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A (m,n)-bipartite graph is a bipartite graph such that one bipartition has m vertices and the
other bipartition has n vertices. The tree dumbbell D(n, a, b) consists of the path Pn−a−b together
with a independent vertices adjacent to one pendent vertex of Pn−a−b and b independent vertices
adjacent to the other pendent vertex of Pn−a−b. In this paper, firstly, we show that, among (m,n)-
bipartite graphs (m ≤ n), the complete bipartite graph Km,n has minimal Kirchhoff index and
the tree dumbbell D(m + n, �n − (m + 1)/2�, �n − (m + 1)/2�) has maximal Kirchhoff index. Then,
we show that, among all bipartite graphs of order l, the complete bipartite graph K�l/2�,l−�l/2� has
minimal Kirchhoff index and the path Pl has maximal Kirchhoff index, respectively. Finally, bonds
for the Kirchhoff index of (m,n)-bipartite graphs and bipartite graphs of order l are obtained by
computing the Kirchhoff index of these extremal graphs.

1. Introduction

Let G be a connected graph with vertices labeled as v1, v2, . . . , vn. The distance between
vertices vi and vj , denoted by dG(vi, vj), is the length of a shortest path between them. The
famous Wiener index W(G) [1] is the sum of distances between all pairs of vertices, that is

W(G) =
∑

i<j

dG

(
vi, vj

)
. (1.1)

In 1993, Klein and Randić [2] introduced a new distance function named resistance
distance on the basis of electrical network theory. They view G as an electrical network N
such that each edge ofG is assumed to be a unit resistor. Then, the resistance distance between



2 Journal of Applied Mathematics

Figure 1: D(13, 3, 3).

vertices vi and vj , denoted by rG(vi, vj), is defined to be the effective resistance between nodes
vi and vj inN. Analogous to the Wiener index, the Kirchhoff indexKf(G) [2, 3] is defined as

Kf(G) =
∑

i<j

rG
(
vi, vj

)
. (1.2)

As an analogy to the famous Wiener index, the Kirchhoff index is an important
molecular structure descriptor [4], and thus it is well studied in both mathematical and
chemical literatures. For more information on the Kirchhoff index, the readers are referred
to recent papers [5–16] and references therein.

It is of interest to determine bounds for the Kirchhoff index of some classes of graphs
and characterize extremal graphs as well. Along this line, much research work has been done.
For a general graph G, Lukovits et al. [17] proved that Kf(G) ≥ n − 1 with equality if and
only ifG is a complete graph, and they also indicated that the maximal Kirchhoff index graph
is the path Pn. Palacios [18] proved thatKf(G) ≤ 1/6(n3 − n)with equality if and only if G is
a path. For a circulant graph, Zhang and Yang [19] showed that

n − 1 ≤ Kf(G) ≤ n3 − n

12
, (1.3)

where the first equality holds if and only if G is a complete graph and the second does if and
only if G is a cycle. Furthermore, tight bounds for the Kirchhoff index are also obtained for a
special class of unicyclic graphs [20], bicyclic graphs [21, 22], and Cacti [23].

Bipartite graphs are perhaps the most basic of objects in graph theory, both from a
theoretical and practical point of view. Let G be a bipartite graph with bipartition X and Y
such that X is the set of white vertices and Y is the set of black vertices. Suppose that |X| = m
and |Y | = n. Such graph is also known as (m,n)-bipartite graph.Without loss of generality, we
supposed that m ≤ n. The tree dumbbell D(n, a, b) consists of the path Pn−a−b together with
a independent vertices adjacent to one pendent vertex of Pn−a−b and b independent vertices
adjacent to the other pendent vertex of Pn−a−b. For instance, D(13, 3, 3) is referred to Figure 1.

In the next section, we first obtain thatKm,n has the minimal Kirchhoff index among all
(m,n)-bipartite graphs according to strictly increasing property of the Kirchhoff index. Then
we prove that tree dumbbellD(m+n, �(n−m+ 1)/2�, �(n−m+ 1)/2�) has maximal Kirchhoff
index among all (m,n)-bipartite graphs. Therefore, tight bounds for the Kirchhoff index
of (m,n)-bipartite graphs are determined. In the last section, we discuss general bipartite
graphs of order l. We obtain that, among all bipartite graphs of order l, complete bipartite
graphK�l/2�,l−�l/2� and path Pl have minimal and maximal Kirchhoff index, respectively. Thus
bounds for the Kirchhoff index of bipartite graphs of order l are also obtained.
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2. (m,n)-Bipartite Graphs with Extremal Kirchhoff Index

Lemma 2.1 (see [19]). Let G be a connected graph with n vertices and H a connected spanning
subgraph of G. Then, Kf(G) ≤ Kf(H) with equality if and only if G = H.

By Lemma 2.1, the complete bipartite graphKm,n has minimal Kirchhoff index among
all (m,n)-bipartite graphs. Now, we compute the Kirchhoff index of Km,n.

Lemma 2.2.

Kf(Km,n) =
(m + n − 1)

(
m2 + n2) −mn

mn
. (2.1)

Proof. For Km,n, Klein [24] obtained that the resistance distance between two vertices of
different parts is (m + n − 1)/mn, the resistance distance between two vertices of m-vertex
part and n-vertex part is 2/n and 2/m, respectively. Hence,

Kf(Km,n) = mn
m + n − 1

mn
+
(
m
2

)
2
n
+
(
n
2

)
2
m

=
(m + n − 1)

(
m2 + n2) −mn

mn
. (2.2)

In the following, we search for (m,n)-bipartite graph with maximal Kirchhoff index.
By Lemma 2.1, the graph possesses maximal Kirchhoff index must be a tree since otherwise
any of its spanning tree has lager Kirchhoff index than it. It is well known that the Kirchhoff
index and the Wiener index concise for trees. Hence, we only need to consider the Wiener
index which has been extensively studied. Now, we introduce some well-known results on
the Wiener index of trees.

Let Pn and Sn denote n-vertex path and n-vertex star, respectively. Then we have the
following.

Lemma 2.3 (see [25]). Let T be any n-vertex tree different from Pn and Sn. Then,

W(Sn) < W(T) < W(Pn). (2.3)

It is also obtained in [25] that

W(Sn) = (n − 1)2, (2.4)

W(Pn) =
(
n + 1
3

)
=

n3 − n

6
. (2.5)
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Figure 2: T (a) and T ′ (b) in the proof of Claim 1.

Let e = (x, y) be an edge of T . Let n1(e) be the number of vertices of T lying closer to x
than to y, and let n2(e) be the number of vertices of T lying closer to y than to x. That is,

n1(e) =
∣∣{v | v ∈ V (T), dT (v, x) < dT

(
v, y

)}∣∣,
n2(e) =

∣∣{v | v ∈ V (T), dT

(
v, y

)
< dT (v, x)

}∣∣.
(2.6)

Theorem 2.4 (see [1]). Let T be a n-vertex tree. Then,

W(T) =
∑

e∈E(T)
n1(e)n2(e). (2.7)

In the following, we let WT (e) = n1(e)n2(e).

Theorem 2.5. D(m + n, �(n −m + 1)/2�, �(n −m + 1)/2�) has maximal Kirchhoff index among all
(m,n)-bipartite graphs.

Proof. Suppose that T is the tree possessing maximal Wiener (Kirchhoff) index among all
(m,n)-bipartite graphs.

Case 1. n = m or n = m + 1. In this case, D(m + n, �(n −m + 1)/2�, �(n −m + 1)/2�) is the path
Pm+n. By Lemma 2.3, the result holds.

Case 2. n > m + 1. Let P be a longest path in T with end vertices a and b. Suppose that a′ and
b′ are neighbors of a and b in P , respectively.

Claim 1. The inner vertices of P all have degree 2 in T except for a′ and b′.
Suppose to the contrary that there exists an inner point u of P different from a′ and b′

has degree lager than 2 and v is a neighbor of u such that v ∈ P . Suppose that the size of the
component of T − uv containing v is k. Suppose that e1 and e2 are edges in P incident to u.
Let Ca, Cb, and Cu denote the components of T − e1 − e2 containing a, b, and u, respectively.
We choose from Ca and Cb the one containing less vertices, say Ca. a and a′ must have one
that belongs to the part containing u, say a. Let T ′ = T − uv + av (see Figure 2). Now we
show that W(T) < W(T ′) by considering the contributions of edges. Obviously, WT (uv) =
WT ′(av) = k(m+n− k). Let E denote the edge set of E(T)−uv = E(T ′)− av, and let P ′ denote
the path aPu. For e ∈ E −E(P ′),WT (e) = WT ′(e). For e ∈ E(P ′), suppose that Ca(e) and Cb(e)
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Figure 3: T (a) and T ′ (b) in the proof of Subcase 2 of Claim 2.

are components of T − e containing a and b, respectively. Then, WT (e) = |Ca(e)||Cb(e)| and
WT ′(e) = (|Ca(e)| + k)(|Cb(e)| − k). Then,

WT ′(e) −WT (e) = k(|Cb(e)| − |Ca(e)| − k) > k(|Cb| + k − |Ca(e)| − k) ≥ k(|Cb| − |Ca|) ≥ 0.
(2.8)

Hence,

W
(
T ′) = WT ′(av) +

∑

e∈E−E(P ′)

WT ′(e) +
∑

e∈E(P ′)

WT ′(e)

> WT (uv) +
∑

e∈E−E(P ′)

WT (e) +
∑

e∈E(P ′)

WT (e) = W(T).
(2.9)

This contradicts the choice of T .

Claim 2. Both a and b belong to Y .
Suppose not. Then, we can distinguish the following two cases.

Subcase 1. Both a and b belong to X. By Claim 1, the inner vertices of P all have degree 2 in
T ; hence, the vertices of Y all belong to P , that is, n < m, a contradiction.

Subcase 2. a and b belong to different parts. Suppose that a belongs to Y . By claim 1 and
n > m + 1, we have dT (b′) > dT (a′) + 1. Let T ′ = T − b′b + ab (see Figure 3). Now, we show
thatW(T ′) < W(T). Obviously, WT ′(ab) = WT (b′b). Let E1 denote the edge set of E(T) − uv =
E(T ′) − av, and let P1 denote the path aPb′. For e ∈ E1 − E(P1),WT (e) = WT ′(e). Suppose that
the edges of P1 are aa′ = e1, e2, . . . , el such that ei is adjacent to ei+1 for 1 ≤ i < k. It is easy to
see that WT ′(e1) = 2(m + n − 2) > WT (e1) = m + n − 1 and WT ′(ei) = WT (ei+1) for 2 ≤ i < k.
What is left is to compareWT ′(ek)withWT (e2).WT ′(ek) = (dT (b′) − 1)(m + n − dT (b′) + 1) and
WT (e2) = dT (a′)(m + n − dT (a′)). Then,

WT ′(ek) −WT (e2) =
(
dT

(
b′
) − 1 − dT

(
a′))(m + n − dT

(
a′) − dT

(
b′
)
+ 1

) ≥ 0 (2.10)
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since dT (b′) − 1 − dT (a′) > 0 and m + n − dT (a′) − dT (b′) + 1 ≥ 0 with equality if and only if a′

and b′ are adjacent. Hence,
∑

e∈E(P1) WT ′(e) >
∑

e∈E(P1) WT (e). Thus,

W
(
T ′) = WT ′(ab) +

∑

e∈E1−E(P1)

WT ′(e) +
∑

e∈E(P1)

WT ′(e)

> WT

(
b′b

)
+

∑

e∈E1−E(P1)

WT (e) +
∑

e∈E(P1)

WT (e) = W(T).
(2.11)

As before, this contradicts the choice of T .

Claim 3. The length of P is 2m.
By Claims 1 and 2, the vertices of X are all contained in P , the end vertices of P are

both contained in Y . Hence the length of P is 2m as claimed.

Claim 4. |dT (a′) − dT (b′)| ≤ 1. Suppose to the contrary that |dT (a′) − dT (b′)| ≥ 2. Without less
of generality, suppose that dT (b′) − dT (a′) ≥ 2. Let T ′ = T − b′b + a′b. We can prove that
W(T ′) > W(T) by methods similar to the proof of Claim 2.

By Claims 1, 2, 3, and 4, we may conclude that T = D(m + n, �(n −m + 1)/2�, �(n −m +
1)/2�), which implies Theorem 2.5.

Now, we compute the Kirchhoff (Wiener) index of D(m + n, �(n −m + 1)/2�, �(n −m +
1)/2�). For convenience, in what follows, we denoteD(m+n, �(n−m+1)/2�, �(n−m+1)/2�)
by D∗.

Ifm = n, D∗ is the path Pm+n. Hence, by (2.5),

Kf(D∗) = Kf(Pm+n) =
(
m + n + 1

3

)
. (2.12)

Otherwise, let

E1 = {e ∈ D∗ | e is incident to a leaf of D∗},
E2 = E(D∗) − E1.

(2.13)

For e ∈ E1, obviously WD∗(e) = m + n − 1. Noticing that D∗ has n −m + 1 leaves,

∑

e∈E1

WD∗(e) = (n −m + 1)(m + n − 1) = n2 − (m − 1)2. (2.14)

We can see that the induced subgraph of E2 is the path P2m−1, from whichD∗ can be obtained
by adding �(n −m + 1)/2� pendant edges to one of its endpoint and �(n −m + 1)/2� pendant
edges to the other endpoint. Hence, the degrees of endpoints of the path P2m−1 in D∗ are
�(n −m + 1)/2� + 1 and �(n −m + 1)/2� + 1, respectively. Therefore,

∑

e∈E2

WD∗(e) =
m+n−(�(n−m+1)/2�+1)∑

i=�(n−m+1)/2�+1
i(m + n − i). (2.15)
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Hence, the Kirchhoff index of D∗ is

Kf(D∗) = W(D∗) =
∑

e∈E1

WD∗(e) +
∑

e∈E2

WD∗(e)

= n2 − (m − 1)2 +
m+n−(�n−m+1/2�+1)∑

i=�n−m+1/2�+1
i(m + n − i)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
6
(−2m + 3m2 −m3 − 6mn + 6m2n + 3n2 + 3mn2) (n −m) ≡ 0(mod 2),

1
6
(−3 +m + 3m2 −m3 − 6mn + 6m2n + 3n2 + 3mn2) (n −m) ≡ 1(mod 2).

(2.16)

In sum, we have our main result.

Theorem 2.6. For (m,n)-bipartite graph G(m ≤ n), we have

(m + n − 1)
(
m2 + n2) −mn

mn

≤Kf(G)≤

⎧
⎪⎪⎨

⎪⎪⎩

1
6
(−2m + 3m2 −m3 − 6mn + 6m2n + 3n2 + 3mn2) (n −m) ≡ 0 (mod 2),

1
6
(−3 +m + 3m2 −m3 − 6mn + 6m2n + 3n2 + 3mn2) (n −m) ≡ 1 (mod 2).

(2.17)

The first equality holds if and only if G = Km,n, and the second does if and only if G = D(m+n, �(n−
m + 1)/2�, �(n −m + 1)/2�).

3. Bipartite Graphs with Extremal Kirchhoff Index

In this section, we consider general bipartite graphs of order l. By Lemmas 2.1 and 2.3, one
can see that the path Pl has maximal Kirchhoff index among all bipartite graphs of order l.
The minimal bipartite graph of Kirchhoff index must be min1≤m≤�l/2�{Km,l−m}. By Lemma 2.2,

Kf(Km,l−m) =
(l − 1)

(
m2 + (l −m)2

)
−m(l −m)

m(l −m)

= (l − 1)
2m2 − 2ml + l2

m(l −m)
− 1 = (l − 1)

2m(m − l) + l2

m(l −m)
− 1

= −2l + 1 +
l2

m(l −m)
.

(3.1)

Hence,

min
1≤m≤�l/2�

{Km,l−m} = K�l/2�,l−�l/2�. (3.2)
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It is easy to compute that

Kf
(
K�l/2�,l−�l/2�

)
=

(l − 1)
(
l2 − 2l�l/2� + 2�l/2�2

)

�l/2�(l − �l/2�) . (3.3)

Hence, we have the following result.

Theorem 3.1. For bipartite graph G of order l, we have

(l − 1)
(
l2 − 2l�l/2� + 2�l/2�2

)

�l/2�(l − �l/2�) ≤ Kf(G) ≤ l3 − l

6
. (3.4)

The first equality holds if and only if G = K�l/2�,l−�l/2�, and the second does if and only if G = Pl.
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