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Two sequences of distinct periodic solutions for second-order Hamiltonian systems with sublinear
nonlinearity are obtained by using the minimax methods. One sequence of solutions is local
minimum points of functional, and the other is minimax type critical points of functional. We
do not assume any symmetry condition on nonlinearity.

1. Introduction and Main Result

We are interested in the following second order Hamiltonian systems:

ü(t) +∇F(t, u(t)) = 0 a.e. t ∈ [0, T],

u(0) − u(T) = u̇(0) − u̇(T) = 0,
(1.1)

where T > 0 and F : [0, T] × RN → R satisfies the following assumption.

(A) F(t, x) is measurable in t for each x ∈ RN and continuously differentiable in x for
a.e. t ∈ [0, T], F(t, 0) = 0 for a.e. t ∈ [0, T], and there exist a ∈ C(R+, R+), b ∈
L1(0, T ;R+) such that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t) (1.2)

for all x ∈ RN and a.e. t ∈ [0, T].
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Then the corresponding functional ϕ on H1
T given by

ϕ(u) =
1
2

∫T

0
|u̇(t)|2dt −

∫T

0
F(t, u(t))dt (1.3)

is continuously differentiable and weakly lower semicontinuous onH1
T , where

H1
T =

{
u : [0, T] −→ RN | u is absolutely continuous, u(0) = u(T), u̇ ∈ L2

(
0, T ;RN

)}
(1.4)

is a Hilbert space with the norm defined by

‖u‖ =

(∫T

0
|u(t)|2dt +

∫T

0
|u̇(t)|2dt

)1/2

(1.5)

for u ∈ H1
T (see [1]). Moreover,

〈
ϕ′(u), v

〉
=
∫T

0
(u̇(t), v̇(t))dt −

∫T

0
(∇F(t, u(t)), v(t))dt (1.6)

for all u, v ∈ H1
T . It is well known that the solutions of problem (1.1) correspond to the critical

points of ϕ.
There are large number of papers that deal with multiplicity results for this problem.

Infinitely many solutions for problem (1.1) are obtained in [2–4], where the symmetry
assumption on the nonlinearity F has played an important role. In recent years, many authors
have paid much attention to weaken the symmetry condition, and some existence results on
periodic and subharmonic solutions have been obtained without the symmetry condition
(see [5–7]). Particularly, Ma and Zhang [6] got the existence of a sequence of distinct periodic
solutions under some superquadratic and asymptotic quadratic cases. Faraci and Livrea [7]
studied the existence of infinitely many periodic solutions under the assumption that F(t, x)
is a suitable oscillating behaviour either at infinity or at zero.

In this paper, we suppose that the nonlinearity ∇F(t, x) is sublinear, that is, there exist
f, g ∈ L1(0, T ;R+) and α ∈ [0, 1] such that

|∇F(t, x)| ≤ f(t)|x|α + g(t) (1.7)

for all x ∈ RN and a.e. t ∈ [0, T]. We establish some multiplicity results for problem (1.1)
under different assumptions on the potential F. Roughly speaking, we assume that F has
a suitable oscillating behaviour at infinity. Two sequences of distinct periodic solutions are
obtained by using the minimax methods. One sequence of solutions is local minimum points
of functional, and the other is minimax type critical points of functional. In particular, we do
not assume any symmetry condition at all.
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Our main result is the following theorem.

Theorem 1.1. Suppose that F(t, x) satisfies assumptions (A) and (1.7). Assume that

lim sup
r→+∞

inf
x∈RN,|x|=r

|x|−2α
∫T

0
F(t, x)dt = +∞, (1.8)

lim inf
R→+∞

sup
x∈RN,|x|=R

|x|−2α
∫T

0
F(t, x)dt = −∞. (1.9)

Then,

(i) there exists a sequence of periodic solutions {un} which are minimax type critical points of
functional ϕ, and ϕ(un) → +∞, as n → ∞;

(ii) there exists another sequence of periodic solutions {u∗
m} which are local minimum points of

functional ϕ, and ϕ(u∗
m) → −∞, as m → ∞.

2. Proof of Theorems

For u ∈ H1
T , let u = (1/T)

∫T
0 u(t)dt and ũ = u − u. Then one has

‖ũ‖2∞ ≤ T

12

∫T

0
|u̇(t)|2dt (

Sobolev’s inequality
)
,

∫T

0
|ũ(t)|2dt ≤ T2

4π2

∫T

0
|u̇(t)|2dt (

Wirtinger’s inequality
)
.

(2.1)

Lemma 2.1. Let H̃1
T be the subspace ofH1

T given by

H̃1
T =

{
u ∈ H1

T | u = 0
}
. (2.2)

Suppose that (1.7) holds. Then

ϕ(u) −→ +∞ (2.3)

as ‖u‖ → ∞ in H̃1
T .
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Proof. It follows from (1.7) and Sobolev’s inequality that

ϕ(u) =
1
2

∫T

0
|u̇(t)|2dt −

∫T

0
F(t, u(t))dt

≥ 1
2

∫T

0
|u̇(t)|2dt −

∫T

0
f(t)|u(t)|α+1dt −

∫T

0
g(t)|u(t)|dt

≥ 1
2

∫T

0
|u̇(t)|2dt − ‖u‖α+1∞

∫T

0
f(t)dt − ‖u‖∞

∫T

0
g(t)dt

≥ 1
2

∫T

0
|u̇(t)|2dt − C1

(∫T

0
|u̇(t)|2dt

)(α+1)/2

− C2

(∫T

0
|u̇(t)|2dt

)1/2

(2.4)

for all u in H̃1
T . By Wirtinger’s inequality, the norm

‖u‖ =

(∫T

0
|u̇(t)|2dt

)1/2

(2.5)

is an equivalent norm on H̃1
T . Hence the lemma follows from the equivalence and the above

inequality.

Lemma 2.2. Suppose that (1.7) and (1.8) hold. Then there exists positive real sequence {an} such
that

lim
n→∞

an = +∞,

lim
n→∞

sup
u∈RN,|u|=an

ϕ(u) = −∞.
(2.6)

The proof of this lemma is similar to the following lemma.

Lemma 2.3. Suppose that (1.7) and (1.9) hold. Then there exists positive real sequence {bm} such
that

lim
m→∞

bm = +∞,

lim
m→∞

inf
u∈Hbm

ϕ(u) = +∞,
(2.7)

whereHbm = {x ∈ RN : |u| = bm}⊕H̃1
T .
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Proof. For any u ∈ Hbm , let u = u + ũ, where |u| = bm, ũ ∈ H̃1
T . It follows from (1.7) and

Sobolev’s inequality that

∣∣∣∣∣
∫T

0
[F(t, u(t)) − F(t, u)]dt

∣∣∣∣∣

=

∣∣∣∣∣
∫T

0

∫1

0
(∇F(t, u + sũ(t)), ũ(t))dsdt

∣∣∣∣∣

≤
∫T

0

∫1

0
f(t)|u + sũ(t)|α|ũ(t)|dsdt +

∫T

0

∫1

0
g(t)|ũ(t)|dsdt

≤ 2
(|u|α + ‖ũ‖α∞

)‖ũ‖∞
∫T

0
f(t)dt + ‖ũ‖∞

∫T

0
g(t)dt

≤ 3
T
‖ũ‖2∞ +

T

3
|u|2α

(∫T

0
f(t)dt

)2

+ 2‖ũ‖α+1∞

∫T

0
f(t)dt + ‖ũ‖∞

∫T

0
g(t)dt

≤ 1
4

∫T

0
|u̇(t)|2dt + C1|u|2α + C2

(∫T

0
|u̇(t)|2dt

)(α+1)/2

+ C3

(∫T

0
|u̇(t)|2dt

)1/2

,

(2.8)

for all u ∈ H1
T . Hence we have

ϕ(u) =
1
2

∫T

0
|u̇(t)|2dt −

∫T

0
[F(t, u(t)) − F(t, u)]dt −

∫T

0
F(t, u)dt

≥ 1
4

∫T

0
|u̇(t)|2dt − C2

(∫T

0
|u̇(t)|2dt

)(α+1)/2

− C3

(∫T

0
|u̇(t)|2dt

)1/2

− |u|2α
(
|u|−2α

∫T

0
F(t, u)dt + C1

)
,

(2.9)

for all u ∈ H1
T . As (|u|2 + ‖u̇(t)‖L2)

1/2 → ∞ if and only if ‖u‖ → ∞, then the lemma follows
from (1.9) and the above inequality.

Now we give the proof Theorem 1.1.

Proof of Theorem 1.1. Let Ban be a ball in RN with radius an. Define

Sn =
{
γ ∈ C

(
Ban ,H

1
T

)
, γ

∣∣
∂Ban

= id|∂Ban

}
,

cn = inf
γ∈Sn

[
max
x∈Ban

ϕ
(
γ(x)

)]
.

(2.10)
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We claim that each γ intersects the hyperplane H̃1
T . In fact, let π : H1

T → RN be the projection
ofH1

T onto RN , defined by

π(u) =
1
T

∫T

0
u(t)dt. (2.11)

For t ∈ [0, 1], u ∈ RN , define

γt(u) = tπ
(
γ(u)

)
+ (1 − t)u. (2.12)

Then γt ∈ C(RN ;RN) is a homotopy of γ0 = id with γ1 = π ◦ γ. Moreover, γt|∂Ban
= id for all

t ∈ [0, 1]. By homotopy invariance and normalization of the degree, we have

deg
(
π ◦ γ, Ban , 0

)
= deg(id, Ban , 0) = 1, (2.13)

which means that 0 ∈ π(γ(Ban)). Thus γ(Ban) intersects the hyperplane H̃
1
T .

By Lemma 2.1, the functional ϕ is coercive on H̃1
T . There is a constant M such that

max
x∈Ban

ϕ
(
γ(x)

) ≥ inf
u∈H̃1

T

ϕ(u) ≥ M. (2.14)

Hence cn ≥ M. In view of Lemma 2.2, for all large values of n,

cn > max
x∈RN,|x|=an

ϕ(x). (2.15)

For such n, there exists a sequence {γk} in Sn such that

max
x∈Ban

ϕ
(
γk(x)

) −→ cn, k −→ ∞. (2.16)

Applying Theorem 4.3 and Corollary 4.3 in [1], there exists a sequence {vk} inH1
T such that

ϕ(vk) −→ cn,

dist
(
vk, γk(Ban)

) −→ 0,

ϕ′(vk) −→ 0,

(2.17)

as k → ∞.
Now, let us prove that the sequence {vk} is bounded inH1

T . For any large enough k,

cn ≤ max
x∈Ban

ϕ
(
γk(x)

) ≤ cn + 1, (2.18)
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we can find wk ∈ γk(Ban), such that

‖vk −wk‖ ≤ 1. (2.19)

For fixed n, by Lemma 2.3, we can choose m such that bm > an and γk(Ban) cannot intersect
the hyperplane Hbm . Let wk = wk + w̃k, where wk ∈ RN and w̃k ∈ H̃1

T . Then we have

|wk| =
∣∣∣∣∣
1
T

∫T

0
wk(t)dt

∣∣∣∣∣ ≤
1
T

∫T

0
|wk(t)|dt ≤ ‖wk‖∞ = max

t∈[0,T]
|wk(t)| < bm, (2.20)

for bm large enough. Besides, by Sobolev’s inequality and (1.7), it is obvious that

cn + 1 ≥ ϕ(wk) =
1
2

∫T

0
|ẇk(t)|2dt −

∫T

0
F(t,wk(t))dt

≥ 1
2

∫T

0
|ẇk(t)|2dt −

∫T

0
f(t)|wk(t)|1+αdt −

∫T

0
g(t)|wk(t)|dt

≥ 1
2

∫T

0
|ẇk(t)|2dt − 4

∫T

0
f(t)

(
|wk(t)|1+α + |w̃k(t)|1+α

)
dt

−
∫T

0
g(t)(|wk(t)| + |w̃k(t)|)dt

=
1
2

∫T

0
|ẇk(t)|2dt − C1

(∫T

0
|ẇk(t)|2dt

)(1+α)/2

− C2

(∫T

0
|ẇk(t)|2dt

)1/2

− C3.

(2.21)

As (|u|2 + ‖u̇(t)‖L2)
1/2

is an equivalent norm in H1
T , it follows that w̃k(t) is bounded. Hence,

wk is bounded. Also {vk} is bounded inH1
T .

We assume that

vk ⇀ un weakly in H1
T ,

vk −→ un uniformly in C
(
[0, T];RN

)
,

(2.22)

hence

〈ϕ′(vk) − ϕ′(un), vk − un〉 −→ 0,
∫T
0 (∇F(t, vk) − ∇F(t, un), vk − un)dt −→ 0

(2.23)

as k → ∞. Moreover, an easy computation shows that

〈ϕ′(vk) − ϕ′(un), vk − un〉 = ‖v̇k − u̇n‖2L2 −
∫T

0
(∇F(t, vk) − ∇F(t, un), vk − un)dt (2.24)
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so ‖v̇k − u̇n‖L2 → 0 as n → ∞. Then, it is not difficult to obtain ‖vk − un‖ → 0, as k → ∞.
Now we have

ϕ′(un) = lim
k→∞

ϕ′(vk) = 0,

ϕ(un) = lim
k→∞

ϕ(vk) = cn.
(2.25)

Thus, un is critical point and cn is critical value of functional ϕ. For any γ ∈ Sn, if an > bm,
γ(Ban) intersects the hyperplane Hbm = {x ∈ RN, |u| = bm} ⊕ H̃1

T . It follows that

max
x∈Ban

ϕ
(
γ(x)

) ≥ inf
u∈Hbm

ϕ(u). (2.26)

This inequality and Lemma 2.3 deduce that

lim
n→∞

cn = +∞. (2.27)

The first result of Theorem 1.1 is obtained.
For fixed m, define the subset Pm of H1

T by

Pm =
{
u ∈ H1

T : u = u + ũ, |u| ≤ bm, ũ ∈ H̃1
T

}
. (2.28)

For u ∈ Pm, we have

ϕ(u) =
1
2

∫T

0
|u̇(t)|2dt −

∫T

0
F(t, u(t))dt

≥ 1
2

∫T

0
|u̇(t)|2dt −

∫T

0
f(t)|u(t)|1+αdt −

∫T

0
g(t)|u(t)|dt

≥ 1
2

∫T

0
|u̇(t)|2dt − 4

∫T

0
f(t)

(
|wk(t)|1+α + |ũ(t)|1+α

)
dt

−
∫T

0
g(t)(|u(t)| + |ũ(t)|)dt

=
1
2

∫T

0
|u̇(t)|2dt − C4

(∫T

0
|u̇(t)|2dt

)(1+α)/2

− C5

(∫T

0
|u̇(t)|2dt

)1/2

− C6.

(2.29)

It follows that ϕ is bounded below on Pm.Define

μm = inf
u∈Pm

ϕ(u), (2.30)



Abstract and Applied Analysis 9

and let {uk} be a minimizing sequence in Pm, that is,

ϕ(uk) −→ μm as k −→ ∞. (2.31)

From (2.29), {uk} is bounded in H1
T . Then, there is a subsequence, we also denoted by {uk},

such that

uk ⇀ u∗
m weakly in H1

T . (2.32)

The case that Pm is a convex closed subset of H1
T implies that u∗

m ∈ Pm.As ϕ is weakly lower
semicontinuous, we have

μm = lim
k→∞

ϕ(uk) ≥ ϕ(u∗
m). (2.33)

Since u∗
m ∈ Pm,

μm = ϕ(u∗
m). (2.34)

Suppose that u∗
m is in the interior of Pm, then u∗

m is a local minimum of functional ϕ. In fact,
let u∗

m = u∗
m + ũ∗

m. For largem, from Lemmas 2.2 and 2.3, we have |u∗
m|/= bm, which means that

u∗
m is not on the boundary of Pm.

Finally, as u∗
m is a minimum of ϕ in Pm,

ϕ(u∗
m) ≤ sup

|x|=bm
ϕ(x). (2.35)

It follows from Lemma 2.2 that

ϕ(u∗
m) = −∞. (2.36)

Therefore Theorem 1.1 is proved.
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