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This paper aims to establish the Tikhonov regularization theory for set-valued variational
inequalities. For this purpose, we firstly prove a very general existence result for set-valued
variational inequalities, provided that the mapping involved has the so-called variational
inequality property and satisfies a rather weak coercivity condition. The result on the Tikhonov
regularization improves some known results proved for single-valued mapping.

1. Introduction

This paper discusses the generalized variational inequality problem (in short, GVIP(F,K))
which is to find x ∈ K and x∗ ∈ F(x) such that

〈
x∗, y − x

〉 ≥ 0, ∀y ∈ K, (1.1)

where K is a nonempty closed convex set in R
n and F : K → 2R

n
is a set-valued mapping

with nonempty values. We use GVIP(F,K) and SOL(F,K) to denote the problem (1.1) and
its solution set, respectively.

Generalized variational inequality has been extensively studied in the literature; see
[1–7] and the references therein.

The Tikhonov regularization method is an important method for the ill-posed
variational inequalities; see Pages 307 and 1224 in [8]. To our best knowledge, the Tikhonov
regularization method has been discussed only for the case where the mapping F is single
valued. This paper develops the Tikhonov regularization method for set-valued variational
inequality GVIP(F,K).
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As a preparation, we firstly give an existence result for GVIP(F,K). It is well known if
F is upper semicontinuous with nonempty compact convex values and the set K is compact
and convex, then GVIP(F,K) has a solution. If K is noncompact, one usually requires
some kind of coerciveness conditions for the existence of solutions to GVIP(F,K). Thus
many researchers have attempted to search coerciveness condition as weak as possible; see
[2, 3, 8, 9] and the references therein. In particular, [9] proved the following result.

Theorem 1.1. If F is single valued and continuous, and if the following condition is satisfied:

(H) There exists n ∈ N such that for every x ∈ K\Kn, there is y ∈ K with ‖y‖ < ‖x‖ satisfying
〈F(x), x − y〉 ≥ 0,

then the variational inequality has a solution.

Example 3.1 in [9] shows that the condition (H) is strictly weaker than many known
coerciveness conditions. So far, it is not known whether Theorem 1.1 could be extended
to the situation where F is a set-valued mapping. An affirmative answer is given in
Corollary 3.9 of this paper, which says that if F is upper semicontinuous with nonempty
compact convex values, then the coerciveness condition (A), which reduces to the condition
(H)when F is single-valued, implies that GVIP(F,K) has a solution. Actually, a more general
existence result is verified in Theorem 3.8 which does not require that F have any kind of
continuity. Theorem 3.8 shows that if F has the so-called variational inequality property,
then the condition (A) implies that GVIP(F,K) has a solution. If the mapping F is either
upper semicontinuous (with nonempty compact convex values), or quasimonotone and
upper hemicontinuous (with nonempty compact convex values), then it has the variational
inequality property. Thus Theorem 3.8 unifies many known existence results for GVIP(F,K).

The Tikhonov regularization method has been much discussed in the literature. In
particular, assuming that K is a box and F is a single-valued mapping, [10] proved that
SOL(F + εI,K) is nonempty for any ε > 0 (here I stands for the identity mapping), provided
that F is a continuous P0-function and SOL(F,K) is nonempty and bounded. This result
was extended by [11] to the situation where K is a closed convex set, the mapping F is
single valued, and a coercivity condition is used to replace the assumption of SOL(F,K)
being bounded. It should be noted that the coercivity condition assumed in [11] does not
necessarily imply that SOL(F,K) is bounded. [12] further improves the result of [11] by
assuming a weaker coercivity condition. All the above results on the Tikhonov regularization
assume that the mapping F is single valued. The last part of this paper aims to establish
the Tikhonov regularization theory for set-valued variational inequality (1.1). Theorem 4.1
improves the main result of [11, 12] by assuming a weaker coercivity condition and by
allowing F to be a set-valued mapping (without monotonicity).

General variational inequalities have been extensively discussed; see [13–16]. It
should be interesting to discuss the Tikhonov regularization method for general variational
inequality in a similar way.

2. Preliminaries

Unless stated otherwise, we assume that K ⊂ R
n is a nonempty closed convex set and F :

K → 2R
n
is a set-valued mapping with nonempty values. For r > 0, Kr := {x ∈ K : ‖x‖ ≤ r}.
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Definition 2.1. Let F : K → 2R
n
be a set-valued mapping. F is said to be

(i) monotone on K if for each pair of points x, y ∈ K and for all x∗ ∈ F(x) and y∗ ∈
F(y), 〈y∗ − x∗, y − x〉 ≥ 0,

(ii) maximal monotone on K if, for any u ∈ K, 〈ξ − x∗, u − x〉 ≥ 0 for all x ∈ K and all
x∗ ∈ F(x) implies ξ ∈ F(u),

(iii) quasimonotone on K if for each pair of points x, y ∈ K and for all x∗ ∈ F(x) and
y∗ ∈ F(y), 〈x∗, y − x〉 > 0 implies that 〈y∗, y − x〉 ≥ 0,

(iv) F is said to be upper semicontinuous at x ∈ K if for every open set V containing
F(x), there is an open set U containing x such that F(y) ⊂ V for all y ∈ K ∩U; if F
is upper semicontinuous at every x ∈ K, we say F is upper semicontinuous on K,

(v) upper hemicontinuous on K if the restriction of F to every line segment of K is
upper semicontinuous.

The following result is celebrated; see [17].

Lemma 2.2. Let K be a nonempty convex subset of a Hausdorff topological vector space E, and let
G : K → 2E be a set-valued mapping from K into E satisfying the following properties:

(i) G is a KKMmapping: for every finite subsetA ofK, co(A) ⊂ ⋃
x∈A G(x), where co denotes

the convex hull;

(ii) G(x) is closed in E for every x ∈ K;

(iii) G(x0) is compact in E for some x0 ∈ K.

Then
⋂

x∈K G(x)/= ∅.

3. Existence of Solutions and Coercivity Conditions

Definition 3.1. F is said to have variational inequality property on K if for every nonempty
bounded closed convex subset D of K, GVIP(F,D) has a solution.

Proposition 3.2. The following classes of mappings have the variational inequality property:

(i) every upper semicontinuous set-valued mapping with nonempty compact convex values,

(ii) every upper hemicontinuous quasimonotone set-valued mapping with nonempty compact
convex values;

(iii) if F is a single-valued continuous mapping and T is upper hemicontinuous and monotone
with nonempty compact convex values, then F + T has the variational inequality property.

Proof. (i) is well known in the literature. (ii) is verified in [18]. (iii) is a consequence of
the Debrunner-Flor lemma [19] and [20, Theorem 41.1]. Indeed, let D be a bounded closed
convex subset of K, and let

ND(x) :=

{

ξ ∈ R
n : sup

y∈D

〈
ξ, y − x

〉 ≤ 0

}

, (3.1)
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the normal cone of D at x ∈ D. By [20, Theorem 41.1], M(x) := T(x) + ND(x) is a maximal
monotone mapping. By the Debrunner-Flor lemma [19], there is u ∈ D such that

〈ξ + F(u), x − u〉 ≥ 0, ∀x ∈ D, ∀ξ ∈ M(x). (3.2)

Since M is maximal monotone, −F(u) ∈ M(u) ≡ T(u) + ND(u). By the definition of ND,
u ∈ SOL(F + T,D).

Proposition 3.3 below shows that Proposition 3.2(iii) can be extended to the case where
F is a set-valued mapping.

Proposition 3.3. If F : K → 2R
n
is upper semicontinuous with nonempty compact convex values

and T : K → 2R
n
is monotone and upper hemicontinuous on K with nonempty compact convex

values, then F + T has the variational inequality property on K.

Proof. Let D be a bounded closed convex subset of K. Define G,H : D → 2D by

G
(
y
)
: =

{

x ∈ D : sup
ξ∈T(x)

〈
ξ, y − x

〉
+ sup

ζ∈F(x)

〈
ζ, y − x

〉 ≥ 0

}

,

H
(
y
)
: =

{

x ∈ D : inf
ξ∈T(y)

〈
ξ, y − x

〉
+ sup

ζ∈F(x)

〈
ζ, y − x

〉 ≥ 0

}

.

(3.3)

Since T is monotone, G(y) ⊂ H(y). Since F is upper semicontinuous, H(y) is closed and
hence compact in D for every y ∈ D.
Now we prove that G is a KKM map. If not, there is {y1, . . . , yn} ⊂ D and x0 =

∑
λiyi such

that x0 /∈ ⋃n
i=1 G(yi)

0 = sup
ξ∈T(x0)

〈
ξ,
∑

λiyi − x0

〉
+ sup

ζ∈F(x0)

〈
ζ,
∑

λiyi − x0

〉

≤
∑

λi

[

sup
ξ∈T(x0)

〈
ξ, yi − x0

〉
+ sup

ζ∈F(x0)

〈
ζ, yi − x0

〉
]

< 0.
(3.4)

This contradiction shows thatG is a KKMmap, so isH. By Lemma 2.2, there is x ∈ ∩y∈DH(y).
Fix any y ∈ D. Let yt := x + t(y − x). Then for small t ∈ (0, 1), yt ∈ D and hence

0 ≤ inf
ξ∈T(yt)

〈
ξ, yt − x

〉
+ sup

ζ∈F(x)

〈
ζ, yt − x

〉

= t inf
ξ∈T(yt)

〈
ξ, y − x

〉
+ t sup

ζ∈F(x)

〈
ζ, y − x

〉
.

(3.5)

Dividing t > 0 on both sides, we have

sup
ξ∈T(yt)

〈
ξ, y − x

〉
+ sup

ζ∈F(x)

〈
ζ, y − x

〉 ≥ 0. (3.6)
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Letting t → 0+ yields that x ∈ G(y), as T is upper hemicontinuous. Since y ∈ D is arbitrary,
x ∈ ⋂

y∈D G(y):

sup
ξ∈T(x)

sup
ζ∈F(x)

〈
ξ + ζ, y − x

〉 ≥ 0, ∀y ∈ D. (3.7)

Since F(x) and T(x) are compact and convex, the Sionminimax theorem implies the existence
of u ∈ F(x) and v ∈ T(x) such that

〈
u + v, y − x

〉 ≥ 0, ∀y ∈ D. (3.8)

Thus x solves GVIP(F + T,D).

Before making further discussion, we need to state some coercivity conditions. The
relationships of these coercivity conditions are well known in the literature; however, we
provide the proof for completeness.

Consider the following coercivity conditions.

(A) There exists r > 0 such that for every x ∈ K \ Kr , there is y ∈ K with ‖y‖ < ‖x‖
satisfying infx∗∈F(x)〈x∗, x − y〉 ≥ 0.

(B) There exists r > 0 such that for every x ∈ K \ Kr , there is y ∈ Kr satisfying
infx∗∈F(x)〈x∗, x − y〉 ≥ 0.

(C) There exists r > 0 such that for every x ∈ K \Kr and every x∗ ∈ F(x), there exists
some y ∈ Kr such that 〈x∗, x − y〉 > 0.

(D) There exists r > 0 such that for every x ∈ K \Kr , there exists some y ∈ Kr such that
supy∗∈F(y)〈y∗, x − y〉 > 0.

(E) There exists y0 ∈ K such that the set

L
(
y0
)
:=

{
x ∈ K : inf

x∗∈F(x)
〈
x∗, x − y0

〉
< 0

}
(3.9)

is bounded, if nonempty.

Proposition 3.4. The following statements hold.

(i) (C)⇒(B) if F is of convex values.

(ii) (D)⇒(B) if F is quasimonotone.

(iii) (E)⇒(B)⇒(A).

Proof. (i) By (C), for every x ∈ K \ Kr , infx∗∈F(x)supy∈Kr
〈x∗, x − y〉 ≥ 0. Since F(x) is convex

and Kr is compact convex, the Kneser minimax theorem implies that

sup
y∈Kr

inf
x∗∈F(x)

〈
x∗, x − y

〉
= inf

x∗∈F(x)
sup
y∈Kr

〈
x∗, x − y

〉 ≥ 0. (3.10)
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Since y �→ infx∗∈F(x)〈x∗, x − y〉 is upper semicontinuous and since Kr is compact, there is
y(x) ∈ Kr such that

inf
x∗∈F(x)

〈
x∗, x − y(x)

〉
= sup

y∈Kr

inf
x∗∈F(x)

〈
x∗, x − y

〉 ≥ 0. (3.11)

This verifies (B).
(ii) The implication of (D)⇒ (B) is an immediate consequence of F being quasimonotone.
(iii) (E) ⇒ (B). If L(y0) = ∅, then for any x ∈ K, infx∗∈F(x)〈x∗, x − y0〉 ≥ 0; thus (B) holds. If

L(y0)/= ∅, then by (E), there is r > 0 such that L(y0) ∪ {y0} ⊂ Kr . Thus (B) is still true.
(B) ⇒ (A). Let r > 0 be such that (B) holds. Then x ∈ K \ Kr+1, x /∈ Kr . By (B), there is

y ∈ Kr such that infx∗∈F(x)〈x∗, x−y〉 ≥ 0. Obviously, ‖y‖ ≤ r < r +1 < ‖x‖. Thus (A) is verified
with r replaced by r + 1.

Remark 3.5. The coercivity condition (A) is actually (C’) in [3] where it is shown that if
F is quasimonotone and upper hemicontinuous with nonempty compact convex values,
then (A) implies that GVIP(F,K) has a solution. However, it seems unknown whether this
assertion still holds if one replaces “quasimonotone and upper hemicontinuous” by “upper
semicontinuous.” An affirmative answer is given by Corollary 3.9.

Remark 3.6. The coercivity condition (B) is the condition (C) in [3]. The condition (D)
appears in [21]. The condition (E) appears essentially in Corollary 3.1 in [22]; see also
Proposition 2.2.3 in [8]. If F is single valued, then (E) reduces to Proposition 2.2.3(a) in [8].

Remark 3.7. Example 3.1 in [9] shows that (A) does not necessarily imply (B), even if F is
single-valued and continuous.

From the above discussion, (A) is the weakest coercivity condition among them. [9]
proved if F is single valued and continuous, then (A) implies that GVIP(F,K) has a solution.
Corollary 3.9 shows that this assertion still holds even if F is a set-valued mapping.

Theorem 3.8. LetK ⊂ R
n be a nonempty closed convex set, and let F : K → 2R

n
be a mapping with

nonempty compact convex values. Suppose that (A) holds. If F has the variational inequality property
on K, then GVIP(F,K) has a solution.

Proof. Let m > r. Since Km is bounded closed convex and F has the variational inequality
property, there is xm ∈ Km such that

sup
x∗∈F(xm)

〈x∗, y − xm〉 ≥ 0, ∀y ∈ Km. (3.12)

(i) If ‖xm‖ = m, then ‖xm‖ > r, and by assumption, there is y0 ∈ K with ‖y0‖ < ‖xm‖ such
that

sup
x∗∈F(xm)

〈x∗, y0 − xm〉 ≤ 0. (3.13)

Fix any y ∈ K. Since ‖y0‖ < ‖xm‖ ≤ m, there is t ∈ (0, 1) such that zt := y0 + t(y − y0) ∈ Km.
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It follows that

0 ≤ sup
x∗∈F(xm)

〈x∗, zt − xm〉 ≤ t sup
x∗∈F(xm)

〈x∗, y − xm〉 + (1 − t) sup
x∗∈F(xm)

〈x∗, y0 − xm〉

≤ t sup
x∗∈F(xm)

〈x∗, y − xm〉.
(3.14)

Therefore, supx∗∈F(xm)〈x∗, y − xm〉 ≥ 0. Since y ∈ K is arbitrary, the conclusion is verified.
(ii) If ‖xm‖ < m, then for any y ∈ K, there is t ∈ (0, 1) such that

zt := xm + t
(
y − xm

) ∈ Km. (3.15)

It follows that

0 ≤ sup
x∗∈F(xm)

〈x∗, zt − xm〉 = t sup
x∗∈F(xm)

〈x∗, y − xm〉. (3.16)

Since y ∈ K is arbitrary, xm solves GVIP(F,K).

Corollary 3.9. Let K ⊂ R
n be a nonempty closed convex set, and let F : K → 2R

n
be upper

semicontinuous set-valued mapping with nonempty compact convex values. Suppose that (A) holds.
Then GVIP(F,K) has a solution.

Proof. By Proposition 3.2, F has the variational inequality property. The conclusion follows
immediately from Theorem 3.8.

Remark 3.10. Assuming that themapping F is single valued and continuous, Proposition 2.2.3
in [8] and Theorem 3.2 in [9] show that SOL(F,K) is nonempty if the conditions (E) and (A)
hold, respectively. Therefore, Corollary 3.9 improves Proposition 2.2.3 in [8] and Theorem 3.2
in [9]: the mapping F is set valued instead of single valued.

4. The Tikhonov Regularization

Theorem 4.1. Let K be a nonempty closed convex set in R
n, and let F : K → 2R

n
be upper

semicontinuous with nonempty compact convex values. If assumption (A) holds, then for any ε > 0,

(i) GVIP(F + εI,K) has a solution;

(ii) the set {SOL(F + tI,K) : t ∈ (0, ε]} is bounded.

Proof. (i) Let r be as in assumption (A). We claim that for every x ∈ K \ Kr , there is y ∈ K
with ‖y‖ < ‖x‖ satisfying

inf
x∗∈F(x)

〈x∗ + εx, x − y〉 ≥ 0. (4.1)

Granting this, we obtain that assumption (A) is satisfied with the mapping F replaced by
F + εI. Since F is upper semicontinuous with nonempty compact convex values and I is
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continuous and monotone, Theorem 3.8 and Proposition 3.3 imply that GVIP(F + εI,K) has
a solution.

Now we prove the claim. Since for every x ∈ K \Kr , there is y ∈ K with ‖y‖ < ‖x‖
satisfying infx∗∈F(x)〈x∗, x − y〉 ≥ 0, we obtain

inf
x∗∈F(x)

〈
x∗ + εx, x − y

〉
= inf

x∗∈F(x)
〈
x∗, x − y

〉
+ ε

〈
x, x − y

〉

= inf
x∗∈F(x)

〈
x∗, x − y

〉
+ ε‖x‖2 − ε

〈
x, y

〉

≥ ε‖x‖(‖x‖ − ‖y‖) ≥ 0.

(4.2)

(ii) Let t ∈ (0, ε] and x(t) ∈ SOL(F + tI,K). Then x(t) ∈ Kn. If not, by assumption (A), there
is y(t) ∈ K with ‖y(t)‖ < ‖x(t)‖ such that

inf
x∗∈F(x(t))

〈
x∗, x(t) − y(t)

〉 ≥ 0. (4.3)

Since x(t) ∈ SOL(F + tI,K) and y(t) ∈ K,

0 ≥ inf
x∗∈F(x(t))

〈
x∗ + tx(t), x(t) − y(t)

〉

= inf
x∗∈F(x(t))

〈
x∗, x(t) − y(t)

〉
+ t‖x(t)‖2 − t

〈
x(t), y(t)

〉

≥ t‖x(t)‖2 − t‖x(t)‖‖y(t)‖.

(4.4)

Therefore ‖x(t)‖ ≤ ‖y(t)‖, a contradiction.

Remark 4.2. Theorem 4.1 improves in two ways: the mapping F is set valued instead of single
valued; Theorem 1 in [12] used the coercivity condition (B) while our Theorem 4.1 uses the
weaker coercivity condition (A).

Theorem 4.3. Let K be a nonempty closed convex set in R
n, and let F : K → 2R

n
be upper

semicontinuous with nonempty compact convex values. Assume that there is a nonempty bounded
closed convex set D ⊂ K such that

{

x ∈ K : sup
y∈D

inf
x∗∈F(x)

〈
x∗, x − y

〉
< 0

}

is bounded, if nonempty. (4.5)

Then for any ε > 0, GVIP(F + εI,K) has a solution and the set {SOL(F + tJ,K) : t ∈ (0, ε]} is
bounded.

Proof. Let r > 0 be such that

D
⋃

{

x ∈ K : sup
y∈D

inf
x∗∈F(x)

〈
x∗, x − y

〉
< 0

}

⊂ Kr. (4.6)
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Then for every x ∈ K \Kr ,

sup
y∈D

inf
x∗∈F(x)

〈
x∗, x − y

〉 ≥ 0. (4.7)

SinceD is bounded closed convex and since y �→ infx∗∈F(x)〈x∗, x−y〉 is upper semicontinuous,
there is y0 ∈ D such that

inf
x∗∈F(x)

〈
x∗, x − y0

〉 ≥ 0. (4.8)

Since y0 ∈ D ⊂ Kr , ‖y0‖ < r ≤ ‖x‖. Therefore, assumption (A) is satisfied. Then the conclusion
follows from Theorem 4.1.

Remark 4.4. If F is a single-valued mapping, andD = {x0} for some x0 ∈ K, then Theorem 4.3
reduces to Theorem 2.1 in [11].

For every ε > 0, let Aε ⊂ R
n, and we define

lim sup
ε→ 0+

Aε := {x ∈ R
n : ∃εn −→ 0 + and xn ∈ Aεn such that xn −→ x}. (4.9)

Theorem 4.5. Let K be a nonempty closed convex set in R
n, and let F : K → 2R

n
be upper

semicontinuous with nonempty compact convex values. If assumption (A) holds, then

∅/= lim sup
ε→ 0+

SOL(F + εI,K) ⊂ SOL(F,K). (4.10)

Proof. The set lim supε→ 0+SOL(F + εI,K) being nonempty follows from Theorem 4.1. Let x ∈
lim supε→ 0+SOL(F + εI,K). Then there are a sequence εn → 0+ and xn ∈ SOL(F + εnI,K)
such that xn → x. This means that for some x∗

n ∈ F(xn),

〈
x∗
n + εnxn, y − xn

〉 ≥ 0, ∀y ∈ K. (4.11)

Since F is upper semicontinuous with nonempty compact values, {x∗
n} is compact. Without

loss of generality, assume limn→∞x∗
n = x∗ for some x∗ ∈ F(x). Thus for every y ∈ K,

〈
x∗
n + εnxn, y − xn

〉
=
〈
x∗
n, y − xn

〉
+ εn

〈
xn, y

〉 − εn‖xn‖2
−→ 〈

x∗, y − x
〉
as n −→ ∞.

(4.12)

It follows from (4.11) that x ∈ SOL(F,K).
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