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We will consider He’s variational iteration method for solving fractional Riccati differential
equation. This method is based on the use of Lagrange multipliers for identification of optimal
value of a parameter in a functional. This technique provides a sequence of functions which
converges to the exact solution of the problem. The present method performs extremely well in
terms of efficiency and simplicity.

1. Introduction

The fractional calculus has found diverse applications in various scientific and technological
fields [1, 2], such as thermal engineering, acoustics, electromagnetism, control, robotics,
viscoelasticity, diffusion, edge detection, turbulence, signal processing, and many other
physical processes. Fractional differential equations (FDEs) have also been applied in
modeling many physical, engineering problems, and fractional differential equations in
nonlinear dynamics [3, 4].

The variational iteration method was proposed by He [5] and was successfully
applied to autonomous ordinary differential equation [6], to nonlinear partial differential
equations with variable coefficients [7], to Schrodinger-KdV, generalized Kd and shallow
water equations [8], to linear Helmholtz partial differential equation [9], recently to
nonlinear fractional differential equations with Caputo differential derivative [10, 11], and
to other fields, [12]. The variational iteration method gives rapidly convergent successive
approximations of the exact solution if such a solution exists; otherwise a few approximations
can be used for numerical purposes. The method is effectively used in [6–8, 13–15] and the
references therein. Jafari et al. applied the variational iteration method to the Gas Dynamics
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Equation and Stefan problem [13, 14]. We consider here the following nonlinear fractional
Riccati differential equation:

Dα
∗y(t) = A(t) + B(t)y + C(t)y2, (1.1)

subject to the initial conditions

y(k)(0) = ck, k = 0, 1, . . . , n − 1, (1.2)

where α is fractional derivative order, n is an integer, A(t), B(t), and C(t) are known real
functions, and ck is a constant. There are several definitions of a fractional derivative of order
α > 0. The two most commonly used definitions are the Riemann-Liouville and Caputo.
Each definition uses Riemann-Liouville fractional integration and derivatives of whole order.
The difference between the two definitions is in the order of evaluation. Riemann-Liouville
fractional integration of order a is defined as

Iαf(x) =
1

Γ(α)

∫x

0
(x − t)α−1f(t)dt, α > 0, x > 0. (1.3)

The following two equations define Riemann-Liouville and Caputo fractional derivatives of
order α, respectively:

Dαf(x) =
dm

dxm
(
Im−αf(x)

)
, (1.4)

Dα
∗f(x) = I

m−α
(
dm

dxm
f(x)

)
, (1.5)

where m − 1 < α � m and m ∈ N. We have chosen to use the Caputo fractional
derivative because it allows traditional initial and boundary conditions to be included in
the formulation of the problem, but for homogeneous initial condition assumption, these
two operators coincide. For more details on the geometric and physical interpretation for
fractional derivatives of both the Riemann-Liouville and Caputo types, see [1].

2. Analysis of the Variational Iteration Method

We consider the fractional differential equation

Dα
∗y(t) = A(t) + B(t)y + C(t)y2, 0 < α � 1, (2.1)

with initial condition y(0) = 0, where Dα = dα/dtα. According to the variational iteration
method [5], we construct a correction functional for (2.1) which reads

yn+1 = yn + Iαλ(ξ)
[
dαyn
dξα

−A(t) − B(t)yn − C(t)y2
n

]
. (2.2)
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To identify the multiplier, we approximately write (2.2) in the form

yn+1 = yn +
∫ t

0
λ(ξ)

[
dαyn
dξα

−A(t) − B(t)ỹn − C(t)ỹ2
n

]
dξ, (2.3)

where λ is a general Lagrange multiplier, which can be identified optimally via the variational
theory, and ỹn is a restricted variation, that is, δỹn = 0.

The successive approximation yn+1, n � 0 of the solution y(t) will be readily obtained
upon using Lagrange’s multiplier, and by using any selective function y0. The initial value
y(0) and yt(0) are usually used for selecting the zeroth approximation y0. To calculate the
optimal value of λ, we have

δyn+1 = δyn + δ
∫ t

0
λ(ξ)

dyn
dξ

dξ = 0. (2.4)

This yields the stationary conditions λ′(ξ) = 0, and 1 + λ(ξ) = 0, which gives

λ = −1. (2.5)

Substituting this value of Lagrangian multiplier in (2.3), we get the following iteration
formula

yn+1 = yn − Iα
[
dαyn
dξα

−A(t) − B(t)yn − C(t)y2
n

]
, (2.6)

and finally the exact solution is obtained by

y(t) = lim
n→∞

yn(t). (2.7)

3. Applications and Numerical Results

To give a clear overview of this method, we present the following illustrative examples.

Example 3.1. Consider the following fractional Riccati differential equation:

dαy

dtα
= −y2(t) + 1, 0 < α � 1, (3.1)

subject to the initial condition y(0) = 0.

The exact solution of (3.1) is y(t) = (e2t − 1)/(e2t + 1), when α = 1.
In view of (2.6) the correction functional for (3.1) turns out to be

yn+1 = yn − Iα
(
dαyn
dξα

+ y2
n − 1

)
dξ. (3.2)
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Figure 1: Dashed line: Approximate solution.

Beginning with y0(t) = tα/Γ(1 + α), by the iteration formulation (3.2), we can obtain directly
the other components as

y1(t) =
tα

Γ(1 + α)
− Γ(1 + 2α)t3α

(α + 1)2Γ(1 + 3α)
,

y2(t) =
tα

Γ(1 + α)
− Γ(1 + 2α)t3α

Γ(1 + α)2Γ(1 + 3α)
+

23+2αΓ(4α)Γ(1/2 + α)t5α√
πΓ(α)Γ(1 + α)Γ(1 + 3α)Γ(1 + 5α)

− 64αΓ(1 + 2α)2Γ(1/2 + 3α)t7α√
πΓ(1 + α)4Γ(1 + 3α)Γ(1 + 7α)

,

...

(3.3)

and so on. The nth Approximate solution of the variational iteration method converges to the
exact series solution. So, we approximate the solution y(t) = limn→∞yn(t).

In Figure 1, Approximate solution (y(t) ∼= y3(t)) of (3.4) using VIM and the exact
solution have been plotted for α = 1. In Figure 2, Approximate solution (y(t) ∼= y3(t)) of (3.4)
using VIM and the exact solution have been plotted for α = 0.98.

Comment. This example has been solved using HAM, ADM, and HPM in [16–18]. It should
be noted that these methods have given same result after applying the Padé approximants on
y(t).
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Figure 2: Dashed line: Approximate solution.

Example 3.2. Consider the following fractional Riccati differential equation:

dαy

dtα
= 2y(t) − y2(t) + 1, 0 < α � 1, (3.4)

subject to the initial condition y(0) = 0.

The exact solution of (3.4) is y(t) = 1 +
√

2tanh(
√

2t + (1/2) log((
√

2 − 1)/(
√

2 + 1))),
when α = 1.

Expanding y(t) using Taylor expansion about t = 0 gives

y(t) = t + t2 +
t3

3
− t4

3
− 7t5

15
− 7t6

45
+

53t7

315
+

71t8

315
+ · · · . (3.5)

The correction functional for (3.4) turns out to be

yn+1 = yn − Iα
(
dαyn
dξα

− 2yn + y2
n − 1

)
dξ. (3.6)
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Figure 3: Dashed line: Approximate solution.

Beginning with y0(t) = tα/Γ(1 + α), by the iteration formulation (3.6), we can obtain directly
the other components as

y1(t) =
tα

Γ(α + 1)
+

√
π21−2αt2α

Γ(α + 1)Γ(α + 1/2)
− 4αt3αΓ(α + 1/2)√

πΓ(α + 1)Γ(3α + 1)
,

y2(t) =
tα

Γ(α + 1)
+

√
π21−2αt2α

Γ(α + 1)Γ(α + 1/2)
− 2−1+2αΓ(α + 1/2)t4α√

παΓ(α + 1)Γ(4α)
+

43α

Γ(3α + 1)

− Γ(1 + 2α)t3α

Γ(α + 1)2Γ(3α + 1)
− 12Γ(3α)t4α
Γ(α)Γ(2α + 1)Γ(4α + 1)

−
√
π24−2αΓ(4α)t5α

Γ(α)Γ(α + 1/2)Γ(2α + 1)Γ(5α + 1)
+

23+2αΓ(4α)Γ(α + 1/2)t5α√
πΓ(α)Γ(α + 1)Γ(3α + 1)Γ(5α + 1)

+
20Γ(5α)t6α

Γ(α)Γ(α + 1)Γ(3α + 1)Γ(6α + 1)
− 1024αΓ(α + 1/2)2Γ(3α + 1/2)t7α√

π3Γ(α + 1)2Γ(3α + 1)Γ(7α + 1)

...

(3.7)

and so on. In Figure 3, Approximate solution (y(t) ∼= y3(t)) of (3.4) using VIM and the exact
solution have been plotted for α = 1. In Figure 4, Approximate solution (y(t) ∼= y3(t)) of (3.4)
using VIM and the exact solution have been plotted for α = 0.98.
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Figure 4: Dashed line: Approximate solution.

4. Conclusion

In this paper the variational iteration method is used to solve the fractional Riccati differential
equations. We described the method, used it on two test problems, and compared the results
with their exact solutions in order to demonstrate the validity and applicability of the method.
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