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A second order of accuracy difference scheme for the approximate solution of the abstract nonlocal
boundary value problem —d*u(t)/dt*> + Au(t) = g(t), (0 < t < 1), du(t)/dt — Au(t) = f(t),
(-1 <t <0), u(l) = u(-1) + p for differential equations in a Hilbert space H with a self-adjoint
positive definite operator A is considered. The well posedness of this difference scheme in Holder
spaces is established. In applications, coercivity inequalities for the solution of a difference scheme
for elliptic-parabolic equations are obtained and a numerical example is presented.

1. Introduction

The role played by coercive inequalities in the study of boundary value problems for elliptic
and parabolic partial differential equations is well known (see [1-4]).

Nonlocal problems are widely used for mathematical modeling of various processes
of physics, biology, chemistry, ecology, engineering, and industry when it is impossible to
determine the boundary or initial values of the unknown function. Theory and numerical
methods of solutions of the nonlocal boundary value problems for partial differential
equations of variable type have been studied extensively by many researchers (see, e.g., [5-
34] and the references therein).
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In paper [35], the nonlocal boundary value problem

_dizgt) +Au(t) =g() (0<t<1),
dt;it) - Au(t) = f(t) (-1<t<0), (1.1)

u(l) =u(-1)+pu

for the differential equation in a Hilbert space H with the self-adjoint positive definite
operator A was considered. The well posedness of problem (1.1) in Holder spaces was
established. The first order of accuracy difference scheme for approximate solutions of
nonlocal boundary value problem (1.1) was presented. In applications, the coercivity
inequalities for solutions of difference schemes for elliptic-parabolic equations were obtained.

In the present paper, the second order of accuracy difference scheme generated by
Crank-Nicholson difference scheme

)
—T“(Uks1 — 2Ug + Ug—1) + Al = gk,

gk=8(k), tk=kr, 1<k<N-1, Nt=1,
1
7 (U — up) - E(Auk—l +Aug) = fi,  fr = f(te1/2), (1.2)

t-1/2 = <k— %)T, -(N-1)<k<0,

UN =U-N t+ H, Uy — 4u1 + 3u() = —3140 + 41/{,1 —U_n

for the approximate solution of problem (1.1) is presented. The well posedness of difference
scheme (1.2) in Holder spaces is established. As an application, coercivity inequalities for
solutions of difference schemes for elliptic-parabolic equations are obtained. A numerical
example is given.

2. The Formula for the Solution of Problem (1.2)

The following operators:

-1
P:(I-%)G, G=<1+%>, R=I+1B)7,

T, = <1 +BIA(T+7A+ EG*)K(I - RN 2.1)

1
2 2
+K(I - %)G‘ZRZI\H _K <1 - %>G‘2(21 + TB)RNPN>
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exist and are bounded for a self-adjoint positive operator A. Here

B =

N —

<TA +1/A4+ TZA)>, K = <1 +2TA + Z(TA)2>_1. (2.2)

Theorem 2.1. Forany g, 1 <k < N -1, and fi,,—N +1 < k <0, the solution of problem (1.2)
exists and the following formula holds:

_ _ 2N -1 k _ p2N-k N-k _ pN+k N, . s+N-1
we = (1-RV) {[R RN ug + [RN* - R ][P n TS:§HP Gfs+y]
- [RN‘k - RN+’<] (I+7B)(2I + TB)_lB_lNz_l [RN‘S - RN+S] gsT} (2.3)
s=1

N-1
+(I+7B)2l+7B)'BY [R'k-sl - R’“S] g7, 1<k<N,
s=1

0
ue =P ug—1 > PFGf, -N<k<-1, (2.4)
s=k+1
_lrkee
Up = 7 T

s=—N+1

x { <21 - T2A> { (2 +TB)RN [—T i PSNIIGH, + y]

Z

_RN-1p-1 [RN—S _ RN+s]gsT + <I _ R2N>B_1N§: Rs—lgST}

s

_
|
—

I
—_

s=1

(2.5)
+(1-RN)(I+7B) (B g1 ~ 4GB~ fo + PGB™ fo + GB™' f 1) }

T, = <1 +BlA(T+7A+ %G-Z)K(I — R2N1)

-1
2 2
+K (I - %)GzRZNl - K<I - %> G22I + TB)RNPN> .
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Proof. For any { f };i_ ~ and ¢, the solution of the auxiliary inverse Cauchy difference problem

1
7 (g — Ug1) — E(Auk—l + Aug) = f,

(2.6)
-(N-1)<k<0, ug=¢
exists and the following formula holds [36]
0
ug=P* -1 > P*IGf,, -N<k<-L (2.7)
s=k+1
Putting ¢ = ug, we get (2.4).
Now, we consider the following auxiliary difference problem
~772(Ups1 — 2U + Uk-1) + Al = gk,

gk =g(tx), ti=kr, 1<k<N-1, (2.8)

Uy =¢, un=¢.

It is well known that for the solution of (2.8) the following formula holds [37, 38]:

Uy = <I _ R2N>_1{ [Rk _ RZN_k:Ié + [RN—k _ RN+k](P.
—| RNk — RN*k|(I + 7B) (21 + TB)—lB-lM1 RN=5 - RN*s| oo (2.9)
>
s=1

N-1
+(I+7B)@L+7B) "B Y [RFI - R¥*|gor, 1<k <N
s=1

Applying (2.7) and putting & = ug, ¢ = PNug — 7 32, PN*¥7'Gfs + , in (2.9), we
get (2.3).
For uy, using (2.3), (2.4), and the condition

up —4uq + 3110 = —3140 +4u 1 —u_,, (210)
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we obtain the operator equation

(21 - T2A> { <I - R2N>1{ [R - RZN‘l]uo

0
+ [RN—l _ RN+1] [PNuO _r Z psN-IGH, +#:|
s=—N+1

N-1
~[RN-1 = RN1(1 +7B) (21 + TB) B Y] [RN7 - RV gST}
s=1

N-1
+I+7B)2l +7B) B Y[R - R gsT}

s=1

= —12g + G? (21 +4TA+ ;(TA)2>uO +4Grfo - PGTfo - GTfo1.

(2.11)
The operator
-1 T ~2 _ P2N-1
I1+B A<I+TA+ 5G )K(I R )
5 ) (2.12)
+ K<I - %> G2R2N-1 - 1<<1 - %) G2(2I + TB)RNPN
has an inverse
_ -1 T ~2 _ p2N-1
T, = <I+B A<I+TA+ 5G >K(I R )
) (2.13)
2 2 B
+1<<1 - %)G‘ZRZAH -~ K(I - TTA>G—2(21 + TB)RNPN>
Hence, we obtain that
_ i1 kG
Uy = 7 T
0
x { (2[ - T2A> {(2 +7B)RN [—T > PNIGS + ‘I/L:I
s=—N+1
N-1 =l (2.14)
_RN-1p-1 Z [RN—S _ RN+S]gST + (I _ R2N>B—1 ZRS_lgsT}
s=1 s=1

+(1-RN)(1+7B)(7B™'g1 - 4GB™ fo+ PGB fo + GB™' f 1) }

This concludes the proof of Theorem 2.1. O
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3. Main Theorems

Here, we study well posedness of problem (1.2). First, we give some necessary estimates for

Pk, R¥, and T;. For a self-adjoint positive operator A, the following estimates are satisfied
[36, 38, 39]:

||Pk||H—>H <L Gl —r <1, kT”APsz”HéH M, k21, 6>0, (3-1)

RS, sMa+6n*,  kr|BRY| <M, k21,650, (3.2)

where M is independent of 7. From these estimates, it follows that

<1 +BIA(I+7A+ ZGP)K(1-RNT) + K<I - E> G2RAN

2
2A -1
-K <1 - T) G22I + TB)RNPN)—1>

Let F-.(H) = F([a, b],, H) be the linear space of mesh functions ¢” = {(pk} defined on
[a,b], = {tx = kh, N, < k < Ny, N,7 = a, N,T = b} with values in the Hilbert space H. Next
on F;(H) we denote C([a,b],, H) and Cg,([-1,1],, H), C,([-1,0],, H), C5([0,1],, H)(0 <
a < 1) Banach spaces with the norms

(3.3)
<M.

H—H

19 cgann, iy = max ol

(=K)*
ll¢” ”cm( H) = ”‘PT”C([—Ll]T,H) +  sup  [|gker - (Pk”Er—a

—N<k<k+r<0

((k+7r)7)*(N - k)

+  sup ||k — x|

I<k<kir<N-1 re
(3.4)
(-k)*
ll¢” ca([-1,0], = [lo” ”C( “10,,H) T sup ”‘Pk+r_‘l’k”£r—a'
—N<k<k+r<0
ll¢” e (011, = |l¢" ”C(Ol] JH)

k+ (N - k)~
+  sup ||(Pk+r—<Pk||E(( T)T)a( r.

1<k<k+r<N-1 r

Nonlocal boundary value problem (1.2) is said to be stable in F([-1,1],, H) if we have the
inequality

100,00 < M['lfT||F([—1,O]T,H) + ”gT"F([O,l]T,H) + ”.”"H]r (3.5)

where M is independent of not only f7, ¢", and u but also 7.
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Theorem 3.1. Nonlocal boundary value problem (1.2) is stable in C([-1,1],, H) norm.

Proof. By [38], we have

[t | < M]l1g" lleqgoy, ) * 1ol + lenlzs] (3.6)

C([01],,H)

for the solution of boundary value problem (2.8).
By [36], we get

RS 1 [ MR A (3.7)

for the solution of an inverse Cauchy difference problem (2.6). Then, the proof of Theorem 3.1
is based on the stability inequalities (3.6), (3.7), and on the estimates

ol < M[”fT”C([—l,O]T,H) + 118" Neon,,em + ”P‘”H]r (3.8)

lunllp < M[”fT"C([—l,O]T,H) + ”gT“C([l,O]T,H) + ”l‘"H]/ (3.9)

for the solution of the boundary value problem (1.2). Estimates (3.8) and (3.9) follow from
formula (2.5) and estimates (3.1), (3.2), and (3.3) which conclude the proof of Theorem 3.1.
O

Theorem 3.2. Assume that p € D(A) and fo, f-1,§1 € DI + TB). Then, for the solution of
difference problem (1.2), we have the following almost coercivity inequality:

., N-1
{T (Ups1 — 2ug + Ug_1) }1

(o], H)
+|| {77 (ux - uk—l)}?NH 0l
N-1 1 ’
* ”{Au"}l i ”c([o,ﬂ,,H) ! ‘{E(A”" +Auk1)}—N+1 L0l (3.10)

. 1
<M [mm{ln pr 1+ [ln ”A”H—>H|} [”fTHC([—l,O],,H) + ”gT”C([O,l]T,H)]

+W%MH+HU+TmﬂMH+HU+ngmH+HU+TBU4HHL

where M does not dependent on not only f*,g", and u but also T.
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Proof. By [40], we have

- 0 1 ’
{T 1(uk—uk71)} + {E(Auk+Auk,1)}
“Netlle-v01,,H) “N*tlle-10,,H) (3.11)
. 1
<M [mm{ln ~1+In ||A||HﬁH|}||fTIIC([_1,0],) + ||Auo||H]
for the solution of an inverse Cauchy difference problem (2.6).
By [38], we get
N-1
-2 _ N-1
{T (ke = 2+ uk’l)}l o ”{Auk}1 ||C([0,1]T,H) o)

. 1
<M [mm{ln ~1+In ||A||HﬁH|}||gT||C([o,uT,H) + [ Augllyg + [ Aun

for the solution of boundary value problem (2.8).

Then, the proof of Theorem 3.2 is based on almost coercivity inequalities (3.11), (3.12),
and on the estimates

Al < Ml Apl, + 10+ 7B) ol

) 1
+m1n{1n py 1+ [In ||A||H~>H|} [”fT”c([fLo]T,H) + ”gT”C([O,l]T,H)]] ’
(3.13)
e < M| lAulg + 10+ 7B 5l ]

. 1
+m1n{ln ;,1 +|In ||A||H—>H|} [”fT”C([—l,O]T,H) + ”gT”C([O,l],,H)]]

for the solution of boundary value problem (1.2). The proof of these estimates follows the

scheme of the papers [38, 40] and relies on both the formula (2.5) and the estimates (3.1),
(3.2), and (3.3).

This concludes the proof of Theorem 3.2. O

Let 68’/1([—1, 1], H), 68‘([—1, 0], H),0 < a <1 be the Banach spaces with the norms

(=k)*
[l & (1], H) = o™ ey, m * _N<i2£2r<0||‘ﬂk+zr - ‘Pk”EW
k+ (N - k)~
c sup [lppear -]l EHDD R (3.14)
1<k<k+r<N-1 r
T T (_k)a
llo Ca([-1,01,,H) = lle ”C([—l,O]T,H) + —N<il<llg-2r<0”(Pk+2r - x|l 2n*
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Theorem 3.3. Let the assumptions of Theorem 3.2 be satisfied. Then, boundary value problem (1.2)

is well posed in Holder spaces C,([-1,1],, H) and 68‘/1([—1,1]T,H ), and the following coercivity
inequalities hold:

., N-1
{T (Uge1 — 2Ug + Ug-1) }1

cs, (0], H)

+” {T_l(uk - uk*l) }(—)N+1

éa ( [_1r0]T/H)

+(Aug

0
(Auk + Auy_ 1)}
Coa([01]- " N+1

<Ml

AN TB ol + 10+ 7By + 1T+ 7B) ],

Ca([-1,0],,H)

cx(-101,0H) t g™ e (1 O,l]T,H)] + || Apl|

. N1 (3.15)

{T (i1 — 2u + uk—l)}

tolleg, (oa1,,H)
0
-1 _
* {T (uk uk_l) }—N+1 60{([71,0] JH)
0
+ || tAug | (Auk+Auk 1)}
01([01 -N+1 68‘([—1,0]1.,1_[)
1
< M| [0 Neggenonin = 187 o, ) + It
AN+ TB Sl + 10+ 7Bl + 10+ 7B) .

where M is independent of not only f7, g", and y but also T and a.
Proof. By [39, 40],

S 0 1 ’

{T (uk - uk—l)} 3 E(Auk + Aug-1)
-N+1 Cg([-1,0],,H) N+1 Ca([-1,01,,H) (3 16)
1
=M [a(l -a) I Nesi-von 0 * ”AuO”H]’
o 0 1 0
{T (uk - uk—l)} . E(A”k + Aug_1)
—-N+1 Cg([—ll()]_r,H) N+1 63([_110]_”1_1) (3 17)

1 T
=M [m”f G0l * ”A”O"H]
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for the solution of an inverse Cauchy difference problem (2.6) can be written.
By [37, 38], we get

, N-1
{T (U1 — 2ug + Ug—1) }1
<M [—

for the solution of boundary value problem (2.8).
Then, the proof of Theorem 3.3 is based on coercivity inequalities (3.16)—(3.18), and
the estimates

+ [ fAmy

s, ([01],,H) Coa([01],,H)

(3.18)

s, ([04],,H) + [|Auol|y + ”AuNHH]

Il < M| s (1 Neggennnon 187 e o, 0] o)
Al + [T+ TB)folly + T+ ) + 10+ 7B) ]
Iunor < M| s [ N o+ 1 e oy )
(3.20)

Al + 1T +7B) folly + |0 +7B) gl + (1T + TB)f—lllH]

for the solution of boundary value problem (1.2).
Estimates (3.19) and (3.20) follow from the formulas

1
Aug = ETTKG‘Z

x { (21 - T2A> {(2 +7B)RN [—T 20: AP*NTG(fs — fonet) + Ay]

s=—N+1

N-1 N-1
- RNTABT Y RV (8o - gn1)T+ RNTTABT Y IRV (g - g1)T
8&~8 8&~8

s=1 s=1
+(1- R2N>AB’1]§RS’1 (g5 - g1)T}
s=1
+ (1= RN)(1+7B)(TB™ Agi ~4GB™ Afo + PGB Afy + GB Af 1)
+ (2[ - T2A> 2+ B)RN <PN - 1) fnet

+ABZ (RN - 1) { RN g + (RN - RN - 1) g1} }
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1
Aun = EPN T.KG™?

s=—N+1

x { (21 -7%4) { (2+7B)RN [—T ﬁ APNIG(f, - finn) + A#]

N-1 N-1
_ RN—IAB—lzRN—S(gS _gN—l)T + RN—IAB—lzRN+S(gs _ gl)T

s=1 s=1

N-1
+<1 - R2N>AB‘1 > BR(gs - gl)T}

s=1

+ (1= RN)(1+7B)(TB" Agi 4GB Afo + PGB Afy + GB Af 1)
+ (21 - 72A> (2 + 7B)RN (PN - 1) Fonet

+AB2 (RN = 1) { RN gy + (RN - RN~ 1) g }

-7 i’ AP™NIG(f, = fona) + Ap+ (PN =1) fna

s=—N+1
(3.21)
for the solution of problem (1.2) and estimates (3.1), (3.2), and (3.3).
This finalizes the proof of Theorem 3.3. O

4. Applications

In this section, we indicate applications of Theorems 3.1, 3.2, and 3.3 to obtain the stability,
the almost coercive stability, and the coercive stability estimates for the solutions of these
difference schemes for the approximate solution of nonlocal mixed problems. First, let Q be
the unit open cube in the n-dimensional Euclidean space R* (0 < xx < 1,1 < k < n) with

boundary 5,Q=QuUS.In [-1,1] x Q, the boundary value problem for the multidimensional
elliptic-parabolic equation

n

—Uy — Z(ar(x)”xr)x, =g(tx), 0<t<l x€Q,

r=1
w+ (@ (Ouy,), = f(t,x), -1<t<0, x€Q, (1)
r=1

u(t,x)=0, xe€85, -1<t<1, u(l,x) =u(-1,x)+u(x), xe Q,

u(0+, x) = u(0—, x), 1 (0+,x) = u;(0—,x), x€Q
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is considered. Problem (4.1) has a unique smooth solution u(t, x) for f(t,x) (t € (-1,0), x €
Q),g(t,x) (t€(0,1), x € Q) thesmooth functions, and a,(x) > a > 0(x € Q).

The discretization of problem (4.1) is carried out in two steps. In the first step, the grid
sets

éh = {x =Xm = (h1m1/~-~/hnmn)/m = (ml,...,mn)/
0<m, <N, h,N,=1,r=1,...,n}, (4.2)

Qh=§2hmg, Sh=§2hﬁs

are defined. To the differential operator A generated by problem (4.1), we assign the
difference operator Aj by the formula

x h _
Ajuy, =~

(ar(x)u§r> (4.3)

n
Xy, m
r=1 r /My

acting in the space of grid functions u"(x), satisfying the conditions u"(x) = 0 for all x € Sj,.
With the help of A}, we arrive at the nonlocal boundary value problem

_dPul(t, x)
dt?
du”(t, x) h h
——— - AU (t,x) = f"(t,x), -1<t<0, x€Qy,
a / (44
u"(1,x) = ul(-1,x) + yh(x), x €Qy,

+A2uh(t,x) = gh(t,x), O0<t<1, xeQy,

du"(0+,x)  du"(0-,x) ~
= Q
dt ar 0 Y

u" (0+, x) = u"(0-,x),

for an infinite system of ordinary differential equations.
Replacing problem (4.4) by the difference scheme (1.2), one can obtain the second
order of accuracy difference scheme

h

_uﬁﬂ(x) - ZuZ (x) + uz_l(x) - A% (x) = gh(x)
k\X) = 8\ X),

T2
¢(x) = glte, x), ti=kr, 1<k<N-1, Nt=1, x€Qy,

wy (x) = 1ty (x)

Ax
- S () + 4 (00) = 0, «5)

1
f,i’(x) = f(tk,l/z,xn), t-1/2 = (k - E)T, -N+1<k<0, xe&y,
Ul (%) = w (0) + ' (x), x €y,

—ué’ (x) + 4u¥ (x) - 3u6‘(x) = 3ug(x) - 4u’11(x) + uﬁz(x), x € Q.
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Let us give a corollary of Theorems 3.1 and 3.2.

Theorem 4.1. Let 7 and |h| = \/h3 + - - - + h3 be sufficiently small positive numbers. Then, solutions
of difference scheme (4.5) satisfy the following stability and almost coercivity estimates:

h N-1 h -1 h N-1 h
{uk}) <m|||{f} + st} el |
N le-111, L) N+l (=101, Lan) T Mleqoa, Lo Lo
N-1
-2 h h h
{T (”k+1_2”k+”k—1>}1 oAl
L1/ 2h
+ {uﬁ}Nil + {T‘l(uﬁ—uZ_J}o
b lleqoan, wz) “N+le(-1,01,,La)
h h 0
. {uk+uk_1}
2
“N+le(-1,01,w2,)
sl I, + st + e
> [fo Lo f4 L, 8L, TIH w2,
a1 I VY s P4
Jollwg, * T 5wy, * Tl g,
1 H n11 N
+ln —— {f} + {g} .
T+|h|[ “onalleovon L I leqonr, ra

(4.6)

Here, M is independent of not only T, h, ,uh(x) but also g,’(’(x), 1<k<N-1,and f,i’, -N+1<k<0.

The proof of Theorem 4.1 is based on Theorems 3.1 and 3.2, the estimate

min{ln %,1 + ‘ln | A%

} < Min——, (4.7)

||L2h—>L2h T4+ |h|

the symmetry properties of the difference operator A; defined by formula (4.3) in Ly;, and
the following theorem.

Theorem 4.2. For the solution of the elliptic difference problem

A;lcuh(x) =wh(x), xeQy,

(4.8)
u'(x) =0, x€S,
the following coercivity inequality holds [41]:
> (u <M|w"| . 49
; < >§,x,,m, Lo || Loy ( )
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Let us give a corollary of Theorem 3.3.

Theorem 4.3. Let T and |h| be sufficiently small positive numbers. Then, solutions of difference
scheme (4.5) satisfy the following coercivity stability estimates:

N-1
-2( h h o h
{T <uk+1—2uk+uk71>}1

€5, ([0.1]Low)

0 N-1
+ |4t uh—uh_ + || {ul
k71 Nt || kJq « 2
Cg([-1,0]7L2n) C3.([01],W3)
hy b )0
. {uk+uk_1
2
Nl Ga(-100,,w2)
] 8 I Vi P AT P
S MU g, 70w, 71 g, * 78Tl
1 l:“ -1 N-1
h h
* {r} +| {st)
_ kf_ k ’
a(l-a) N+l e ([-1,01,,Lar) U Mz, o, L
N-1
2( h W, h
{T <”k+1_2”kJ”‘k—1>}1
CE, (1011, Lar)
b, o h
. {uk+uk_1
2
N+ || Ea
* CU ([71r0]-rrw22h)
0 N-1
+ ({7t uh—uhf + || ul
ko "k-1)f _Ni1|| & k1 >
Ex (1,01, Lax) cs, (0,11, W2,)
<M. <7l + 7], st
S 0 a1 1
[ W, W, W, W,

B +
Co (=101, Lon)

(g},

]| (13

Cs‘,l([O,l]T,Lzh)]]

where M is independent of not only T, h, and p"(x) but also gi'(x),1 <k < N-Tland f}',-N+1<
k <0.

(4.10)

The proof of Theorem 4.3 is based on the abstract Theorems 3.3 and 4.2, and the
symmetry properties of the difference operator A; defined by the formula (4.3).
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Table 1: Comparison of the errors.

Method N=M-=20 N =M =30 N =M =60
1st order of accuracy d. s. 0.043541 0.030515 0.015973
2nd order of accuracy d. s 0.000627 0.000283 0.000071

Second, the mixed boundary value problem for the elliptic-parabolic equation

—uy — (a(xX)uy), +6u=g(t,x), 0<t<l 0<x<1,
U+ (a(x)uy), —6u=f(t,x), -1<t<0, 0<x<1,
u(t,0) = u(t, 1), u(t,0) = u,(t,1), -1<t<1, (4.11)
u(l,x) =u(-1,x) +pu(x), 0<x<1,
u(0+, x) = u(0—, x), u (04, x) = u;(0—,x), 0<x<1
is considered. Problem (4.11) has a unique smooth solution u(t, x) for f(t,x)(t € [-1,0],x €
[0,1]), g(t, x)(t € [0,1],x € [0,1]), the smooth functions, and a(x) > a > 0(x € (0,1)),6 =
const > 0.
Note that in a similar manner one can construct the difference schemes of the second
order of accuracy with respect to one variable for approximate solutions of the boundary
value problem (4.11). Abstract theorems given above permit us to obtain the stability, the

almost stability and the coercive stability estimates for the solutions of these difference
schemes.

5. Numerical Results

We consider the nonlocal boundary value problem

0 0?

—al:+—axlzl=sinx, -1<t<0, 0<x<u,

Pu u .

¥+@=smx, O0<t<1, O<x<um, (5.1)

u(l,x) =u(-1,x) +2sinh1sinx, 0<x<ur,
u(t,0) =u(t,r)=0, -1<t<1
for the elliptic-parabolic equation.

The exact solution of this problem is u(t, x) = (ef - 1) sin x.
Now, we give the results of the numerical analysis. The errors computed by

EN = max u(te, x,) — uk
M ™ N<k<N1<n<M-1 (te, 2n) n (5.2)

of the numerical solutions are given in Table 1.
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Thus, the second order of accuracy difference scheme is more accurate than the first
order of accuracy difference scheme.
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