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A decomposition algorithm based on proximal bundle-type method with inexact data is presented
for minimizing an unconstrained nonsmooth convex function f . At each iteration, only the
approximate evaluation of f and its approximate subgradients are required which make the
algorithm easier to implement. It is shown that every cluster of the sequence of iterates generated
by the proposed algorithm is an exact solution of the unconstrained minimization problem.
Numerical tests emphasize the theoretical findings.

1. Introduction

Consider minimizing the following problem:

min
{
f(x) | x ∈ Rn}, (1.1)

where f : Rn → R is a nondifferentiable convex function. It is well known that many practical
problems can be formulated as (1.1), for example the problem of catastrophe, ruin, vitality,
data mining, and finance. A classical conceptual algorithm for solving (1.1) is the proximal
point method, based on the Moreau-Yosida regulation of f [1, 2]. Implementable forms of
the method can be obtained by means of a bundle technique, alternating serious steps with
sequences of null steps [3, 4].

More recently, new conceptual schemes for solving (1.1) have been developed by using
an approach that is somewhat different from Moreau-Yosida regularization. This is the VU-
theory introduced in [5]; see also [6, 7]. The idea is to decompose Rn into two orthogonal
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subspace V and U at a point x that the nonsmoothness of f is concentrated essentially on
V, and the smoothness of f appears on U-subspace. More precisely, for a given g ∈ ∂f(x),
where ∂f(x) denotes the subdifferential of f at x in the sense of convex analysis, then Rn

can be decomposed as direct sum of two orthogonal subspaces, that is, Rn = U ⊕ V, where
V = lin(∂f(x) − g) and U = V⊥. They define the U-Lagrangian, an approximation of the
original function, which can be used to create a second-order expansion of f along certain
manifolds.

Mifflin and Sagastizábal design a VU-algorithm for convex function in [8]. This
algorithm brings the iterate to the primal track with the help of bundle subroutine. Then
the U-Newton step is performed to gain superlinear decrease of the distance to solution. In
order to implement this algorithm, [9] gives an algorithm which only uses the subgradients.
However, this algorithm is conceptual in the sense that it needs to compute the exact function
values of the objective function, which is difficult to evaluate them. For example, consider the
situation of Lagrangian relaxation. The primal problem is

max
{
q(ξ) | ξ ∈ P, h(ξ) = 0

}
, (1.2)

where P is a compact subset of Rm and q : Rm → R, h : Rm → Rn. Lagrangian relaxation of
the equality constraints in the problem leads to the following problem

min
x∈Rn

C(x), (1.3)

where

C(x) = max
ξ∈P

{
q(ξ) + 〈x, h(ξ)〉} (1.4)

is the dual function. Trying to solve problem (1.2) by means of solving its dual problem
(1.3) makes sense in many situations. In this case, evaluating the function value C(x) and a
subgradient g(x) ∈ ∂C(x) requires solving the optimization problem (1.4) exactly. Actually,
in some cases, computing exact values of C(x) is unnecessary and inefficient. For this reason,
some modifications of bundle methods in [9]were needed.

The paper is organized as follows. In the next section we present the approximate
U-Lagrangian based on the approximate subgradient. Then we design a conceptual
Algorithm 2.6 which can deal with the approximate subgradients and approximate function
values. Section 3 breaks into 3 parts. In the first part, we propose the approximate primal-
dual track. The proximal bundle-type subroutine with inexact data is introduce in the second
part. The third part of Section 3 is devoted to establishing an implemental Algorithm 3.5
which substitutes the approximate V-step in Algorithm 2.6 with proximal bundle subroutine.
Numerical testing of the resulting Algorithm 3.5 is reported in the final section.
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2. A Conceptual Approximate Decomposition Algorithm

2.1. Approximate U-Lagrangian and Its Properties

In some cases, computing exact values of the objective function and exact subgradient is un-
necessary and inefficient. For this reason, some modification of theU-Lagrangian will be pro-
posed in this section. We assume that g satisfies

f(x + u ⊕ v) ≥ f̃(x) +
〈
g, u ⊕ v

〉
, where f̃(x) ∈ [

f(x) − ε, f(x)
]
, ε > 0. (2.1)

Introducing this g to [5], one can restate the definition of U-Lagrangian and its properties as
follows.

Definition 2.1. Assume (2.1). The approximate U-Lagrangian of f , denoted by Lg(u), is
defined as follows.

Lg(u) = min
v∈V

{
f(x + u ⊕ v) − 〈

gV, v
〉
V
}
, (2.2)

and Wg(u) is defined by

Wg(u) = Argmin
v∈V

{
f(x + u ⊕ v) − 〈

gV, v
〉
V
}
. (2.3)

Theorem 2.2. Assume (2.1). Then the following assertions are true:

(i) the function Lg defined in (2.2) is convex and finite everywhere;

(ii) Wg(u) = {w | ∃g ∈ ∂f(x + u ⊕w) : gV = gV};
(iii) 0 ∈ Wg(0) and Lg(0) = f(x).

Theorem 2.3. Assume (2.1) and Wg(u)/= ∅. Then one has that

∂Lg(u) =
{
u∗ | u∗ ⊕ gV ∈ ∂f(x + u ⊕w)

}
. (2.4)

Remark 2.4. Assume (1.2). If ε = 0, then the approximateU-Lagrangian in this paper is exactly
the U-Lagrangian in [5].

2.2. Approximate Decomposition Algorithm Frame

In order to give an approximate decomposition algorithm frame, we restate the definition of
Hessian matrix in [5] as follows.

Definition 2.5. Assume that f is finite, x is fixed, and g satisfies (2.1). We say that f has at x a
U-Hessian HUf(x) associated with g if Lg(u) has a generalized Hessian at 0, setting

HUf(x) = HLg(0). (2.5)
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Assume (2.1), we investigate an approximate decomposition algorithm frame based
on the definition of the approximate U-Lagrangian.

Algorithm 2.6.

Step 0. Initiation
x0, η > 0, 0 < τ < 1, ε0 > 0, g0 satisfies for all x, f(x) ≥ f̃(x0) + 〈g0, x − x0〉, where

f̃(x0) ∈ [f(x0) − ε0, f(x0)] and k = 0.

Step 1. Stop if ‖gk‖ ≤ η.

Step 2. Approximate V-step.
Compute an optimal solution δv ∈ V satisfying

δv ∈ Argmin
δv∈V

f(xk + 0 ⊕ δv). (2.6)

Set x′ = xk + 0 ⊕ δv.

Step 3. U-step. Make a Newton step in x′.
Compute that gk satisfies for all x, f(x) ≥ f̃(x′) + 〈gk, x − x′〉, where f̃(x′) ∈ [f(x′) −

εk, f(x′)], such that

gk
V = 0, gk

U ∈ ∂Lgk

((
x′ − x

)
U
)
. (2.7)

Compute the solution δu ∈ U satisfying

gk
U +HUf(x)δu = 0. (2.8)

Set xk+1 = x′ + δu ⊕ 0 = xk + δu ⊕ δv and εk+1 = τεk.

Step 4. Update-set
Compute that gk+1 satisfies for all x, f(x) ≥ f̃(xk+1) + 〈gk+1, x − xk+1〉, where f̃(xk+1) ∈

[f(xk+1) − εk+1, f(xk+1)]. Set k = k + 1 and go to Step 1.

Theorem 2.7. Assume (2.1) and f has a positive definiteU-Hessian at x, a minimizer of f . Then the
iterate points {xk} constructed by Algorithm 2.6 satisfy

‖xk+1 − x‖ = o(‖xk − x‖). (2.9)

Remark 2.8. If {εk}∞k=0 ≡ 0, this algorithm is the same as Algorithm4.5 in [5]. However, it
only uses the approximate objective function values which make the algorithm easier to
implement.
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3. Approximate Decomposition Algorithm

Since the Algorithm 2.6 in Section 2 relies on knowing the subspaces U and V and converges
only locally, it needs significant modification. In [10], Mifflin and Sagastizábal show that
a proximal point sequence follows primal track near a minimizer. This opens the way for
defining a VU-algorithm where V-steps are replaced by proximal steps. In addition, the
proximal step can be estimated with a bundle technique which also can approximate the
unknown U and V subspaces as a computational byproduct. Therefore, they establish
Algorithm6 in [8] by combing the bundle subroutine with the VU-space decomposition
method. However, this algorithm needs the exact function values and exact subgradients,
which is expensive to compute. Therefore, the study of using approximate values instead of
the exact ones is deserving.

3.1. Approximate Primal-Dual Track

Given a positive scalar parameter μ, the proximal point function depending on f is defined
by

pμ(x) := arg min
p∈Rn

{
f
(
p
)
+
1
2
μ
∥∥p − x

∥∥2
}
, x ∈ Rn, (3.1)

where ‖ · ‖ stands for the Euclidean norm. It has the property: gμ(x) := μ(x − pμ(x)) ∈
∂f(pμ(x)).

Similarly to the definition of primal track, we define the approximate primal track.

Definition 3.1. For any ε > 0, μ = μ(x) > 0, we say that Θ(u) = x + u ⊕ v(u) is an approximate
primal track leading to x, a minimizer of f , if for all u ∈ RdimU small enough, it satisfies the
following:

(i) Θ(uμ(x)) = x + uμ(x) ⊕ v(uμ(x)), where uμ(x) = (pμ(x) − x)U;

(ii) v : RdimU → RdimV is a C2-function satisfying Vv ∈ Wg(u) for all g satisfies (2.1);

(iii) the Jacobian JΘ(u) is a basis matrix for V(Θ(u))⊥;

(iv) the particular U-Lagrangian L0(u) is a C2-function.

Accordingly, we have the approximate dual track denoted by Γ(u) corresponding to
the approximate primal track. More precisely,

Γ(u) = arg min
{∥∥g

∥∥2 : f(x) ≥ f̃(Θ(u)) +
〈
g, x −Θ(u)

〉}
. (3.2)

In fact, if ε = 0, the approximate primal-dual track is exactly the primal-dual track
shown in [8].

The next lemma addresses that making an approximate V-step in Algorithm 2.6
essentially amounts to finding a corresponding approximate primal track point.

Lemma 3.2. Let Θ(uμ(x)) be an approximate primal track leading to x, a minimizer of f , and let
H := ∇2L0(0). Then for all u sufficiently small Θ(uμ(x)) is the unique minimizer of f on the affine
set Θ(uμ(x)) + V(Θ(uμ(x))).
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Proof. Since JΘ(u) is a basis for V(Θ(u))⊥, Theorem 3.4 in [10] with BU(u) = JΘ(u) gives the
result.

3.2. The Proximal Bundle-Type Subroutine with Inexact Data

Throughout this section, we make the following assumption: at each given point x ∈ Rn, and
for ε ≥ 0, we can find some f̃(x) ∈ R and g(x) ∈ Rn satisfying

f̃(x) ∈ [
f(x) − ε, f(x)

]
,

f(ζ) ≥ f(x) +
〈
g(x), ζ − x

〉 − ε, ∀ζ ∈ Rn,
(3.3)

where ε = f(x) − f̃(x). At the same time, it can be ensured that

f̃j −→ f̃k if yj −→ xk, (3.4)

where f̃j ∈ [f(yj)−εk, f(yj)] and f̃k ∈ [f(xk)−εk, f(xk)] for given εk > 0. The condition (3.3)
means that g(x) ∈ ∂εf(x). This setting is realistic in many applications; see [11].

The bundle method includes two phases. (i) The first phase makes use of the in-
formation (xk, f̃k, g

k), (xk−1, f̃k−1, gk−1), . . . , (x1, f̃1, g
1) in bundles to establish a polyhedral

approximation of f at the actual iterate xk. (ii) Due to the kinky structure of f , the model is
possibly not precise for approximation f . Then, more information around the actual iterate xk

is mobilized to obtain a more reliable model. Feature (i) leads to the following approximation
of f at xk. Let Ik denote the index set at the kth iteration with each j ∈ Ik representing
(yj, f̃j , g

j), where f̃j and gj satisfy

f̃j ∈
[
f
(
yj
) − εk, f

(
yj
)]
,

f(x) ≥ f̃j +
〈
gj , x − yj

〉
, ∀x ∈ Rn,

(3.5)

for given εk > 0. From the choices of f̃j and gj , we have that, for all x ∈ Rn and for all j ∈ Ik,

f(x) ≥ f̃j +
〈
gj , x − yj

〉
= f̃k + gjT (x − xk) + εk − αk,j , (3.6)

where

αk,j = α
(
xk, y

j
)
= f̃k − f̃j − gjT

(
xk − yj

)
+ εk. (3.7)

On the basis of the above observation, we attempt to explore the possibility of utilizing
the approximate subgradient and approximate function values instead of the exact ones. We
approximate f at xk from below by a piecewise linear convex function ϕ of the form:

ϕ(z) := f̃k +max
j∈Ik

{
gjT (z − xk) − αk,j

}
+ εk. (3.8)
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Since (3.8) becomes more and more crude if an approximation of f is farther away
from xk, we add the proximal term (1/2)μ‖p − xk‖2, μ > 0, to it. To approximate an proximal
point, we solve the first quadratic programming subproblem

min r +
1
2
μ
∥
∥p − xk

∥
∥2

s.t. r ≥ f̃k + gjT(p − xk

) − αk,j + εk, j ∈ Ik.

(3.9)

Its corresponding dual problem is

min
1
2μ

∥
∥
∥
∥
∥
∥

∑

j∈Ik
λjg

j

∥
∥
∥
∥
∥
∥

2

+
∑

j∈Ik
λjαk,j

s.t.
∑

j∈Ik
λj = 1, λj ≥ 0, j ∈ Ik.

(3.10)

Let (r̂, p̂) and λ̂ = (λ̂1, . . . , λ̂|Ik |) denote the optimal solution of (3.9) and (3.10), then it is easily
seen that

r̂ = ϕ
(
p̂
)
, p̂ = xk − 1

μ
ĝ, where ĝ :=

∑

j∈Ik
λ̂jg

j . (3.11)

In addition, λ̂j = 0 for all j ∈ Ik such that r > f̃k + gjT (p̂ − xk) − αk,j + εk and

ϕ
(
p̂
)
= f̃k +

∑

j∈Ik
λ̂j
[
gjT(p̂ − xk

) − αk,j + εk
]

= f̃k −
∑

j∈Ik
λ̂jαk,j + εk − 1

μ

∥∥ĝ
∥∥2
.

(3.12)

The vector p̂ is an estimate of an approximate proximal point. Hence, it approximates an
approximate primal track point when the latter exists. To proceed further we let yj+ := p̂

and compute f̃(p̂), ê := f̃(p̂) − ϕ(p̂) = f̃(p̂) − r̂, and gj+ satisfying f(z) ≥ f̃(p̂) + 〈gj+, z −
p̂〉, for all z ∈ Rn.

An approximate dual path point, denoted by ŝ, is constructed by solving a second
quadratic problem, which depends on a new index set

Îk :=
{
j ∈ Ik : r̂ = f̃k + gjT(p̂ − xk

) − αk,j + εk
}
∪ {

j+
}
. (3.13)

The second quadratic programming problem is

min r +
1
2
∥∥p − xk

∥∥2

s.t. r ≥ gjT(p − xk

)
, j ∈ Îk.

(3.14)
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It has a dual problem

min
1
2

∥
∥
∥
∥
∥
∥

∑

j∈Îk
λjg

j

∥
∥
∥
∥
∥
∥

2

s.t.
∑

j∈Îk
λj = 1, λj ≥ 0, j ∈ Îk.

(3.15)

Similar to (3.11), the respective solutions, denoted by (r, p) and λ, satisfy

r = ϕ
(
p
)
, p − xk = −ŝ, where ŝ =

∑

j∈Îk
λjg

j . (3.16)

Given σ ∈ (0, 1/2], the proximal bundle subprocedure is terminated and p̂ is declared
to be an approximation of pμ(xk) if

ê ≤ σ

μ
‖ŝ‖2. (3.17)

Otherwise, Ik above is replaced by Îk, and new iterate data are computed by solving updated
subproblems (3.9) and (3.14). This update, appending (αk,j+ , g

j+) to active data at (3.9),
ensures convergence to a minimizing point x in case of nontermination.

Remark 3.3. From the talking above, the following results are true:

(i) ŝ = arg min{‖s‖2 : s ∈ co{gj : j ∈ Îk}};
(ii) since pμ(x) is an approximate primal track point Θ(uμ(x)) approximated by p̂ and

co{gj : j ∈ Îk} approximates co{g : f(x) ≥ f̃(Θ(u)) + 〈g, x −Θ(u)〉}, from (3.2) the
corresponding Γ(uμ(x)) is estimated by ŝ;

(iii) we can obtain the Û by means of the following iteration.

Let

Îactk :=
{
j ∈ Îk : r = gjT(p − x

)}
. (3.18)

Then, from (3.16), r = −gjT ŝ, j ∈ Îact
k

, so

(
gj − gl

)T
ŝ = 0, (3.19)

for all such j and for a fixed l ∈ Îactk . Define a full column rank matrix V̂ by choosing
the largest number of indices j satisfying (3.19) such that the corresponding vectors
gj − gl are linearly independent and by letting these vectors be the columns of V̂ .
Then let Û be a matrix whose columns form an orthonormal basis for the null space
of V̂ T with Û = I if V̂ is vacuous.
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Theorem 3.4. At the kth iteration, the above proximal bundle subprocedure satisfies the following:

(i) gj ∈ ∂ε+êf(p̂), j ∈ Îk, where ε = f(p̂) − f̃(p̂) and f̃(p̂) ∈ [f(p̂) − εk, f(p̂)];

(ii) ŝ ∈ ∂ε+êf(p̂) and ĝ ∈ ∂ε+êf(p̂);

(iii) μ‖p̂ − pμ(xk)‖2 ≤ ε + ê;

(iv) ‖ŝ‖ ≤ ‖ĝ‖, where ĝ = μ(xk − p̂);

(v) for any parameter m ∈ (0, 1), (3.17) implies

f̃
(
p̂
) − f̃k ≤ −m

2μ
∥
∥ĝ

∥
∥2 + εk. (3.20)

Proof. (i) Since gj+ satisfies f(z) ≥ f̃(p̂) + 〈gj+, z − p̂〉 and ê = f̃(p̂) − ϕ(p̂) ≥ 0, gj+ satisfies

f(z) ≥ f̃
(
p̂
)
+
〈
gj+, z − p̂

〉
− ê

= f
(
p̂
)
+
〈
gj+, z − p̂

〉
− ê − ε,

(3.21)

where ε = f(p̂) − f̃(p̂), so the result of item (i) holds for j = j+. From the definition of p̂, r̂,
and Îk we have that for all j /= j+ in Îk

ϕ
(
p̂
)
= r̂ = f̃k + gjT(p̂ − xk

) − αk,j + εk, (3.22)

so for all such j,

ê = f̃
(
p̂
) − ϕ

(
p̂
)
= f̃

(
p̂
) − f̃k − gjT(p̂ − xk

)
+ αk,j − εk. (3.23)

In addition,

f(z) ≥ f̃k + gjT (z − xk) − αk,j + εk, z ∈ Rn. (3.24)

Adding 0 = ê − ê to this inequality gives

f(z) ≥ f̃k + gjT (z − xk) + εk − αk,j + ê − ê

= f̃
(
p̂
)
+ gjT(z − p̂

) − ê

= f
(
p̂
)
+ gjT(z − p̂

) − ê − ε, ∀z ∈ Rn,

(3.25)

which means that gj ∈ ∂ε+êf(p̂) for j+ /= j ∈ Îk.
(ii) Multiplying each inequality in (3.25) by its corresponding multiplier λj ≥ 0 and

summing these inequalities, we have

∑

j∈Îk
λjf(z) ≥

∑

j∈Îk
λjf

(
p̂
)
+
∑

j∈Îk
λjg

jT(z − p̂
) −

∑

j∈Îk
λj ê −

∑

j∈Îk
λjε, ∀z ∈ Rn. (3.26)
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Using the definition of ŝ from (3.16) and the fact that
∑

j∈Îkλj = 1 gives

f(z) ≥ f
(
p̂
)
+ ŝT

(
z − p̂

) − ê − ε, ∀z ∈ Rn, (3.27)

which means that ŝ ∈ ∂ε+êf(p̂). In a similar manner, this time using the multipliers λ̂j that
solve dual problem (3.10) and define ĝ in (3.11), together with λ̂j+ := 0, obtains the result.

(iii) Since gμ ∈ ∂f(pμ(xk)), we have

f
(
pμ(xk)

) ≤ f
(
p̂
) − gμ(xk)T

(
p̂ − pμ(xk)

)
. (3.28)

From (ii): ĝ ∈ ∂ε+êf(p̂), we get

f
(
pμ(xk)

) ≥ f
(
p̂
)
+ ĝT(pμ(xk) − p̂

) − ε − ê. (3.29)

Therefore,

f
(
p̂
)
+ ĝT(pμ(xk) − p̂

) − ε − ê ≤ f
(
pμ(xk)

) ≤ f
(
p̂
) − gμ(xk)T

(
p̂ − pμ(xk)

)
, (3.30)

that is, (ĝ − gμ(xk))
T (pμ(xk)−p̂)−ε−ê ≤ 0. Then, since the expression for ĝ from (3.11)written

in the form

ĝ = −μ(p̂ − xk

)
, (3.31)

combined with gμ(xk) = μ(xk −pμ(xk)) implies that ĝ−gμ(xk) = μ(pμ(xk)− p̂), we obtain item
(iii).

(iv) From (3.10), (3.11), (3.31), and the definition of Îk, we have that μ(xk − p̂) = ĝ is in
the convex hull of {gj , j ∈ Îk}. We obtain the result by virtue of the minimum norm property
of ŝ.

(v) Since σ ≤ 1/2 and m ∈ (0, 1), we have σ ≤ 1 − (m/2). Thus if (3.17) holds then
ê ≤ [(1 − (m/2))/μ]‖ŝ‖2. Together with the definition of ê, (3.12) and the nonnegativity of
λ̂jαj gives

f̃
(
p̂
) − f̃k = ê + ϕ

(
p̂
) − f̃k

= ê −
∑

j∈Ik
λ̂jαk,j − 1

μ

∥∥ĝ
∥∥2 + εk

≤ ê − 1
μ

∥∥ĝ
∥∥2 + εk

≤
[
(1 − (m/2))

μ

]
‖ŝ‖2 − 1

μ

∥∥ĝ
∥∥2 + εk.

(3.32)

Finally, combing this inequality with item (iv) gives (3.20).
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3.3. Approximate Decomposition Algorithm and Convergence Analysis

Substituting the approximate V-step in Algorithm 2.6 with proximal bundle-type subroutine,
we present an approximate decomposition algorithm as follows. Afterwards a detailed con-
vergence analysis is given. The main statement comprises the fact that each cluster point of
the sequence of iterates generated by the algorithm is an optimal solution.

Algorithm 3.5. Choose a starting point p0 ∈ Rn and positive parameters η, ε0, μ, τ , and m

with τ < 1, m < 1.

Step 0. Compute g0 satisfying f(z) ≥ f̃(p0) + 〈g0, z − p0〉, where f̃(p0) ∈ [f(p0) − ε0, f(p0)].
Let U0 be a matrix with orthonormal n-dimensional columns estimating an optimal U-basis.
Set s0 = g0 and k := 0.

Step 1. Stop if ‖sk‖2 ≤ η.

Step 2. Choose an nk × nk positive definite matrix Hk, where nk is the number of columns of
Uk.

Step 3. Compute an approximate U-Newton step by solving the linear system

HkΔuk = −UT
ksk. (3.33)

Set x′
k+1 := pk +UkΔuk.

Step 4. Choose μk+1 > μ, σk+1 ∈ (0, 1/2], initialize Ik, and run the bundle subprocedure with

x = x′
k+1. Compute recursively, and set (e′

k+1, p
′
k+1, s

′
k+1, U

′
k+1) := (ê, p̂, ŝ, Û).

Step 5. If

f̃
(
p′k+1

) − f̃
(
pk
) ≤ − m

2μk+1

∥∥s′k+1
∥∥2 + εk+1, (3.34)

then set

(
xk+1, ek+1, pk+1, sk+1, Uk+1, ε

k+1
)
:=

(
x′
k+1, e

′
k+1, p

′
k+1, s

′
k+1, U

′
k+1, τε

k
)
. (3.35)

Otherwise, execute a line search

xk+1 := arg min
{
f̃
(
pk
)
, f̃

(
p′k+1

)}
, (3.36)

reinitialize Ik, and rerun the bundle subroutine with x = xk+1, to find new values for
(ê, p̂, ŝ, Û), then set (ek+1, pk+1, sk+1, Uk+1, ε

k+1) = (ê, p̂, ŝ, Û, τεk).

Step 6. Replace k by k + 1 and go to Step 1.
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Remark 3.6. In this algorithm, {εk}∞k=0 ↓ 0. If {εk}∞k=0 ≡ 0, this algorithm is the same as
Algorithm 6 in [8]. However, this algorithm uses proximal bundle-type subroutine which
can deal with the approximate subgradients and the approximate function values.

Theorem 3.7. One of the following two cases is true:

(i) if the proximal bundle procedure in Algorithm 3.5 does not terminate, that is, if (3.17)
never hold, then the sequence of p̂-values converges to pμ(x) and pμ(x) is a minimizer of f ;

(ii) if the procedure terminates with ŝ = 0, then the corresponding p̂ equals pμ(x) and is a
minimizer of f .

Proof. By ([12], Prop. 4.3), if this procedure does not terminate then it generates an infinite
sequence of ê-values and ε-value converging to zero. Since (3.17) does not hold, the sequence
of ‖ŝ‖-values also converges to 0. Thus, item (iii) in Theorem 3.4 implies that {p̂} → pμ(x).
And Theorem 3.4 (ii) gives

f(z) ≥ f
(
p̂
)
+ ŝT

(
z − p̂

) − (ê + ε̂), z ∈ Rn. (3.37)

By the continuity of f , this becomes

f(z) ≥ f
(
pμ(x)

)
, z ∈ Rn. (3.38)

The termination case with ŝ = 0 follows in a similar manner, since (3.17) implies ê = 0 in this
case.

The next theorem establishes the convergence of Algorithm 3.5, and the proof of which
is similar to Theorem 9 in [8].

Theorem 3.8. Suppose that the sequence {μk} in Algorithm 3.5 is bounded above by μ. Then the
following hold:

(i) the sequence {f̃(pk)} is decreasing and either {f̃(pk)} → −∞ or {‖sk‖} and {ek} both
converge to 0;

(ii) if f is bounded from below, then any accumulation point of {pk} is a minimizers of f .

Proof. In this paper, the inequalities of (3.15), (3.16), and (3.17) in [8] become

f̃
(
pk+1

) − f̃
(
pk
) ≤ − m

2μk+1
‖sk+1‖2, (3.39)

f(z) ≥ f
(
pk
)
+ sTk

(
z − pk

) − εkp − ek, ∀z ∈ Rn, where εkp = f
(
pk
) − f̃

(
pk
)
, (3.40)

ek ≤ σk

μk
‖sk‖2, (3.41)

since ‖sk‖/= 0, (3.39) implies that {f̃(pk)} is decreasing. Suppose {f̃(pk)} � −∞. Then
summing (3.39) over k and using the fact that m/2μk ≥ m/2μ for all k implies that
{‖sk‖} → 0. Then (3.41) with σk ≤ 1/2 and μk ≥ μ > 0 implies that {ek} → 0, which
establishes (i).
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Now suppose f is bounded from below and p is any accumulation point of {pk}. Then,
because {‖sk‖}, {ek}, and {εkp} converge to 0, (3.40) together with the continuity of f implies
that f(p) ≤ f(z) for all z ∈ Rn and (ii) is proved.

4. An Illustrated Numerical Example

We test some examples in this section to validate the effectiveness of the proposed algorithm.
The platform isMatlab R2009a, Intel Pentium(R)Dual CPUT2390 1.87GHz. All test examples
are of the form

f = max
i∈I

fi, (4.1)

where I is finite and each fi is C2 on Rn.
For our runs we used the following examples:

(i) F2d: the objective function is given in [8], defined for x ∈ Rn by

F2d(x) := max
{

1
2

(
x2
1 + x2

2

)
− x2, x2

}
; (4.2)

(ii) F3d-Uv: four functions of three variables, where v = 3, 2, 1, 0 denotes the corre-
sponding dimension of the U-subspace. Given e := (0, 1, 1)T and four parameter
vectors βv ∈ R4, for x ∈ R3

F3d-Uv(x) := max
{

1
2

(
x2
1 + x2

2 + 0.1x2
3

)
− eTx − βv1 , x2

1 − 3x1 − βv2 , x2 − βv3 , x2 − βv4

}
,

(4.3)

where β3 := (−5.5, 10, 11, 20), β2 := (−5, 10, 0, 10), β1 := (0, 10, 0, 0), and β0 :=
(0.5, −2, 0, 0).

In Table 1, we show some relevant data for the problems, including the dimensions of
V and U, the (known) optimal values and solutions, and the starting points.

We calculate an ε-subgradient at x by using the method in [13]: gε(x) = λg(x) + (1 −
λ)g(x1), where g(x) is a subgradient at x and g(x1) is a subgradient at a point x1 such that
0 < α0(x, x1) = f(x) − f(x1) − g(x1)

T (x − x1) ≤ ε. Here x1 ∈ Br(x) = {z ∈ Rn | ‖z − x‖ ≤ r} and
λ ∈ [0, 1] are randomly chosen. The approximate function value f̃(x) is randomly taken out
from the interval [f(x) − ε, f(x)]. The radius r is adjusted iteratively in the following way:
If we find the linearization error α0(x, x1) > ε then r is reduced by a multiple smaller than
one. On the other hand, if α0(x, x1) is significantly smaller than ε, then r is increased by a
multiple greater than one. When sk = ŝ in the algorithm, then U-Hessian at x is computed in
the following form: Hk = UT

k
(
∑

j∈B̂λjH
j)Uk, where Hj = ∇2fij (y

j), ij is an active index such

that fij (y
j) = f(yj), λj correspond to ŝ via (3.16).

The parameters have values η = 1.0× 10−4, ε0 = 1.0× 10−4,m = 1.0× 10−1, τ = 1.0× 10−1,
and U0 equal to the n × n identity matrix. As for σk, μk, one can refer to [8].
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Table 1: Problem data.

Problem dim dim-V dim-U x∗ fx∗ x0

F2d 2 1 1 (0 0) 0 (0.9, 1.9)
F3d-U3 3 0 3 (0 1 10) 0 (100, 34, −90)
F3d-U2 3 1 2 (0 0 10) 0 (100, 33, −90)
F3d-U1 3 2 1 (0 −1.741657 10) −1.741657 (100, 33, −100)
F3d-U0 3 3 0 (1.5 −0.442695 9.962006) −0.25 (101, 33, −100)
The italic data in Table 1 is calculated by our algorithms.

Table 2: Numerical results of UV-decomposition algorithm with inexact data.

Algorithm 6 Algorithm 3.5

F2d
#f/g 28 34
x (0.000 0.000) (0.000 0.000)

|fx − fx∗| 0.000E0 1.753E-10

F3d-U3
#f/g 11 32
x (0.000 1.000 10.000) (0.000 1.000 10.000)

|fx − fx∗| 0.000E0 2.248E-13

F3d-U2
#f/g 32 43
x (0.000 −0.000 10.000) (0.000 0.000 10.000)

|fx − fx∗| 0.000E0 1.275E-10

F3d-U1
#f/g ∗∗∗∗ 33
x ∗∗∗∗ (−0.0000 −1.742 10.000)

|fx − fx∗| ∗∗∗∗ 7.50E-15

F3d-U0
#f/g 31 44
x (1.500 −0.425 10.000) (1.500 −0.443 9.962)

|fx − fx∗| 8.771E-11 2.908E-11

Table 2 shows the results of Algorithm 3.5 for these examples, compared with
Algorithm 6 in [8]. Number of f/g denotes the number of evaluation of the function and
subgradient (ε-subgradient) in Algorithm 6 and Algorithm 3.5. x is the calculated solution,
|fx − fx∗| stands for the difference between the function values at x and x∗.

It is shown in Table 2 that we obtain quite accurate solutions by Algorithm 3.5 with
inexact data costing a slightly more evaluation number than that with exact data. One
noticeable exceptional occurs in the example F3d-U1; it seems that the decomposition
algorithm is sensible with exact data, but is more stable when applying inexact data (function
values and subgradients). This favorable results demonstrate that it is suitable to use approx-
imate decomposition algorithm to solve (1.1) numerically.
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