−λx(λx + 1)

]{
1 − [1 − e−λx(λx + 1)

]θ} .
(2.14)

Thus, it is easily to see, for p = [1−e−λvp(λvp+1)]
θ, that the elements of I[0, p](Ω) from EG(θ, λ)

are

I[0, p](θ) = θλ2
∫vp

0

[
∂

∂θ
lnh(x; θ, λ)

]2
xe−λx

[
1 − e−λx(λx + 1)

]θ−1
dx

= θ

∫λvp

0

[
1
θ
+

ln
[
1 − e−y

(
y + 1

)]

1 − [1 − e−y
(
y + 1

)]θ
]2
ye−y

[
1 − e−y

(
y + 1

)]θ−1
dy

=
1
θ2

∫p

0

[
1 +

lnx
1 − x

]2
dx =

1
θ2

[
p +

p

1 − p
(ln p)2

]
,

(2.15)

I[0, p](λ) = θλ2
∫vp

0

[
∂

∂λ
lnh(x; θ, λ)

]2
xe−λx

[
1 − e−λx(λx + 1)

]θ−1
dx

=
θ

λ2

∫λvp

0

⎡
⎢⎣2 − y(1 − e−y)

1 − e−y
(
y + 1

) +
θy2e−y

[
1 − e−y

(
y + 1

)]{
1 − [1 − e−y

(
y + 1

)]θ}

⎤
⎥⎦

2

× ye−y
[
1 − e−y

(
y + 1

)]θ−1
dy,

(2.16)
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I[0, p](θ, λ) = θλ2
∫vp

0

[
∂

∂θ
lnh(x; θ, λ)

][
∂

∂λ
lnh(x; θ, λ)

]
xe−λx

[
1 − e−λx(λx + 1)

]θ−1
dx

=
θ

λ

∫λvp

0

⎡
⎢⎣2 − y(1 − e−y)

1 − e−y
(
y + 1

) +
θy2e−y

[
1 − e−y

(
y + 1

)]{
1 − [1 − e−y

(
y + 1

)]θ}

⎤
⎥⎦

×
[
1
θ
+

ln
[
1 − e−y

(
y + 1

)]

1 − [1 − e−y
(
y + 1

)]θ
]
ye−y

[
1 − e−y

(
y + 1

)]θ−1
dy.

(2.17)

It follows, by (2.15), that the percentage of Fisher information about θ, I[0, p](θ)/a11, is
independent of θ, and thus I[0, p](θ) is a decreasing function of θ.

2.3. Fisher Information Matrix under Type I Censoring

If the observation of X is right censored at a fixed time point t, that is, one observe min(X, t),
Fisher information for the parameter vector Ω based on a censored observation is thus

I
(c)
R (t, θ) =

[
b11 b12
b21 b22

]
, (2.18)

where, for i, j = 1, 2,

bij =
∫ t

0

(
∂

∂Ωi
lnh(x,Ω)

)(
∂

∂Ωj
lnh(x,Ω)

)
f(x,Ω)dx. (2.19)

The Fisher information matrix of EG(θ, λ) under Type I censoring can be similarly
derived as shown in Type II censoring. For p̃ = [1 − e−λt(λt + 1)]θ,

b11 =
1
θ2

[
p̃ +

p̃

1 − p̃

(
ln p̃

)2]
,

b22 =
θ

λ2

∫λt

0

[
2 − y(1 − e−y)

1 − e−y
(
y + 1

) +
θy2e−y

[
1 − e−y

(
y + 1

)]{1 − [1 − e−y
(
y + 1

)]θ}

]2

× ye−y
[
1 − e−y

(
y + 1

)]θ−1
dy,

b12 = b21 =
θ

λ

∫λt

0

⎡
⎢⎣2 − y(1 − e−y)

1 − e−y
(
y + 1

) +
θy2e−y

[
1 − e−y

(
y + 1

)]{
1 − [1 − e−y

(
y + 1

)]θ}

⎤
⎥⎦

×
[
1
θ
+

ln
[
1 − e−y

(
y + 1

)]

1 − [1 − e−y
(
y + 1

)]θ
]
ye−y

[
1 − e−y

(
y + 1

)]θ−1
dy.

(2.20)
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3. Maximum Likelihood Estimators

3.1. Maximum Likelihood Estimators for Complete Sample

In this section, the maximum likelihood estimators (MLE’s) of EG(θ, λ) are considered. First,
we consider the case when both θ and λ are unknown. Let x1, x2, . . . , xn be a random sample
of size n from EG(θ, λ), then the log−likelihood function is

lnL(θ, λ) = n ln θ + 2n lnλ − λ
n∑
i=1

xi +
n∑
i=1

lnxi

+ (θ − 1)
n∑
i=1

ln
[
1 − e−λxi(λxi + 1)

]
.

(3.1)

The normal equations become

∂ lnL(θ, λ)
∂θ

=
n

θ
+

n∑
i=1

ln
[
1 − e−λxi(λxi + 1)

]
= 0, (3.2)

∂ lnL(θ, λ)
∂λ

=
2n
λ

−
n∑
i=1

xi + (θ − 1)λ
n∑
i=1

[
1 − e−λxi(λxi + 1)

]−1
x2
i e

−λxi = 0. (3.3)

It follows, by (3.2), that the MLE of θ as a function of λ, say θ̂(λ), where

θ̂(λ) =
−n∑n

i=1 ln
[
1 − e−λxi(λxi + 1)

] . (3.4)

Substituting θ̂(λ) in (3.1), we obtain the profile log-likelihood of λ as

g(λ) = lnL
(
θ̂(λ), λ

)

= n lnn − n ln

{
−

n∑
i=1

ln
[
1 − e−λxi(λxi + 1)

]}

− n + 2n lnλ − λ
n∑
i=1

xi +
n∑
i=1

lnxi −
n∑
i=1

ln
[
1 − e−λxi(λxi + 1)

]
.

(3.5)

Therefore, MLE of λ, say λ̂MLE, can be obtained by maximizing (3.5) with respect to λ as
follows:
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∂g(λ)
∂λ

= −
n∑
i=1

λx2
i e

−λxi

1 − e−λxi(λxi + 1)
+
2n
λ

−
n∑
i=1

xi

− n∑n
i=1 ln

[
1 − e−λxi(λxi + 1)

]
n∑
i=1

λx2
i e

−λxi

1 − e−λxi(λxi + 1)
= 0.

(3.6)

Once λ̂MLE is obtained, the MLE of θ, say θ̂MLE, can be obtained from (3.4) as θ̂MLE = θ̂(λ̂MLE).
Now, we state the asymptotic normality results to obtain the asymptotic variances of

the different parameters. It can be stated as follows:

[√
n
(
θ̂MLE − θ

)
,
√
n
(
λ̂MLE − λ

)]
−→ N2

(
0, I−1(θ, λ)

)
, (3.7)

where I(θ, λ) is the information matrix (2.1) whose elements are given by (2.6), (2.7), and
(2.8).

Now, consider the MLE of θ, when the scale parameter λ is known. Without loss of
generality, we can take λ = 1. If λ is known, the MLE of θ, say θ̂MLESCK, is

θ̂MLESCK =
−n∑n

i=1 ln[1 − e−xi(xi + 1)]
. (3.8)

It follows, by the asymptotic properties of the MLE, that

θ̂MLESCK ≈ N

(
θ,

1
na11

)
, (3.9)

where a11 is the single information about θ which is defined in (2.6).
Now, note that if Xi’s are independently and identically distributed EG(θ, 1), then

−θ∑n
i=1 ln[1 − e−xi(xi + 1)] follows G(n, 1). Therefore, for n > 2,

E
(
θ̂MLESCK

)
=

n

n − 1
θ, Var

(
θ̂MLESCK

)
=

n2

(n − 1)2(n − 2)
θ2. (3.10)

Using (3.8), an unbiased estimate of θ can be obtained by

θ̂USCK =
n − 1
n

θ̂MLESCK = − n − 1∑n
i=1 ln[1 − e−xi(xi + 1)]

, (3.11)

where

Var
(
θ̂USCK

)
=

θ2

n − 2
. (3.12)
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Let us consider the MLE of λ when the shape parameter θ is known. For known θ the MLE
of λ, say λ̂MLESHK, can be obtained by numerical solving of the following equation:

2n
λ

−
n∑
i=1

xi + (θ − 1)λ
n∑
i=1

[
1 − e−λxi(λxi + 1)

]−1
x2
i e

−λxi = 0. (3.13)

It follows, by the asymptotic properties of the MLE, that

λ̂MLESHK ≈ N

(
λ,

1
na22

)
, (3.14)

where a22 is the single information about λ which is defined in (2.8).

3.2. Maximum Likelihood Estimators under Censored Samples

Let X1:n ≤ X2:n ≤ · · · ≤ Xr:n be the Type II censored data, then the likelihood function is given
(Lawless [20]) by

L(Ω) =
n!

(n − r)!

r∏
i=1

f(xi;Ω)[1 − F(xr:n)]n−r . (3.15)

Next, let (Xi, t), i = 1, 2, . . . , n, be independent, then xi = min(Xi, t) are the Type I censored
data, thus the likelihood function is given (Lawless [20]) by

L(Ω) =
n!

(n − r)!

r∏
i=1

f(xi;Ω)[1 − F(t)]n−r . (3.16)

We now turn to the computationally more complicated case of censored data. Type I
and Type II censorings will be considered simultaneously, since they give the same form of
likelihood function above. We will deal with the MLE under Type II censoring from EG(θ, λ)
and it is the same for Type I censoring.

In life testing, under the Type II censoring from EG(θ, λ), the log likelihood function is

lnL(θ, λ) = ln
(

n!
(n − r)!

)
+ r ln θ + 2r lnλ − λ

r∑
i=1

xi +
r∑
i=1

lnxi

+(θ − 1)
r∑
i=1

ln
[
1 − e−λxi(λxi + 1)

]
+ (n − r) ln

{
1 − [1 − e−λxi(λxi + 1)

]θ}
.

(3.17)
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The normal equations become

∂ lnL(θ, λ)
∂θ

=
r

θ
+ lnu − (n − r)

[
v−θ − 1

]−1
lnv = 0, (3.18)

∂ lnL(θ, λ)
∂λ

=
2r
λ

−
n∑
i=1

xi + (θ − 1)λ
n∑
i=1

[
1 − e−λxi(λxi + 1)

]−1
x2
i e

−λxi

+ (n − r)θλx2
r:ne

−λxr:n
[
v
(
v−θ − 1

)]−1
= 0,

(3.19)

where

u =
r∏
i=1

[
1 − e−λxi(λxi + 1)

]
, v = 1 − e−λxr (λxr + 1). (3.20)

The MLE of θ and λ, say θ̂MLETII and λ̂MLETII, can be obtained by solving numerically the two
nonlinear equations (3.18) and (3.19).

The MLE θ̂MLETII and λ̂MLETII, based on Type II censored data are strongly consistent
and asymptotically normal (see, Zheng [11]), that is,

[√
n
(
θ̂MLETII − θ

)
,
√
n
(
λ̂MLETII − λ

)]
−→ N

(
0, I−1[0, p](Ω)

)
, (3.21)

where Ω = (θ, λ) and I[0, p](Ω) is the Fisher information matrix (2.12) whose elements are
given by (2.15), (2.16), and (2.17).

Now, consider the MLE of θ, based on the Type II censored data when the scale
parameter λ is known. Without loss of generality, we can take λ = 1. If λ is known, the MLE
of θ, say θ̂MLETIISCK, could be obtained by solving numerically the nonlinear (3.18). It follows,
by the asymptotic properties of the MLE, that

θ̂MLETIISCK −→ N

(
θ,

1
nI[0, p](θ)

)
, (3.22)

where I[0, p](θ) is defined in (2.15).
Let us consider the MLE of λ when the shape parameter θ is known. For known θ

the MLE of λ, say λ̂MLETIISHK, can be obtained by solving numerically the nonlinear equation
(3.19). It follows, by the asymptotic properties of the MLE, that

λ̂MLETIISHK −→ N

(
λ,

1
nI[0, p](λ)

)
, (3.23)

where I[0, p](λ) is defined in (2.16).



Journal of Applied Mathematics 11

4. Estimators Based on Percentiles

If the data come from a distribution function which has a closed form, then it is quite natural
to estimate the unknown parameters by fitting straight line to the theoretical points obtained
by the distribution function and the sample percentile points. Murthy et al. [21] discussed
this method for Weibull distribution while Gupta and Kundu [22] studied the generalized
exponential distribution.

First, let us consider the case when both parameters are unknown. Since

F(x; θ, λ) =
[
1 − e−λx(λx + 1)

]θ
, (4.1)

therefore,

ln
[
1 − (F(x; θ, λ))1/θ

]
= −λx + ln(λx + 1). (4.2)

Let X1:n < X2:n < · · · < Xn:n be the order statistics obtained by EG(θ, λ). If pi denotes some
estimate of F(xi:n; θ, λ), then the estimate of θ and λ can be obtained by minimizing

n∑
i=1

{
λxi:n − ln(λxi:n + 1) + ln

[
1 − p1/θi

]}2
, (4.3)

with respect to θ and λ. We call these estimators as percentile estimators (PCEs) and could be
obtained by solving numerically the following two nonlinear equations:

n∑
i=1

{
λxi:n − ln(λxi:n + 1) + ln

[
1 − p1/θi

]}[
1 − p1/θi

]−1
p1/θi

ln pi
θ2

= 0, (4.4)

n∑
i=1

{
λxi:n − ln(λxi:n + 1) + ln

[
1 − p1/θi

]}[
xi:n − (λxi:n + 1)−1xi:n

]
= 0. (4.5)

Several estimators of pi can be used here (see, Murthy et al. [21]). In this section, we mainly
consider pi = i/(n + 1), which is the expected value of F(xi:n).

Now, let us consider the case when one parameter is known. If the shape parameter θ
is known, then the PCE of λ, say λ̂PCESHK, can be obtained from (4.5).

Now let us consider the case when the scale parameter λ is known. Without loss of
generality, we can assume that λ = 1. If we denote F(x; θ) = F(x; θ, 1), then

lnF(x; θ) = θ ln
[
1 − e−x(x + 1)

]
. (4.6)

Therefore, the PCE of θ, say θ̂PCESCK, can be obtained by minimizing

n∑
i=1

{
ln pi − θ ln

[
1 − e−xi:n(xi:n + 1)

]}2
, (4.7)
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with respect to θ and hence

θ̂PCESCK =
∑n

i=1
{
ln pi ln[1 − e−xi:n(xi:n + 1)]

}
∑n

i=1 {ln[1 − e−xi:n(xi:n + 1)]}2
. (4.8)

Interestingly, θ̂PCESCK is also in a closed form like θ̂MLESCK when λ is known.

5. Least-Squares and Weighted Least-Squares Estimators

The least-squares estimators and weighted least-squares estimators were originally proposed
by Swain et al. [23] to estimate the parameters of Beta distributions. It can be described as
follows. Suppose Y1, Y2, . . . , Yn is a random sample of size n from a distribution function G(·)
and Y1:n < Y2:n < · · · < Yn:n denotes the order statistics of the observed sample. It is well
known that

E
(
G
(
Yj:n

))
=

j

n + 1
, Var

(
G
(
Yj:n

))
=

j
(
n − j + 1

)

(n + 1)2(n + 2)
. (5.1)

Using the expectations and the variances, two variants of the least-squares methods can be
used.

Method 1. The least-squares estimators of the unknown parameters can be obtained by
minimizing

n∑
j=1

(
G
(
Yj:n

) − j

n + 1

)2

, (5.2)

with respect to the unknown parameters. Therefore, in case of EG distribution, the least-
squares estimators of θ and λ, say θ̂LSE and λ̂LSE, respectively, can be obtained by minimizing

n∑
j=1

{[
1 − e−λxj:n

(
λxj:n + 1

)]θ − j

n + 1

}2

, (5.3)

with respect to θ and λ.
It could be obtained by solving the following nonlinear equations:

n∑
j=1

{[
1 − e−λxj:n

(
λxj:n + 1

)]θ − j

n + 1

}[
1 − e−λxj:n

(
λxj:n + 1

)]θ
ln
[
1 − e−λxj:n

(
λ xj:n + 1

)]
= 0,

(5.4)

n∑
j=1

{[
1 − e−λxj:n

(
λxj:n + 1

)]θ − j

n + 1

}
θλx2

j:ne
−λxj:n

[
1 − e−λxj:n

(
λ xj:n + 1

)]θ−1
= 0. (5.5)



Journal of Applied Mathematics 13

Method 2. The weighted least-squares estimators of the unknown parameters can be obtained
by minimizing

n∑
j=1

1
Var

(
G
(
Yj:n

))
(
G
(
Yj:n

) − j

n + 1

)2

, (5.6)

with respect to the unknown parameters. Therefore, in case of an EG distribution, the
weighted least-squares estimators of θ and λ, say θ̂WLSE and λ̂WLSE, respectively, can be
obtained by minimizing

n∑
j=1

(n + 1)2(n + 2)
j
(
n − j + 1

)
{[

1 − e−λxj:n
(
λxj:n + 1

)]θ − j

n + 1

}2

, (5.7)

with respect to θ and λ.
It could be found by solving the following nonlinear equations

n∑
j=1

(n + 1)2(n + 2)
j
(
n − j + 1

)
{[

1 − e−λxj:n
(
λxj:n + 1

)]θ − j

n + 1

}

×
[
1 − e−λxj:n

(
λxj:n + 1

)]θ
ln
[
1 − e−λxj:n

(
λxj:n + 1

)]
= 0,

(5.8)

n∑
j=1

(n + 1)2(n + 2)
j
(
n − j + 1

)
{[

1 − e−λxj:n
(
λxj:n + 1

)]θ − j

n + 1

}

×θλx2
j:ne

−λxj:n
[
1 − e−λxj:n

(
λxj:n + 1

)]θ−1
= 0.

(5.9)

6. Method of Moment Estimators

In this section, we provide the method of moment estimators (MMEs) of the parameters of
an EG distribution. If X follows EG(θ, λ), then

μ = E(X) =
θ

λ
[2 +A1(θ)], (6.1)

σ2 = V (X) =
θ

λ2

{
6 +A2(θ) − θ[2 +A1(θ)]

2
}
, (6.2)

where A1(θ) and A2(θ) are defined in (2.9).
It is well known that the principle of the moment’s method is to equate the sample

moments with the corresponding population.
From (6.1) and (6.2), we obtain the coefficient of variation (C.V.) as

C.V. =
σ

μ
=

√
θ[6 +A2(θ)] − θ2[2 +A1(θ)]

2

θ[2 +A1(θ)]
. (6.3)
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Table 1: Bias estimates and MSEs of θ are presented, when λ is known.

n Method θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 2.5

10

MLE 0.13269 0.31581 0.12298 0.19146 0.24863
0.04193 0.15449 0.15997 0.59425 0.95929

MME 0.14114 0.24936 0.76652 − 0.76236 1.21176
0.01992 0.06218 0.58756 0.58119 1.46835

PCE 0.05443 0.22400 − 0.05708 − 0.18646 − 0.19735
0.02452 0.08653 0.11220 0.47012 0.75097

LSE 1.25613 0.92901 1.18688 0.20133 0.18193
1.57786 0.86305 1.58971 1.02132 1.43291

WLSE 1.21698 0.90029 1.13884 0.17699 0.16053
1.48105 0.81052 1.47831 0.82830 1.32242

UBE 0.09442 0.23423 0.01069 − 0.02769 − 0.02624
0.02862 0.09922 0.11744 0.45242 0.72764

20

MLE 0.01488 0.02848 0.06164 0.09579 0.14010
0.00356 0.01578 0.06943 0.23892 0.40589

MME − 0.01385 − 0.00755 0.09627 0.07783 0.06881
0.01186 0.03202 0.12147 0.47954 0.72776

PCE − 0.05946 − 0.05620 − 0.06172 − 0.15758 − 0.22235
0.00671 0.02036 0.06388 0.23730 0.39565

LSE 1.62596 1.36431 0.02848 0.07049 0.10051
2.64656 1.86404 0.09260 0.32610 0.55121

WLSE 2.21133 1.87305 0.02495 0.06392 0.29974
4.89475 3.51203 0.08449 0.29810 0.90352

UBE 0.00164 0.00206 0.00856 − 0.00900 0.00809
0.00302 0.01351 0.05930 0.20743 0.34867

50

MLE 0.01029 0.01194 0.02556 0.03783 0.05525
0.00135 0.00541 0.02171 0.09390 0.12927

MME − 0.02304 −0.01614 0.02354 0.03965 − 0.01924
0.00476 0.01191 0.03931 0.16665 0.23736

PCE − 0.06374 −0.05750 − 0.04838 − 0.10306 − 0.19602
0.00523 0.01070 0.02443 0.10966 0.18408

LSE 1.58813 1.04030 0.02102 0.01700 0.03799
2.52287 1.08322 0.03064 0.11586 0.17602

WLSE 2.20514 1.85472 0.01968 0.01582 − 0.49704
4.87453 3.44050 0.02725 0.10712 0.39058

UBE 0.00508 0.00170 0.00505 −0.00292 0.00414
0.00122 0.00506 0.02025 0.08881 0.12124

100

MLE 0.03297 0.14041 0.01201 0.02151 0.00560
0.00109 0.00197 0.01105 0.04172 0.06166

MME 0.07016 0.04276 0.03428 0.04947 − 0.04117
0.00492 0.00183 0.00117 0.00245 0.00170

PCE 0.03915 0.16972 − 0.03748 − 0.07757 − 0.10999
0.00308 0.02880 0.01317 0.05372 0.08057

LSE 0.19718 0.17144 0.00963 0.01773 − 0.00567
0.03888 0.03338 0.01525 0.05612 0.08245
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Table 1: Continued.

n Method θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 2.5

WLSE 0.16700 0.22510 0.00934 0.01664 − 0.00374
0.02789 0.05388 0.01365 0.05063 0.07397

UBE 0.03014 0.13401 0.00189 0.00129 − 0.01945
0.00091 0.00180 0.01069 0.04044 0.06078

The first entry is the simulated bias.
The second entry is simulated MSE.

The C.V. is independent of the scale parameter λ. Therefore, equating the sample C.V. with
the population C.V., we obtain

S

X
=

√
θ[6 +A2(θ)] − θ2[2 +A1(θ)]

2

θ[2 +A1(θ)]
, (6.4)

where S2 = (
∑n

i=1(Xi − X)2)/(n − 1) and X = (1/n)
∑n

i=1 Xi. We need to solve (6.4) to obtain
the MME of θ, say θ̂MME. Once we estimate θ, we can use (6.1) to obtain the MME of λ.

If the scale parameter is known (without loss of generality, we assume λ = 1), then the
MME of θ, say θ̂MMESCK, can be obtained by solving the nonlinear equation:

X = μ, (6.5)

that is,

X = θ[2 +A1(θ)]. (6.6)

Now consider the case when the shape parameter θ is known, then the MME of λ, say
λ̂MMESHK, is

λ̂MMESHK =
θ[2 +A1(θ)]

X
. (6.7)

Note that (6.5) follows easily from (6.1). Although λ̂MMESHK is not an unbiased estimator of
λ, (1/λ̂MMESHK) is unbiased estimator of (1/λ) and, therefore,

Var

(
λ

λ̂MMESHK

)
=

1
n

[
6 +A2(θ)

θ[2 +A1(θ)]
2
− 1

]
. (6.8)

7. L-Moment Estimator

In this section, we propose a method of estimating the unknown parameter of an EG
distribution based on the linear combination of order statistics (see, [24, 25]). The estimators
obtained by this method are popularly known as L-moment estimators (LMEs). It is observed
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Table 2: Bias estimates and MSEs of λ are presented, when θ is known.

n Method θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 2.5

10

MLE 0.31811 0.18392 0.11145 0.09787 0.11787
0.58672 0.21690 0.07703 0.04421 0.04936

MME 0.32033 0.17616 0.11145 0.09702 0.10992
0.78535 0.22157 0.07703 0.04474 0.04646

PCE − 0.05303 − 0.02370 − 0.02479 − 0.01796 − 0.01759
0.16991 0.12909 0.06761 0.03890 0.03475

LSE − 0.49779 0.27450 0.31333 0.43391 − 0.13358
0.24796 0.23511 0.22940 0.18828 0.02373

WLSE 1.25407 0.24347 0.30201 0.04305 − 0.12468
5.71291 0.31666 0.21657 0.03298 0.02343

MLE 0.31811 0.18392 0.11145 0.09787 0.11787
0.58672 0.21690 0.07703 0.04421 0.04936

20

MLE 0.93920 0.08715 0.03108 0.01178 0.02822
0.22575 0.08646 0.02862 0.01488 0.01642

MME 0.95002 0.08647 0.03110 0.01352 0.02613
0.26947 0.08936 0.02861 0.01506 0.01567

PCE 0.65305 − 0.07187 − 0.06136 − 0.04752 − 0.04746
0.10416 0.06648 0.03426 0.01919 0.01706

LSE 1.08709 0.71135 0.02553 0.02546 − 0.00643
0.21023 0.58339 0.03482 0.36011 0.01492

WLSE 0.42226 0.42004 0.01817 0.00580 − 0.01538
0.26128 0.21520 0.03193 0.01579 0.01510

MLE 0.93920 0.08715 0.03108 0.01178 0.02822
0.22575 0.08646 0.02861 0.01488 0.01642

50

MLE 0.86277 0.04295 0.00711 0.01066 0.01775
0.07361 0.02587 0.01054 0.00593 0.00615

MME 0.87038 0.04343 0.00711 0.01123 0.01500
0.08332 0.02685 0.01054 0.00598 0.00589

PCE 0.67724 − 0.05961 − 0.04379 −0.02532 − 0.03890
0.04971 0.02590 0.01420 0.00802 0.00690

LSE 0.60209 0.00401 0.00374 0.00952 − 0.01785
0.04424 0.02550 0.01336 0.00675 0.00543

WLSE 0.33053 − 0.04580 0.00322 0.00918 − 0.04761
0.19229 0.01685 0.01214 0.00638 0.01093

MLE 0.86277 0.04295 0.00711 0.01066 0.01775
0.07361 0.02587 0.01054 0.00593 0.00615

100

MLE − 0.21280 − 0.12827 0.00632 0.00470 0.00250
0.05254 0.02181 0.00480 0.00292 0.00222

MME − 0.25157 − 0.14261 0.00632 0.00517 0.00245
0.06987 0.02544 0.00480 0.00293 0.00225

PCE − 0.17997 − 0.10697 − 0.02831 − 0.01738 − 0.01960
0.04306 0.01985 0.00681 0.00405 0.00344

LSE − 0.16872 − 0.07718 0.00509 0.00372 0.00268
0.02847 0.00596 0.00585 0.00329 0.00250
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Table 2: Continued.

n Method θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 2.5

WLSE − 0.31292 − 0.14028 0.00484 0.00359 0.00234
0.10323 0.01968 0.00545 0.00310 0.00234

MLE − 0.21279 − 0.12827 0.00633 0.00470 0.00250
0.05254 0.02181 0.00480 0.00292 0.00222

The first entry is the simulated bias.
The second entry is simulated MSE.

(see, Gupta and Kundu [15]) that the LMEs have certain advantages over the conventional
moment estimators.

The standard method to compute the L-moment estimators is to equate the sample
L-moments with the population L-moments.

First, we discuss the case of obtaining the LMEs when both the parameters of an EG
distribution are unknown. If x1:n ≤ x2:n ≤ · · · ≤ xn:n denote the ordered sample, then using
the same notation as in [15, 25], we obtain the first and second sample L-moments as

l1 =
1
n

n∑
i=1

xi:n, l2 =
2

n(n − 1)

n∑
i=1

(i − 1)xi:n − l1. (7.1)

Similarly, the first two population L-moments (see David and Nagaraja [24]) are

λ1 = μ = E(X), λ2 =
(
1
2

)(
μ2:2 − μ1:2

)
=
∫∞

−∞
x[2F(x) − 1]f(x)dx, (7.2)

respectively, where μi:n = E(Xi:n).
Then, for EG(θ, λ), we obtain

λ1 =
θ

λ
[2 +A1(θ)], λ2 =

2θ
λ
[2 +A1(2θ)] − θ

λ
[2 +A1(θ)], (7.3)

where A1(θ) is defined by (2.9) and

Ar(2θ) =
∞∑
j=1

j∑
k=0

(−1)j
(
2θ − 1

j

)(
j
k

)
Γ(r + k + 2)
(
1 + j

)r+k+2 , r = 1, 2, . . . . (7.4)

Therefore, LMEs can be obtained by solving the following two equations:

l1 =
θ

λ
[2 +A1(θ)], (7.5)

l2 =
2θ
λ
[2 +A1(2θ)] − θ

λ
[2 +A1(θ)]. (7.6)
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Table 3: Bias estimates and MSEs of θ are presented, when λ is unknown.

n Method θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 2.5

10

MLE 0.21113 0.47216 1.52019 1.72396 1.14780
0.22611 0.22293 2.31097 2.97203 4.56281

MME 0.76727 0.49996 1.14769 1.11707 1.34613
0.58875 0.39533 2.71090 3.59468 12.94580

PCE 0.59915 0.52863 − 0.81238 −1.80674 2.06424
0.35898 0.27945 0.65997 3.26431 4.26110

LSE 1.42344 4.79954 3.30292 1.81180 2.00336
2.02618 23.03550 10.9093 3.28262 4.01345

WLSE 1.37249 4.13538 2.33451 2.88664 1.94695
1.88374 17.10140 5.44994 8.33268 3.79060

LME 0.25377 0.33619 − 0.83525 0.42838 − 0.30403
0.06440 0.11302 0.69764 0.18351 0.09243

20

MLE 0.05642 − 0.26499 0.20639 0.51890 − 0.63219
0.06938 0.11276 0.28192 1.76134 3.30157

MME − 0.02744 0.02945 0.24985 0.70164 0.68147
0.11071 0.07633 0.45191 3.40144 5.12740

PCE − 0.05994 0.16020 − 0.30593 −0.59678 − 0.49013
0.83344 0.20841 0.90643 2.82742 2.21411

LSE 4.17385 1.64517 0.13219 1.99406 − 0.11114
17.52740 2.71021 0.94279 5.38358 3.77045

WLSE 4.53046 2.49667 0.06400 0.71230 − 0.14265
20.61810 6.23523 0.60372 4.52342 3.73948

LME − 0.12299 − 0.05096 0.14087 0.34621 0.28202
0.00526 0.05250 0.32047 1.91264 4.40559

50

MLE 0.02917 0.04433 0.06944 0.17997 − 0.35615
0.00322 0.01287 0.05652 0.36878 2.45495

MME − 0.02159 − 0.03043 0.07974 0.20995 0.01896
0.05408 0.02100 0.09118 0.58875 0.81280

PCE 0.09865 0.30284 − 0.23200 −0.37726 − 0.72448
0.04254 0.13493 0.57164 0.62198 1.36530

LSE 4.04285 1.41485 0.02900 0.91823 − 0.67959
16.38400 2.00264 0.21018 1.64307 1.06572

WLSE 4.46262 2.30001 0.02562 0.62267 − 0.87230
19.94850 5.29033 0.16917 1.25187 1.41209

LME − 0.00570 − 0.07578 0.02864 0.12927 − 0.07695
0.00259 0.01867 0.05908 0.38234 0.64602

100

MLE 0.04925 0.33618 0.04200 0.07415 0.08994
0.00243 0.11302 0.00176 0.12379 0.23124

MME 0.19042 0.14178 − 0.15128 0.19460 − 0.09501
0.048974 0.02010 0.04628 0.23351 0.17784

PCE − 0.12753 0.03137 − 0.15234 −0.27866 − 0.33585
0.01626 0.00098 0.11004 0.36332 0.55157

LSE 7.15894 0.36587 0.08370 0.38356 0.15933
23.58748 0.13386 0.00701 0.14712 0.02539
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Table 3: Continued.

n Method θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 2.5

WLSE 6.48572 0.65182 0.06534 0.30304 0.11907
25.85176 0.42487 0.00427 0.09183 0.01418

LME 0.20830 0.28730 − 0.03486 0.47106 0.04308
0.04339 0.08254 0.00121 0.22190 0.00186

The first entry is the simulated bias.
The second entry is simulated MSE.

First, we obtain the LME of θ, say θ̂LME, as the solution of the following nonlinear equation:

2 + 2A1(2θ) −A1(θ)
2 +A1(θ)

=
l2
l1
. (7.7)

Once θ̂LME is obtained, the LME of λ, say λ̂LME, can be obtained from (7.5) as

λ̂LME =
θ̂LME

[
2 +A1

(
θ̂LME

)]

l1
. (7.8)

Note that if θ or λ is known, then the LME of λ or θ is the same as the corresponding MME
obtained in Section 6.

8. Numerical Experiments and Discussions

In this section, we present the results of some numerical experiments to compare the
performance of the different estimators proposed in the previous sections. We apply Monte
Carlo simulations to compare the performance of different estimators, mainly with respect
to their biases and mean squared errors (MSEs) for different sample sizes and for different
parameter values. Since λ is the scale parameter and all the estimators are scale invariant, we
take λ = 1 in all our computations. We set θ = 0.25, 0.5, 1, 2, 2.5 and n = 10, 20, 50, 100. We
compute the bias estimates and MSEs over 1000 replications for different cases.

First of all, we consider the estimation of θ when λ is known. In this case, the
MLE, unbiased estimator (UBE), and PCE of θ can be obtained from (3.4), (3.11), and (4.8)
respectively. The least-squares and weighted least-squares estimators of θ can be obtained by
solving numerically the nonlinear equations (5.4) and (5.8), respectively. TheMME (similarly
LME) of θ can be obtained by solving numerically the nonlinear equation (6.5) as well. The
results are reported in Table 1.

It is observed in Table 1 that for each method the MSEs decrease as sample size
increases at θ ≥ 1. It indicates that all the methods deduce asymptotically unbiased and
consistent estimators of the shape parameter θ for known λ. Moreover, all methods (except
PCE and MME) usually overestimate θ whereas PCE underestimate θ in all cases that are
considered and for some values of θ in case UBE. Therefore, the estimates of all methods are
underestimate for most values of θ except MLE that forms overestimate for all θ. Also, all
estimators are unbiased except LSE and WLSE that are the worst in biasness. The estimates
of all methods are consistent except for some values at θ ≤ 0.5 because of the shape of the
curve (reversed J shaped).
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Table 4: Bias estimates and MSEs of λ are presented, when θ is unknown.

n Method θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 2.5

10

MLE 0.23192 − 0.37506 1.51322 0.30659 0.17913
0.41451 0.14067 2.28984 0.09400 0.12062

MME 1.49108 0.22006 0.22579 0.18151 0.15722
3.41454 0.21805 0.14019 0.16686 0.38909

PCE 0.48838 − 0.37506 − 0.63758 − 0.77034 − 0.58675
0.23851 0.14067 0.40651 0.59343 0.34428

LSE 1.96123 1.93765 1.19535 0.67881 0.38439
3.84642 3.75448 1.42885 0.46078 0.14776

WLSE 1.93382 1.77460 0.95789 0.86839 0.36372
3.73965 3.14921 0.91755 0.75410 0.13230

LME 1.24369 0.58045 − 0.86891 0.25729 − 0.27276
1.54676 0.33692 0.75500 0.06620 0.07440

20

MLE 1.12958 − 0.78577 0.09648 0.06996 − 0.32552
0.98810 0.83260 0.07399 0.05256 0.31230

MME − 0.21298 − 0.02978 0.09269 0.08362 0.06518
15.79690 1.26516 0.09956 0.07370 0.06565

PCE 0.96517 0.41578 − 0.25434 − 0.20545 − 0.13402
2.64459 0.51577 0.27145 0.30745 0.19009

LSE 1.08501 0.13210 0.12885 0.23836 − 0.05068
0.12089 0.01752 0.27372 0.44210 0.14692

WLSE 0.95772 0.05630 0.07882 0.16095 − 0.09438
0.05037 0.00333 0.21817 0.58381 0.20759

LME 0.26872 − 0.06348 0.05770 0.04002 0.00806
0.09852 0.09493 0.08266 0.05849 0.05390

50

MLE 0.94981 0.08882 0.03655 0.02594 − 0.20388
0.13613 0.05372 0.02425 0.01849 0.26018

MME 0.17219 − 0.03711 0.03235 0.02871 − 0.00462
9.21814 0.31441 0.03334 0.02669 0.02245

PCE 1.59704 0.64277 − 0.16087 − 0.11791 − 0.15752
1.49896 0.44799 0.25011 0.05786 0.09803

LSE 1.01034 0.12268 0.06734 0.26566 − 0.15567
0.07085 0.01507 0.05965 0.09425 0.04834

WLSE 0.94417 0.04855 0.03741 0.19030 − 0.24839
0.04104 0.00241 0.08950 0.18141 0.10215

LME 0.75545 − 0.08930 0.01673 0.01864 − 0.00924
0.05648 0.04131 0.02619 0.01999 0.01877

100

MLE − 0.24206 0.04165 − 0.10807 0.012484 0.00873
0.05859 0.00173 0.01168 0.00768 0.00833

MME 0.16552 0.02524 − 0.07416 0.04744 0.06259
0.05546 0.00064 0.02102 0.01807 0.01740

PCE − 0.51381 − 0.27116 − 0.10042 − 0.07722 − 0.07335
0.26401 0.07353 0.04582 0.02565 0.02310

LSE 0.15872 0.14976 − 0.09193 0.08286 0.06580
0.06445 0.02243 0.00845 0.00687 0.00433
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Table 4: Continued.

n Method θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 2.5

WLSE 0.78422 0.34511 − 0.10204 0.06591 0.06105
0.03259 0.11910 0.01041 0.00434 0.00373

LME − 0.01798 0.13656 0.01622 0.11112 0.02734
0.00032 0.01865 0.00026 0.01235 0.00075

The first entry is the simulated bias.
The second entry is simulated MSE.

In the context of computational complexities, UBE, MLE, and PCE are the easiest to
compute. They do not involve solvable nonlinear equation, whereas the LSE, WLSE, and
MME involve solvable nonlinear equations and they need to be calculated by some iterative
processes. Comparing all the methods, we conclude that for known scale parameter, the UBE
should be used for estimating θ.

The negative sign in some results of the first entry only, in cells in all tables because of
calculating of bias (see, Abouammoh and Alshingiti [26]).

Now consider the estimation of λ when θ is known. In this case, the MLE, PCE, LSE,
and WLSE of λ can be obtained by solving the nonlinear equations (3.13), (4.5), (5.5), and
(5.9), respectively, but the MME (LME is exactly the same) of λ can be obtained directly from
(6.7). The results are reported in Table 2.

In this case, it is observed, at the same sample size, that the value of θ increases for
all methods the MSEs decrease. Comparing the computational complexities of the different
estimators, it is observed that when the shape parameter is known, PCE and MME can
be computed directly, while some iterative techniques are needed to compute MLE, LSE,
and WLSE. We apply Newton-Raphson method using Mathematica 6 to solve the nonlinear
equations required. Comparing all methods, we conclude that all the estimates are consistent
except WLSE and LSE for some θ.

Also, formost estimates, theMSEs decrease as the values of θ decrease.We recommend
to use PCE for estimate at θ ≤ 0.5, n = 10, 20, and to use LSE at θ ≤ 0.5, n = 100, while use
WLSE at θ ≤ 0.5, n = 50. All the estimates are consistent and unbiased at θ ≥ 1 for all values
of n.

Finally, consider the estimation of θ and λ when both of them are unknown. The λ̂MLE

can be obtained by solving the nonlinear equation (3.6), once λ̂MLE is obtained, θ̂MLE can be
obtained from (3.4). The PCE of θ and λ can be obtained by solving the nonlinear equations
(4.4) and (4.5). Similarly, LSE of θ and λ can be obtained by solving the nonlinear equations
(5.4) and (5.5). Also, WLSE of θ and λ can be obtained by solving the nonlinear equations
(5.8) and (5.9). The θ̂MME or θ̂LME can be obtained by solving the nonlinear equation (6.4) or
(7.7), and then λ̂MME or λ̂LME can be obtained from (6.7) or (7.8). The results for θ and λ are
presented in Tables 3 and 4, respectively.

It is observed in Tables 3 and 4 that for each method, the MSEs decrease as sample size
increases. It indicates that all the methods deduce asymptotically unbiased and consistent
estimators of θ and λ when both are unknown.

Comparing the performance of all the estimators, it is observed that as far as the
minimum biases are concerned, the MLE performs. Considering the MSEs, the MLE and
PCE perform better than the rest in most cases considered. The performances of the LSE’s
and WLSE’s for θ ≤ 1 are the worst as far as the bias or MSE’s are concerned. Moreover, it is
observed from Table 4 for PCE method that the MSE’s of λ̂ depend on θ, that is, for θ < 2.5,
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and n > 10 as θ, increases the MSEs of λ̂ decrease. Most of the estimators are consistent and
most of the estimators PCE are underestimate for all n.

Now if we consider the computational complexities, it is observed that MLEs, MMEs,
and LMEs involve one-dimensional optimization, whereas PCEs, LSEs, and WLSEs involve
two-dimensional optimization. Considering all the points above, we recommend to use
MLE’s for estimating θ and λ when both are unknown.
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