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We establish existence andmultiplicity of solutions for an elliptic systemwhich presents resonance
at infinity of Landesman-Lazer type. In order to describe the resonance, we use an eigenvalue
problem with indefinite weights. In all results, we use Variational Methods, Morse Theory and
Critical Groups.

1. Introduction

In this paper, we discuss results on existence and multiplicity of solutions for the system

−Δu = a(x)u + b(x)v + f(x, u, v) − h1(x) in Ω,

−Δv = b(x)u + d(x)v + g(x, u, v) − h2(x) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω ⊆ R
N is bounded smooth domain in R

N ,N ≥ 3 with a, b, d ∈ C0(Ω,R) and h1, h2 ∈
L2(Ω), f, g ∈ C1(Ω×R

2,R). We assume that the system (1.1) is of gradient type, that is, there
is some function F ∈ C2(Ω ×R

2,R) such that ∇F = (f, g). Throughout this paper, ∇F denotes
the gradient in the variables u and v for each x ∈ Ω fixed.

From a variational standard point of view, to find weak solutions of (1.1) in H =
H1

0(Ω) × H1
0(Ω) is equivalent to find critical points of the C2 functional J : H → R
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given by

J(z) =
1
2
‖z‖2 − 1

2

∫
Ω
〈A(x)(u, v), (u, v)〉dx −

∫
Ω
F(x, u, v)dx +

∫
Ω
h1u + h2v dx, (1.2)

where ‖ ‖ denotes the Dirichlet norm

‖z‖2 =
∫
Ω
|∇u|2 + |∇v|2dx, z = (u, v) ∈ H. (1.3)

We observe that the problem (1.1) represents a steady state case of reaction-diffusion
systems of interest in Biology, Chemistry, Physics, and Ecology; see [1, 2].

In order to define the resonance conditions, we need to consider eigenvalue problems
for functions A ∈ C(Ω,M2×2), where M2×2 denotes the set of all matrices of order 2.
Let us denote by S2(Ω) the set of all continuous, cooperative, and symmetric functions
A ∈ C(Ω,M2×2) of order 2 written as

A(x) =
(
a(x) b(x)
b(x) d(x)

)
, (1.4)

satisfying the following hypotheses.

(M1) A is cooperative, that is, b(x) ≥ 0 for all x ∈ Ω.Moreover, we assume that

Ωb := {x ∈ Ω : b(x) = 0} (1.5)

has zero Lebesgue measure.

(M2) There is x1 ∈ Ω such that a(x1) > 0 or d(x1) > 0.

In this way, given A ∈ S2(Ω), we consider the eigenvalue problem with weights as
follows:

−Δ
(
u

v

)
= λA(x)

(
u

v

)
in Ω,

u = v = 0 on ∂Ω.

(1.6)

Using the conditions (M1) and (M2) above and applying the Spectral Theory for
compact operators, we get a sequence of eigenvalues

0 < λ1(A) < λ2(A) ≤ λ3(A) ≤ · · · (1.7)

such that λk(A) → +∞ as k → ∞. Here, each eigenvalue λk(A), k ≥ 1; see [3–5].
We point out that the Problem (1.1) presents a resonance phenomenon depending on

the behavior of the functions f and g at infinity. We assume all along this paper the following
basic hypothesis.
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(B∞) There is h ∈ C(Ω,R) such that

∣∣f(x, z)∣∣ ≤ h(x), ∀(x, z) ∈ Ω × R
2,

∣∣g(x, z)∣∣ ≤ h(x), ∀(x, z) ∈ Ω × R
2.

(1.8)

Under these hypotheses, system (1.1) is asymptotically quadratic at infinity due to the
presence of a linear part given by the function A ∈ S2(Ω). In addition, when λk(A) = 1 for
some k ≥ 1 the problem (1.1) becomes resonant. In this case, in order to obtain existence and
multiplicity of solutions for (1.1), we will assume conditions of the Landesman-Lazer type
introduced in the scalar case in [6]. These famous conditions are well known in the scalar
case. However for gradient systems, to the best our knowledge, these conditions have not
been explored in our case.

In order to introduce our Landesman-Lazer conditions for system (1.1), we need the
following auxiliary assumptions.

(f∞) There are functions f++, f+−, f−+, f−− ∈ C(Ω) such that

f++(x) = lim
u→∞
v→∞

f(x, u, v), f+−(x) = lim
u→∞
v→−∞

f(x, u, v),

f−+(x) = lim
u→−∞
v→∞

f(x, u, v), f−−(x) = lim
u→−∞
v→−∞

f(x, u, v).
(1.9)

Moreover,

(g∞) there are functions g++, g+−, g−+, g−− ∈ C(Ω) such that

g++(x) = lim
u→∞
v→∞

g(x, u, v), g+−(x) = lim
u→∞
v→−∞

g(x, u, v),

g−+(x) = lim
u→−∞
v→∞

g(x, u, v), g−−(x) = lim
u→−∞
v→−∞

g(x, u, v),
(1.10)

where the limits in (1.9) and (1.10) are taken uniformly and for all x ∈ Ω.

So we can write the Landesman-Lazer conditions for our problem (1.1), when k = 1. It
will be assumed either

(LL)+1

∫
Ω
f−−φ1 + g−−ψ1dx <

∫
Ω
h1φ1 + h2ψ1dx <

∫
Ω
f++φ1 + g++ψ1dx, (1.11)

or

(LL)−1

∫
Ω
f−−φ1 + g−−ψ1dx >

∫
Ω
h1φ1 + h2ψ1dx >

∫
Ω
f++φ1 + g++ψ1dx, (1.12)

where Φ1 = (φ1, ψ1) is the positive eigenfunction associated to the first positive eigenvalue
for problem (1.6).
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Similarly, we write the Landesman-Lazer conditions for k > 1. In that case, we denote
V (λk) the eigenspace associated to the eigenvalue λk(A). Then, let (u, v) ∈ V (λk) and define

Lk(u, v) :=
∫
u>0,v>0

f++u + g++v dx +
∫
u<0,v>0

f−+u + g−+v dx

+
∫
u>0,v<0

f+−u + g+−v dx +
∫
u<0,v<0

f−−u + g−−v dx.

(1.13)

So it will be assumed either

(LL)+k Lk(u, v) >
∫
Ω
h1u + h2v dx, ∀(u, v) ∈ V (λk) \ {0}, (1.14)

or

(LL)−k Lk(u, v) <
∫
Ω
h1u + h2v dx, ∀(u, v) ∈ V (λk) \ {0}. (1.15)

Using these conditions, we will prove our main results. First, we consider the existence
of solutions for the Problem (1.1). To do that, we prove that the functional J has an
appropriate saddle point geometry given in [7] whenever (LL)+k with k ≥ 1 holds. So, we
can prove the following result.

Theorem 1.1. Suppose h1, h2 ∈ L2(Ω), and (B∞), (f∞), (g∞). In addition, suppose that (LL)+k and
λk(A) = 1 with k ≥ 1 hold, then Problem (1.1) has at least one solution.

Similarly, using the condition (LL)−k instead of (LL)+k , we prove the following result:

Theorem 1.2. Suppose h1, h2 ∈ L2(Ω), and (B∞), (f∞), (g∞). In addition, suppose that (LL)−k and
λk(A) = 1 with k ≥ 2 hold, then Problem (1.1) has at least one solution.

In the case that k = 1, using the condition (LL)−1 and the Ekeland’s variational
principle, we can prove the following result.

Theorem 1.3. Suppose h1, h2 ∈ L2(Ω), and (B∞), (f∞), (g∞). In addition, suppose that (LL)−1 and
λ1(A) = 1 hold, then Problem (1.1) has at least one solution.

Now, we assume that∇F(x, 0, 0) ≡ 0, F(x, 0, 0) ≡ 0 and h1 ≡ h2 ≡ 0 hold, then Problem
(1.1) admits the trivial solution (u, v) ≡ 0. In this case, themain point is to ensure the existence
of nontrivial solutions. The existence of these solutions depends mainly on the behavior of F
at the origin and at infinity.

In this case, we make some assumptions at the origin. First, we define the function
F̃(x, z) = F(x, z) + 〈A(x)z, z〉, (x, z) ∈ Ω × R

2. Then, we consider the following.

(F̃0) There is A0 ∈ S2(Ω) such that

lim
z→ 0

2F̃(x, z) − 〈A0(x)z, z〉
|z|2

= 0. (1.16)



Abstract and Applied Analysis 5

In fact, the function A0 is the Hessian matrix at the origin in the variables u and v for each
x ∈ Ω fixed. Under these assumptions, we consider the eigenvalue problem

−Δ
(
u

v

)
= λA0(x)

(
u

v

)
in Ω,

u = v = 0 on ∂Ω.

(1.17)

Thus, using the Spectral Theory for compact operators, we have a sequence of eigenvalues
denoted by

0 < λ1(A0) < λ2(A0) ≤ λ3(A0) ≤ · · · (1.18)

such that λm(A0) → +∞ asm → ∞.
In the next result, we complement the statement of Theorem 1.1 by proving that

the solution which was found in Theorem 1.1 is nonzero. Indeed, we prove the following
multiplicity result.

Theorem 1.4. Suppose that (B∞), (f∞), (g∞) and λk(A) = 1, (LL)+k with k ≥ 1 hold. Assume also
that (F̃0) and λm(A0) < 1 < λm+1(A0) hold for an integer number m ≥ 1 such that m/= k, then the
solution given in Theorem 1.1 is nontrivial.

For the next result, we will add further hypotheses on F ′′ and find other nontrivial
solutions. Firstly, we consider the following definition.

Definition 1.5. Let A,B ∈ S2(Ω). We say the inequality A ≤ B holds when we have
〈A(x)z, z〉 ≤ 〈B(x)z, z〉, for all (x, z) ∈ Ω × R

2. Moreover, we define A � B, if A ≤ B and
B −A are positive definite on Ω̃ ⊆ Ω, where |Ω̃| > 0. Here, | | denotes the Lebesgue measure.

Remark 1.6. Let F ∈ C2 andA,B ∈ S2(Ω). Then the inequalitiesA ≤ F ′′ ≤ Bmean 〈A(x)z, z〉 ≤
〈F ′′(x)z, z〉 ≤ 〈B(x)z, z〉 for all (x, z) ∈ Ω × R

2. Here, F ′′ denotes the Hessian matrix of F in
the variables u and v for each x ∈ Ω fixed.

In the next multiplicity result, we explore the Mountain Pass Theorem. More
specifically, we find two mountain pass points which are different from the solution obtained
by Theorem 1.1. In addition, we find all critical groups at infinity introduced in [8] using the
Landesman-Lazer conditions. This last part is new complement and permits us to show the
following result.

Theorem 1.7. Suppose that (B∞), (f∞), (g∞), (LL)+k, (F̃0), and λk(A) = 1 with k ≥ 2 hold. In
addition, suppose also that λ1(A0) > 1 and F ′′ � (δ − 1)A for some δ ∈ (0, λk+1) hold, then Problem
(1.1) has at least four nontrivial solutions.

We note that the Problem (1.1) has been studied by many authors in recent years
since the appearance of the pioneering paper of Chang [3]. We refer the reader to [3,
5, 9–13] and references therein. In these works, the authors proved several results on
existence and multiplicity for the problem (1.1). In [3], Chang considered the problem
(1.1) with nonresonance conditions using Variational Methods and the Morse theory. In [9],
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Bartsch et al. obtained sign changing solutions under resonant conditions. More precisely,
they considered the conditions of the Ahmad et al. type [14], in short (ALP)±k , written as
follows:

(ALP)+k

∫
Ω
F(x, z)dx −→ ∞, as ‖z‖ −→ ∞, z ∈ V (λk), (1.19)

or

(ALP)−k

∫
Ω
F(x, z)dx −→ −∞, as ‖z‖ −→ ∞, z ∈ V (λk). (1.20)

Recall that V (λk) denotes the eigenspace associated to the eigenvalue λk(A).

Remark 1.8. It is well known that the condition (LL)±1 implies (ALP)±1 , respectively. However,
the same property is not clear for higher eigenvalues, that is, it is not known that (LL)±k
implies the condition (ALP)±k for k ≥ 2, respectively.

In [10], Chang considered the problem (1.1) using Subsuper solutions and Degree
Theory. In [5], Furtado and de Paiva used the nonquadraticity condition at infinity and the
Morse theory.

In this paper, we explore the conditions of Landesman-Lazer type. These famous
conditions imply interesting properties on geometry of J given by (1.2), see Propositions
3.2, 3.3, and 3.4. In addition, we calculate all the critical groups for a critical point z1 ∈ H
given by a saddle theorem provided in [7]. Thus, we obtain further results on existence and
multiplicity of solutions for problem (1.1) which complements the previous papers above-
mentioned.

In the proof of our main theorems, we study Problem (1.1) using Variational Methods,
the Morse Theory, and some results related to the critical groups at an isolated critical point;
see [8, 15].

The paper is organized as follows. In Section 2, we recall the abstract framework of
problem (1.1) and highlight the properties for the eigenvalue problem (1.6). In Section 3, we
prove some auxiliary results involving the Palais-Smale condition and some properties on the
geometry for the functional J . In Section 4, we prove Theorems 1.1, 1.2, and 1.3. In Section 5,
we prove Theorems 1.4 and 1.7. Section 6 is devoted to the proofs of further multiplicity
results which are analogous to Theorems 1.4 and 1.7. However, in these theorems, we use the
(LL)−k condition instead of (LL)+k , where k ≥ 1.

2. Abstract Framework and Eigenvalue Problem for the System (1.1)

Initially, we recall thatH = H1
0(Ω)×H1

0(Ω) denotes the Hilbert space with the Dirichlet norm

‖z‖2 =
∫
Ω
|∇u|2 + |∇v|2dx, z = (u, v) ∈ H. (2.1)

Moreover, we denote by 〈, 〉 the scalar product inH which has given us the norm above.
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Again, we recall the properties of the eigenvalue problem as follows:

−Δ
(
u

v

)
= λA(x)

(
u

v

)
in Ω,

u = v = 0 on ∂Ω.

(2.2)

Let A ∈ S2(Ω), then there is a unique compact self-adjoint linear operator, which we denote
by TA : H → H satisfying

〈TAz,w〉 =
∫
Ω
〈A(x)z,w〉dx, ∀z,w ∈ H. (2.3)

This operator has the following propriety: λ is an nonzero eigenvalue of (2.2), if and only if
TAz = (1/λ)z for some nonzero z ∈ H, that is, 1/λ is an eigenvalue for TA.

So, for each matrix A ∈ S2(Ω), there exist a sequence of eigenvalues for problem (2.2)
and a Hilbertian basis forH formed by eigenfunctions of (2.2). Let λk(A) the eigenvalues of
problem (2.2) and let Φk(A) be the associated eigenfunctions, we note that

0 < λ1(A) < λ2(A) ≤ · · · ≤ λk(A) −→ ∞ as k −→ ∞. (2.4)

We also note that

1
λ1(A)

= sup{〈TAz, z〉, ‖z‖ = 1, z ∈ H},

1
λk(A)

= sup
{
〈TAz, z〉, ‖z‖ = 1, z ∈ V ⊥

k−1, k ≥ 2
} (2.5)

hold, where Vk−1 := span{Φ1(A), . . . ,Φk−1(A)}. Thus, we haveH = Vk⊕V ⊥
k for k ≥ 1, and the

following variational inequalities hold:

‖z‖2 ≥ λ1(A)〈TAz, z〉, ∀z ∈ H, (2.6)

‖z‖2 ≤ λk(A)〈TAz, z〉, ∀z ∈ Vk, (2.7)

‖z‖2 ≥ λk+1(A)〈TAz, z〉, ∀z ∈ V ⊥
k . (2.8)

These inequalities will be used in the proof, our main theorems. We recall that the eigenvalue
λ1(A) is positive and simple. Moreover, we have that the associated eigenfunction Φ1(A) is
positive in Ω. In other words, we have a Hess-Kato Theorem for eigenvalue problem (2.2)
proved by Chang, see [3]. For more properties to the eigenvalue problem (2.2), see [4, 5, 10].
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3. Preliminary Results

The critical groups in Morse Theory can be used to distinguish critical points and, hence, are
very useful in critical point theory. Let J be a functional C1 defined on a Hilbert Space H,
then the critical groups of J at an isolated critical point uwith J(u) = c are given by

Cq(J, u) = Hq(Jc, Jc \ {u},G), ∀q ∈ N, (3.1)

where Hq is the singular relative homology with coefficients in an Abelian Group G and
Jc = J−1(−∞, c], see [15].

We recall that J : H → R is said to satisfy Palais-Smale condition at the level c ∈ R

((PS)c in short), if any sequence (zn)n∈N
⊆ H such that

J(zn) −→ c, J ′(zn) −→ 0 (3.2)

as n → ∞ possess a convergent subsequence in H. Moreover, we say that J satisfies (PS)
condition when (PS)c is satisfied for all c ∈ R.

The critical groups at infinity are formally defined by

Cq(J,∞) = Hq(H, Jc), ∀q ∈ N. (3.3)

We observe that, by Excision Property, the critical groups at infinity are independent of c ∈ R;
see [8].

Now, we observe that condition (B∞) implies the following growth condition: Let ε >
0, then there existsMε > 0 such that

|F(x, z)| ≤ ε|z|2, ∀x ∈ Ω whenever |z| ≥Mε, (3.4)

and, there exists Cε > 0 such that

|F(x, z)| ≤ Cε + ε|z|2, ∀x ∈ Ω, z ∈ R
2, (3.5)

where | · | denotes the Euclidian norm in R
2. Moreover, since h1, h2 ∈ L2(Ω), we use Cauchy-

Schwartz’s inequality obtaining the following estimate. For each ε > 0, there exists Cε > 0
such that

∣∣∣∣
∫
Ω
h1u + h2v dx

∣∣∣∣ ≤ Cε + ε‖z‖2, ∀z = (u, v) ∈ H. (3.6)

In this way, we prove the following compactness result.

Proposition 3.1. Suppose (B∞), (f∞), and(g∞). In addition, suppose (LL)+k or (LL)−k with k ≥ 1,
then the functional J satisfies the (PS) condition.



Abstract and Applied Analysis 9

Proof. Initially, we take k = 1. In this case, we have that λ1(A) is simple and it admits an
eigenfunctionΦ1(A)with definite sign inΩ. For this reason, the proof in this case is standard.
We will omit the details of the proof in this case.

Now, we consider the case k > 1. The proof of this case is by contradiction. We assume
that there is a sequence (zn)n∈N

∈ H such that

(i) J(zn) → c, where c ∈ R,

(ii) J ′(zn) → 0,

(iii) ‖zn‖ → ∞ as n → ∞.

Let us consider zn = zn/‖zn‖, then, we get ‖zn‖ = 1, and there exists z ∈ H such that

(i) zn ⇀ z inH,

(ii) zn → z in Lp(Ω) × Lp(Ω)with p ∈ [1, 2∗),

(iii) zn(x) → z(x) a.e. in Ω as n → ∞.

At the same time, given Φ = (φ, ψ) ∈ H, we get the following identity

J ′(zn)Φ
‖zn‖ =

∫
Ω
∇un∇φ +∇vn∇ψ dx −

∫
Ω

〈
A(x)(un, vn),

(
φ, ψ

)〉
dx

−
∫
Ω

∇F(x, un, vn)
(
φ, ψ

)
‖zn‖ dx +

∫
Ω

h1φ + h2ψ
‖zn‖ , where zn = (un, vn).

(3.7)

In this way, using the last identity, we conclude that

∫
Ω
∇u∇φ +∇v∇ψ dx −

∫
Ω

〈
A(x)(u, v),

(
φ, ψ

)〉
dx = 0, ∀Φ =

(
φ, ψ

) ∈ H, (3.8)

where z = (u, v). Choosing Φ = (un, vn) in (3.7) we obtain the following identity∫
Ω〈A(x)(u, v), (u, v)〉dx = 1. Moreover, taking Φ = (u, v) and using (3.8), we get that
‖z‖2 =

∫
Ω〈A(x)(u, v), (u, v)〉dx = 1. Consequently, zn → z in H and z is an eigenfunction

associated to the eigenvalue λk(A) = 1.
On the other hand, we define An = ((1/2)J ′(zn)zn − J(zn))/‖zn‖. Then, An → 0 as

n → ∞. More specifically, the (PS) sequence (zn)n∈N
yields

An =
1
2

∫
Ω
2
F(x, un, vn)

‖zn‖ − ∇F(x, un, vn)(un, vn)dx − 1
2

∫
Ω
h1un + h2vndx −→ 0, (3.9)

as n → ∞.
Now, we study the limits of the three terms in (3.9). First, we get

∫
Ω
h1un + h2vndx −→

∫
Ω
h1u + h2v dx as n −→ ∞. (3.10)
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In addition, using the functions in (1.9) and (1.10), we obtain

∇F(x, un, vn) −→
(
f++
1 (x), f++

2 (x)
)
, if x ∈ {

y ∈ Ω : u
(
y
)
> 0, v

(
y
)
> 0

}
,

∇F(x, un, vn) −→
(
f+−
1 (x), f+−

2 (x)
)
, if x ∈ {

y ∈ Ω : u
(
y
)
> 0, v

(
y
)
< 0

}
,

∇F(x, un, vn) −→
(
f−+
1 (x), f−+

2 (x)
)
, if x ∈ {

y ∈ Ω : u
(
y
)
< 0, v

(
y
)
> 0

}
,

∇F(x, un, vn) −→
(
f−−
1 (x), f+−

2 (x)
)
, if x ∈ {

y ∈ Ω : u
(
y
)
< 0, v

(
y
)
< 0

}
,

(3.11)

as n → ∞.
We point out that Ω0 = {x ∈ Ω : z(x) = (u(x), v(x)) = 0} has zero Lebesgue

measure. Indeed, the eigenfunctions associated to the eigenvalue problem (1.6) enjoy the
Strong Unique Continuation Property, in short (SUCP). For this property, we refer the reader
to [16–21]. More specifically, for each solution z of (1.6)which is zero on E ⊂ Ωwith positive
Lebesgue measure, we obtain a zero of infinite order for some x	 ∈ Ω similar to the scalar
case. This property implies that z is zero in some neighborhood of x	; see Theorem 2.1 in
[21]. In this way, the function z ≡ 0 in Ω which is not an eigenfunction for (1.6). In other
words, the eigenfunctions associated to (1.6) are not zero for any subset of Ω with positive
Lebesgue measure.

Let Ω̃ ⊂ Ω be such that u = 0 and v /= 0 in Ω̃, then Ω̃ has zero Lebesgue measure. The
proof of this claim is by contradiction. Suppose that Ω̃ has positive measure and recall that
z = (u, v) is an eigenfunction associated to λk(A) = 1, k > 1, thus, the problem (1.6) implies
that

b(x)v = 0 in Ω̃. (3.12)

Therefore, using the fact that v /= 0 in Ω̃, we obtain

b(x) = 0 in Ω̃. (3.13)

In that case, Ω̃ ⊂ Ωb and using the hypothesis (M1), we have a contradiction. Summarizing,
for all subsets Ω̃ ⊂ Ω such that u = 0 and v /= 0 in Ω̃ has zero Lebesgue measure. Analogously,
the subsets of Ω, where u/= 0 and v = 0, satisfy the same property.

Hence, we have

∫
Ω
∇F(x, un, vn)zndx −→

∫
u>0 v>0

(
f++
1 , f++

2
)
zdx +

∫
u>0 v<0

(
f+−
1 , f+−

2

)
zdx

+
∫
u<0 v>0

(
f−+
1 , f−+

2

)
zdx +

∫
u<0 v<0

(
f−−
1 , f−−

2

)
zdx

(3.14)

as n → ∞.
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Finally, using L’ Hospital’s rule and (LL)+k or (LL)
−
k , we also have

∫
Ω

F(x, un, vn)
‖zn‖ dx −→

∫
u>0 v>0

(
f++
1 , f++

2
)
zdx +

∫
u>0 v<0

(
f+−
1 , f+−

2

)
zdx

+
∫
u<0 v>0

(
f−+
1 , f−+

2

)
zdx +

∫
u<0 v<0

(
f−−
1 , f−−

2

)
zdx

(3.15)

as n → ∞. Therefore (3.9), (3.10), (3.14), and (3.15) imply that

∫
u>0 v>0

(
f++
1 , f++

2
)
zdx +

∫
u>0 v<0

(
f+−
1 , f+−

2

)
zdx

+
∫
u<0 v>0

(
f∓
1 , f

∓
2

)
zdx +

∫
u<0 v<0

(
f−−
1 , f−−

2

)
zdx =

∫
Ω
(h1, h2)zdx.

(3.16)

However, z = (u, v) is an eigenfunction associated to the eigenvalue λk(A) = 1 with ‖z‖ =
1. So, we have a contradiction with the conditions (LL)+k or (LL)−k . Therefore all the (PS)c
sequence is bounded. Then, by standard arguments, we conclude that all (PS)c sequence has
a convergent subsequence. This statement finishes the proof of this proposition.

Next, we prove some properties involving the geometry of the functional J . More
specifically, we prove that the functional J has at least one of the following geometries: a
special saddle geometry, mountain pass geometry, or a linking at the origin. First, we prove
the following result.

Proposition 3.2. Suppose (B∞), (f∞), (g∞), and (LL)+k with k ≥ 1, then the functional J has the
following saddle geometry:

(a) J(z) → ∞, if ‖z‖ → ∞ with z = (u, v) ∈ V ⊥
k
,

(b) there is α ∈ R such that J(z) ≤ α, for all z ∈ Vk.

Proof. Initially, we check the proof of item (a). Let z = (u, v) ∈ V ⊥
k
, then we have the following

estimates:

J(z) =
1
2
‖z‖2 − 1

2

∫
Ω
〈A(x)z, z〉dx −

∫
Ω
F(x, z)dx +

∫
Ω
(h1u + h2v)dx

≥ 1
2

(
1 − 1

λk+1

)
‖z‖2 −

∫
Ω
F(x, z)dx +

∫
Ω
h1u + h2v dx

≥ 1
2

(
1 − 1

λk+1

)
‖z‖2 − 1

2
ε‖z‖2 − Cε −→ ∞ se ‖z‖ −→ ∞ com z ∈ V ⊥

k ,

(3.17)

where we used (2.8), (3.5), (3.6), and Sobolev’s embedding. So, the proof of item (a) is now
complete.
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Now, we prove the item (b). The proof in this case is by contradiction. We suppose
that there exists a sequence (zn)n∈N

∈ Vk such that

(i) J(zn) > n, for all n ∈ N,

(ii) ‖zn‖ → ∞ as n → ∞.

So, this information must lead us to a contradiction.
Firstly, we write zn = z0n + wn ∈ Vk = V (λk) ⊕ Vk−1, with z0n ∈ V (λk) = eigenspace

associated to eigenvalue λk(A) = 1 and wn ∈ Vk−1. Consequently, for each ε > 0, we obtain

J(zn) =
1
2
‖wn‖2 − 1

2
〈TAwn,wn〉 −

∫
Ω
F
(
x, z0n +wn

)
dx +

∫
Ω
(h1, h2)

(
z0n +wn

)
dx

≤ 1
2

(
1 − 1

λk−1

)
‖wn‖2 −

∫
Ω
F
(
x, z0n +wn

)
dx +

∫
Ω
(h1, h2)

(
z0n +wn

)
dx

≤ 1
2

(
1 − 1

λk−1

)
‖wn‖2 + 1

2
ε
∥∥∥z0n +wn

∥∥∥2
+ Cε,

(3.18)

where we use (2.7) and the growths conditions (3.5) and (3.6). Now, we show the following
claim.

Claim 1. We have that ‖z0n‖ → ∞ as n → ∞.

The proof of this claim is by contradiction. In this case, assuming that ‖z0n‖ is bounded.
Thus, we obtain that ‖wn‖ → ∞ as n → ∞. In this case, using the estimate (3.18) we
conclude that J(zn) → −∞. Therefore, we have a contradiction because we have J(zn) > n
by construction. Consequently the proof of Claim 1 it follows.

Now, we define sn = z0n/‖z0n‖ = (u0n/‖zn‖, v0
n/‖zn‖) ∈ V (λk). In this way, there exists

s0 ∈ V (λk) satisfying ‖s0‖ = 1 such that

(i) sn → s0 in V (λk),

(ii) sn → s0 in Lp(Ω)2,

(iii) sn(x) → s0(x) a.e. in Ω.

Thus, for each ε > 0, using (3.5) and (3.6), we obtain

J(zn) ≤ 1
2

(
1 − 1

λk−1

)
‖wn‖2 −

∫
Ω
F
(
x, z0n +wn

)
dx −

∫
Ω
(h1, h2)

(
z0n +wn

)
dx

≤ 1
2

(
1 − 1

λk−1
+ ε

)
‖wn‖2 + ε

∥∥∥z0n
∥∥∥2

+ Cε.

(3.19)

Defining L = limn→∞(‖wn‖/‖z0n‖), we will consider the following cases:

(1) L = ∞,

(2) L ∈ (0,∞),

(3) L = 0.
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We will obtain a contradiction in the cases (1), (2), or (3). Initially, we consider case (1). In
this case, for all M > 0, there exists n0 ∈ N such that ‖wn‖ ≥ M‖z0n‖, for n ≥ n0. The last
inequality shows that

J(zn) ≤ 1
2

(
1 − 1

λk−1
+ ε

)
‖wn‖2 + ε

∥∥∥z0n
∥∥∥2

+ Cε

≤ M2

2

(
1 − 1

λk−1
+ ε

)∥∥∥z0n
∥∥∥2

+ ε
∥∥∥z0n

∥∥∥2
+ Cε −→ −∞ as n −→ ∞.

(3.20)

Again we have a contradiction because J(zn) > n by construction. Therefore, case (1) does
not occur.

Now, we consider case (2). In this case, for each ε > 0 small enough there exists n0 ∈ N

such that 0 < L − ε < ‖wn‖/‖z0n‖ < L + ε whenever n ≥ n0. In this way, we have the following
inequalities:

J(zn) ≤ 1
2

(
1 − 1

λk−1
+ ε

)
‖wn‖2 + ε

∥∥∥z0n
∥∥∥2

+ Cε

≤ 1
2

(
1 − 1

λk−1
+ ε

)
(L − ε)2

∥∥∥z0n
∥∥∥2

+ ε
∥∥∥z0n

∥∥∥2
+ Cε −→ −∞ as n −→ ∞.

(3.21)

Again, we have a contradiction and case (2) does not occur too.
Finally, we consider case (3). In this case, using the Landesman-Lazer conditions, we

obtain the following identity:

lim
n→∞

∫
Ω

F
(
x, z0n +wn

)
∥∥z0n∥∥ dx = lim

n→∞

∫
Ω

F
(
x, z0n

)
∥∥z0n∥∥ dx. (3.22)

Moreover, by L’Hospital’s rule, we get following inequality:

lim
n→∞

∫
Ω

F
(
x, z0n

)
∥∥z0n∥∥ dx = lim

n→∞

∫
Ω
∇F

(
x, z0n

)
sndx >

∫
Ω
(h1, h2)s0dx, (3.23)

where sn = z0n/‖z0n‖ = (u0n/‖zn‖, v0
n/‖zn‖) ∈ V (λk). Thus, for each ε > 0 small, there is n0 ∈ N

such that n ≥ n0 implies that

∫
Ω

F
(
x, z0n +wn

)
∥∥z0n∥∥ dx >

∫
Ω
(h1, h2)s0dx + 2ε, (3.24)
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where we use (LL)+k , (3.22), and (3.23). Now, using (3.24), we get the following estimates:

J(zn) ≤ 1
2

(
1 − 1

λk−1

)
‖wn‖2 −

∫
Ω
F
(
x, z0n +wn

)
dx +

∫
Ω
(h1, h2)

(
z0n +wn

)
dx

≤ 1
2

(
1 − 1

λk−1

)
‖wn‖2 −

∥∥∥z0n
∥∥∥
(∫

Ω
(h1, h2)s0 + 2ε

)

+
∥∥∥z0n

∥∥∥
∫
Ω
(h1, h2)sndx +

∫
Ω
(h1, h2)wndx

≤ 1
2

(
1 − 1

λk−1
+ ε

)
‖wn‖2 −

∥∥∥z0n
∥∥∥
(∫

Ω
(h1, h2)s0 + 2ε

)

+
∥∥∥z0n

∥∥∥
∫
Ω
(h1, h2)sndx + Cε

≤ 1
2

(
1 − 1

λk−1
+ ε

)
‖wn‖2 −

∥∥∥z0n
∥∥∥ε ≤ −ε

∥∥∥z0n
∥∥∥,

(3.25)

where ε > 0 is small enough. Therefore, we have J(zn) → −∞ as n → ∞. Again, we get a
contradiction because J(zn) > n by construction. Consequently, there is a constant α ∈ R such
that J(z) ≤ α, for all z = (u, v) ∈ Vk. This statement finishes the proof of this proposition.

Now, we have an analogous geometry for J using the (LL)−k condition instead of (LL)−k ,
where k ≥ 2. In this case, we can prove the following result.

Proposition 3.3. Suppose (B∞), (f∞), (g∞), and (LL)−k with k ≥ 2, then the functional J has the
following saddle geometry:

(a) J(z) → −∞, if ‖z‖ → ∞ with z = (u, v) ∈ Vk−1,

(b) there is β ∈ R such that J(z) ≥ β, for all z ∈ V ⊥
k−1.

Proof. The proof of this result is similar to the proof of Proposition 3.2. Thus, we will omit the
proof of this proposition.

Finally, using the (LL)−1 condition, we will prove the following result.

Proposition 3.4. Suppose (B∞), (f∞), (g∞), and (LL)−1 , then the functional J is coercive, that is, we
have that J(z) → ∞ as ‖z‖ → ∞ for all z ∈ H.

Proof. First, we must show that J(z) → ∞, if ‖z‖ → ∞. Suppose, by contradiction, that this
information is false. Thus, there is a sequence (zn)n∈N

∈ H such that

(i) J(zn) ≤ C, for all n ∈ N,

(ii) ‖zn‖ → ∞ as n → ∞.
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However, the sequence (zn) has the following form zn = tnΦ1 + wn where (tn)n∈N
∈ R and

(wn)n∈N
∈ V ⊥

1 . Hence, we obtain

J(zn) = ‖wn‖2 −
∫
Ω
〈A(x)wn,wn〉dx −

∫
Ω
F(x, zn)dx +

∫
Ω
(h1, h2)zndx

≥ 1
2

(
1 − 1

λ2

)
‖wn‖2 −

∫
Ω
F(x, tnΦ1 +wn)dx +

∫
Ω
(h1, h2)(tnΦ1 +wn)dx

≥ 1
2

(
1 − 1

λ2
− ε

)
‖wn‖2 − ε

2
‖tnΦ1‖2 − Cε,

(3.26)

where we use Sobolev’s embedding, (2.8), (3.5), and (3.6). In this way, we have the following
claim.

Claim 2. |tn| → ∞ as n → ∞.

The proof of this claim is similar to the proof of the Claim 1. We will omit the proof of
this claim.

Now, we define L = limn→∞(‖wn‖/|tn|). In this case, using the same ideas developed
in Proposition 3.2, it is easy to see that L = 0. Thus, we obtain the following information:

lim
n→∞

∫
Ω

F(x, tnΦ1 +wn)
tn

dx = lim
n→∞

∫
Ω
∇F(x, tnΦ1)Φ1dx <

∫
Ω
(h1, h2)Φ1dx, (3.27)

where we are assuming that tn → ∞ and we use the condition (LL)−1 . The case where tn →
−∞ is similar. Therefore, given ε > 0 small, there exists n0 ∈ N such that n ≥ n0 implies that

∫
Ω

F(x, tnΦ1 +wn)
tn

dx <

∫
Ω
(h1, h2)Φ1dx − ε. (3.28)

Now, using the estimates (3.26) and (3.28), we obtain

J(zn) ≥ 1
2

(
1 − 1

λ2

)
‖wn‖2 − tn

∫
Ω

F(x, zn)
tn

dx +
∫
Ω
(h1, h2)zndx

≥ 1
2

(
1 − 1

λ2
− ε

)
‖wn‖2 − tn

(∫
Ω
(h1, h2)Φ1dx − ε

)

+ tn

∫
Ω
(h1, h2)Φ1dx − Cε =

1
2

(
1 − 1

λ2
− ε

)
‖wn‖2 + tnε − Cε ≥ tnε − Cε,

(3.29)

where ε > 0 is small enough. In the above estimates, we use the growth condition (3.6).
Consequently, J(zn) → ∞ and n → ∞, and we have a contradiction. Therefore, the
functional J is coercive. This affirmation finishes the proof of this proposition.

Now, we prove some two auxiliary results related to the mountain pass geometry for
the functional J . First, we prove the following result.
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Proposition 3.5. Suppose (B∞), (f∞), and (g∞). In addition, suppose that (F̃0) and λ1(A0) > 1,
then the origin is a local minimum for the functional J .

Proof. First, using (F̃0), we chose p ∈ (2, 2∗) and a constant Cε > 0 for all ε > 0 such that

F̃(x, z) ≤ ε

2
|z|2 + 1

2
〈A(x)z, z〉 + Cε|z|p, ∀(x, z) ∈ Ω × R

2. (3.30)

We recall that F̃(x, z) = (1/2)〈A(x)z, z〉 + F(x, z), (x, z) ∈ Ω × R
2. So, we obtain

J(z) =
1
2
‖z‖2 − 1

2
〈A(x)z, z〉 −

∫
Ω
F(x, z)dx =

1
2
‖z‖2 −

∫
Ω
F̃(x, z)dx

≥ 1
2

(
1 − 1

λ1(A0)
+ εC

)
‖z‖2 − Cε

∫
Ω
|z|pdx

≥ 1
2

(
1 − 1

λ1(A0)
+ εC

)
‖z‖2 − Cε‖z‖p ≥ 1

4

(
1 − 1

λ1(A0)
+ εC

)
‖z‖2 > 0,

(3.31)

where z ∈ Bρ(0) \ {0} and 0 < ρ ≤ ρ0 with ρ0 small enough. Here, Bρ(0) denotes the open
ball inH centered at the origin with radius ρ. Therefore, the proof of this propositions is now
complete.

The next result, whose proof is standard and will be omitted, completes the mountain
pass geometry for functional J .

Proposition 3.6. Suppose (B∞), (f∞), and (g∞). In addition, suppose (LL)+k or (LL)−k with k ≥ 2.
Then J(tΦ1) → −∞ as |t| → ∞.

Now, we compute the critical groups at infinity. Initially, we need to prove an auxiliary
result given by the following proposition.

Proposition 3.7. Suppose (B∞), (f∞), and (g∞). In addition, suppose (LL)+k or (LL)−k holds with
k ≥ 1. Let R > 0 and ε ∈ (0, 1) and define C(R, ε) = {z ∈ H : z = z− + z0 + z+ ∈ H =
Vk−1 ⊕ V (λk) ⊕ V ⊥

k
, ‖z‖ ≥ R, and ‖z+ + z−‖ ≤ ε‖z‖}. Then we have the following alternatives.

(a) (LL)+k implies that there are constants R > 0, ε ∈ (0, 1), and δ > 0 such that

〈
J ′(z), z0

〉
≤ −δ, ∀z ∈ C(R, ε). (3.32)

(b) (LL)−k implies that there are constants R > 0, ε ∈ (0, 1), and δ > 0 such that

〈
J ′(z), z0

〉
≥ δ, ∀z ∈ C(R, ε). (3.33)

Proof. First, we prove case (a), where k ≥ 2. The proof of this proposition when k = 1 is
similar. Let us assume, by contradiction, that for any ε = δ = 1/n, there exists a sequence
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(zn)n∈N
written as zn = z−n +z

0
n +z

+
n ∈ H = Vk−1 ⊕ V (λk) ⊕ V ⊥

k such that ‖zn‖ ≥ n, ‖z+n +z−n‖ ≤
(1/n)‖zn‖ and

〈
J(zn), z0n

〉
> − 1

n
, ∀n ∈ N. (3.34)

Therefore, we have

− 1
n
<
〈
J ′(zn), z0n

〉
=
〈
(I − TA)zn, z0n

〉
−
∫
Ω
∇F(x, zn)z0ndx ≤ −

∫
Ω
∇F(x, zn)z0ndx. (3.35)

So we see that

lim sup
n→∞

∫
Ω

∇F(x, zn)z0n
‖zn‖ dx ≤ 0. (3.36)

On the other hand, by Hölder’s inequality and Sobolev’s embedding, we show that

∣∣∣∣
∫
Ω

∇F(x, zn)(z+n + z−n)
‖zn‖ dx

∣∣∣∣

≤
∫
Ω

∣∣∣∣∇F(x, zn)(z
+
n + z

−
n)

‖zn‖
∣∣∣∣dx ≤ C

∫
Ω
|h| |z

+
n + z

−
n|

‖zn‖ dx

≤ C‖h‖L2(Ω)
‖z+n + z−n‖

‖zn‖ −→ 0 as n −→ ∞.

(3.37)

Then, we get

lim sup
n→∞

∫
Ω

∇F(x, zn)zn
‖zn‖ dx = lim sup

n→∞

∫
Ω

∇F(x, zn)z0n
‖zn‖ dx ≤ 0. (3.38)

Next, we define zn = zn/‖zn‖. Thus, there is z ∈ H such that

(i) zn ⇀ z inH,

(ii) zn → z in Lp(Ω) × Lp(Ω)with p ∈ [1, 2∗),

(iii) zn(x) → z(x) a.e. in Ω as n → ∞.

We recall that (z−n + z
+
n)/‖zn‖ → 0 as n → ∞. Thus, we obtain that z ∈ V (λk) and ‖z‖ = 1.

In other words, we have that z is an eigenfunction associated to the eigenvalue λk(A) = 1. In
conclusion, using the condition (LL)+k , we obtain

lim inf
n→∞

∫
Ω

∇F(x, zn)zn
‖zn‖ dx = Lk(u, v) > 0, (3.39)

where z = (u, v) and Lk(u, v) is provided in (1.13). Therefore, we obtain a contra-
diction with (3.38). Finally, there are R > 0 large enough and ε ∈ (0, 1) such that
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〈J ′(z), z0〉 ≤ −δ, for all z ∈ C(R, ε) for some δ > 0. The proof of case (b) is similar to the
previous one, and we will be omit the details in this case.

Now, using the previous proposition, we compute the critical groups at infinity. More
specifically, we can prove the following result.

Proposition 3.8. Suppose (B∞), (f∞), and (g∞). In addition, suppose (LL)+k or (LL)−k holds with
k ≥ 1, then we have the following alternatives.

(a) (LL)+k implies that Cq(J,∞) = δqkZ, for all q ∈ N.

(b) (LL)−k implies that Cq(J,∞) = δq(k−1)Z, for all q ∈ N.

Proof. The proof of this result follows using Proposition 3.7. More specifically, we have the
well-known angle conditions at infinity introduced by Bartsch and Li in [8].

Next, we prove a result involving the behavior of J at the origin. This result is
important because it implies that the functional J has a local linking at the origin. More
precisely, we can prove the following result.

Proposition 3.9. Suppose (B∞), (f∞), (g∞) and (F̃0). In addition, suppose that λm(A0) < 1 <
λm+1(A0) holds with m ≥ 1, then the functional J has a linking at the origin. Moreover, we have
Cq(J, 0) = δqmZ, for all q ∈ N.

Proof. First, we take V1 =
⊕

j≥m+1V (λj), V2 =
⊕m

j=1V (λj). Let R > 0, we will show that J
satisfies the following properties:

(i) J(z) > 0, for all 0 < ‖z‖ ≤ R, z ∈ V1,

(ii) J(z) ≤ 0, for all ‖z‖ ≤ R, z ∈ V2.

Initially, we prove the item (i). Thus, by (F̃0), taking p ∈ (2, 2∗), we obtain

F̃(x, z) ≤ 1
2
〈A0(x)z, z〉 + ε

2
|z|2 + C|z|p, ∀(x, z) ∈ Ω × R

2. (3.40)

Let z ∈ V1, 0 < ‖z‖ ≤ δ1, with δ1 > 0 small enough, then (3.40) yields

J(z) ≥ 1
2
‖z‖2 − 1

2
〈TA0z, z〉 −

ε

2
|z|2 − C‖z‖p

=
1
2

(
1 − 1

λm+1(A0)
− εC

)
‖z‖2 − C‖z‖p > 0.

(3.41)

The estimates above finish the proof of item (i).
Now, we prove the item (ii). We recall that the norms ‖‖∞, ‖‖ are equivalents on V2.

Here, ‖‖∞ denotes the usual norm in L∞(Ω)2. Thus, given ε > 0, there are r > 0 and δ2 > 0
such that ‖z‖∞ ≤ r implies that

‖z‖ ≤ δ2, z ∈ V2. (3.42)
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Consequently, by (F̃0), we have

F̃(x, z) ≥ 1
2
〈A(x)z, z〉 − ε

2
|z|2, ∀‖z‖ ≤ δ2, z ∈ V2. (3.43)

So, using (3.43) and (2.7), for δ2 > 0 small enough, we obtain

J(z) =
1
2
‖z‖2 −

∫
Ω
F̃(x, z)dx ≤ 1

2
‖z‖2 − 1

2
〈TA0z, z〉 +

ε

2

∫
Ω
|z|2dx

=
1
2

(
1 − 1

λm(A0)

)
‖z‖2 + εC

2
‖z‖2 ≤ 0, ∀‖z‖ ≤ δ2, z ∈ V2.

(3.44)

The estimates just above conclude the proof of item (ii). Therefore, choosing R =
min{δ1, δ2} > 0, J has a local linking at the origin; see [22]. In this case, we obtain that
Cm(J, 0)/= 0 with m ≥ 1. In addition, using the inequalities λm(A0) < 1 < λm+1(A0), we have
that the Morse index at the origin is m and the nullity at the origin is zero. In particular,
we obtain Cq(J, 0) = δqmZ, for all q ∈ N; see [23]. So the proof of this proposition is now
complete.

4. Proof of Theorems 1.1, 1.2, and 1.3

First, we prove Theorem 1.1. Initially, we have the (PS) condition given by Proposition 3.1.
In addition, taking H = Vk ⊕ V ⊥

k
, where Vk = span{Φ1, . . . ,Φk} with k ≥ 1, Proposition 3.2

shows that J has saddle point geometry given by Theorem 1.8 in [7]. Therefore, we have a
critical point for J , and problem (1.1) admits at least one solution. This statement concludes
the proof of Theorem 1.1.

Next, we prove Theorem 1.2. Similarly, we have (PS) condition given by
Proposition 3.1. Thus, we writeH = Vk−1 ⊕ V ⊥

k−1, where Vk−1 = span{Φ1, . . . ,Φk−1} and k ≥ 2.
Again, we have the saddle point geometry required in Theorem 1.8 in [7], see Proposition 3.3.
Therefore, we have a critical point, and problem (1.1) has at least one solution. So, the proof
of Theorem 1.2 is complete.

Now, we prove Theorem 1.3. In this case the functional J is coercive, see
Proposition 3.4. Therefore, using Ekeland’s Variational Principle, we have a critical point
z	 ∈ H such that J(z	) = inf{J(z) : z ∈ H}, and Problem (1.1) has at least one solution.
This statement finishes the proof of Theorem 1.3.

5. Proof of Theorems 1.4 and 1.7

First, we prove Theorem 1.4. Initially, we have one critical point z1 ∈ H given by Theorem 1.1
such that Ck(J, z1)/= 0, see [15]. Moreover, by Proposition 3.9, we obtain a local linking at
origin. So Cm(J, 0) = δqmZ, for all q ∈ N using that the origin is a nondegenerate critical
point for J . Consequently, we have that z1 /= 0 because m/= k. Thus problem (1.1) admits at
least one nontrivial solution and the proof of Theorem 1.4 is now complete.

Now, we prove Theorem 1.7. Firstly, we have one critical point z1 given by
Theorem 1.1. Moreover, we haveCk(J, z1)/= 0 and k ∈ [m(z1), m(z1)+n(z1)], wherem(z1) and
n(z1) denote the Morse index and the nullity at the critical point z1, respectively. But, using
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the inequality F ′′ � (δ − 1)A, we conclude that m(z1) + n(z1) = k. Consequently, by Shifting
Theorem [15], we have that Cq(J, z1) = δqkZ, for all q ∈ N.Moreover, using Proposition 3.8,
the critical groups at infinity are Cq(J,∞) = δqkZ, for all q ∈ N.

On the other hand, using Propositions 3.5 and 3.6, we have the mountain pass
geometry for the functional J . Let P be the cone of positive functions in C1

0(Ω)2, then, we
consider the functional J± obtained from J by restriction on P and −P , respectively. In this
case, we have two mountain pass points z±2 ∈ ±P such that Cq(J, z±2 ) = δq1Z, for all q ∈ N; see
[3, 9]. Now, we assume, by contradiction, that J admits only 0, z1 and z±2 as critical points.
Then, Morse’s identity implies that

(−1)0 + 2(−1)1 + (−1)k = (−1)k. (5.1)

Therefore, we have a contradiction and there is another critical point for J which is different
from 0, z1, and z±2 . Hence, the problem (1.1) admits at least four nontrivial solutions. This
statement completes the proof of Theorem 1.7.

6. Further Multiplicity Results

In this section, we state and prove further multiplicity results using the condition (LL)−k
instead of (LL)+k , where k ≥ 1. These results complement the theorems enunciated in the
introduction and they have a similar proof. However, in this case, the functional J has a
geometry different from to the geometry described in Section 5. Thus, we enunciate and prove
the following multiplicity results.

Theorem 6.1. Suppose that (B∞), (f∞), (g∞), (LL)−k , and λk(A) = 1 with k ≥ 3 hold. In addition,
suppose that (F̃0) and λm(A0) < 1 < λm+1(A0) hold with m/= k − 1, then Problem (1.1) has at least
one nontrivial solution. Moreover, when k = 1 and m ≥ 1 and (F̃0) and λm(A0) < 1 < λm+1(A0)
hold, then Problem (1.1) has at least two nontrivial solutions.

Theorem 6.2. Suppose that (B∞), (f∞), (g∞), (F̃0), (LL)
−
k and λk(A) = 1 hold with k ≥ 3. In

addition, suppose that λ1(A0) > 1 and F ′′ � (δ − 1)A for some δ ∈ (λk−1,∞) holds, then Problem
(1.1) has at least four nontrivial solutions.

Finally, we use only the condition (LL)−1 . In this case, the functional J is coercive. So,
we will prove the following multiplicity result.

Theorem 6.3. Suppose that (B∞), (f∞), (g∞), (LL)−1 and λ1(A) = 1 hold. In addition, suppose that
(F̃0) and λm(A0) < 1 < λm+1(A0) hold, where m ≥ 1 is even, then Problem (1.1) has at least three
nontrivial solutions.

Now, we check the theorems stated in this section. Initially, we prove Theorem 6.1.
In this case, we have a critical point z1 ∈ H given by Theorem 1.2 such that Ck−1(J, z1)/= 0
whenever k ≥ 3. In addition, we have a local linking at origin given by Proposition 3.9.
Then, we obtain Cq(J, 0) = δqmZ, for all q ∈ N, where zero is a nondegenerate critical point
and m/= k − 1, see Proposition 3.9. Consequently, z1 /= 0, and Problem (1.1) has at least one
nontrivial solution.

On the other hand, if k = 1, we use Theorem 1.3. Therefore, we obtain one critical
point z	 ∈ H such that Cq(J, z	) = δq0Z, for all q ∈ N. Moreover, using Proposition 3.9 we
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get Cm(J, 0)/= 0, with m ≥ 1. Thus, applying the Three Critical Points Theorem [22], problem
(1.1) has at least two nontrivial solutions and the proof of Theorem 6.1 is now complete.

Now, we prove Theorem 6.2. First, we have one critical point z1 ∈ H given by
Theorem 1.2. Thus, we get Ck−1(J, z1)/= 0 and k − 1 ∈ [m(z1), m(z1) + n(z1)] where m(z1)
and n(z1) denote the Morse index and the nullity at the critical point z1, respectively. But
the inequality F ′′ � (δ − 1)A shows that m(z1) = k − 1. Consequently, by Shifting Theorem
[15], we have Cq(J, z1) = δq(k−1)Z, for all q ∈ N. Moreover, using Proposition 3.8, we have
Cq(J,∞) = δq(k−1)Z, for all q ∈ N.

On the other hand, we have the mountain pass geometry given by Propositions 3.5
and 3.6. Therefore, we have two mountain pass points z±2 ∈ ±P such that Cq(J, z±2 ) =
δq1Z, for all q ∈ N. Moreover, we have Cq(J, 0) = δq0Z, for all q ∈ N. Then, applying the
Morse’s identity, we conclude that problem (1.1) has at least four nontrivial solutions. So we
finish the proof of Theorem 6.2.

Finally, we prove Theorem 6.3. In this case, the functional J is bounded below and
we have two critical points z±0 given by minimization. Indeed, it is sufficient to minimize the
functional J on P and −P . Thus, we have thatCq(J, z±0 ) = δq0Z, for all q ∈ N. Here, we assume
that m is even. Moreover, by Proposition 3.9, we conclude that Cq(J, 0) = δqmZ, for all q ∈ N

where zero is a nondegenerate critical point. In addition, the critical groups at infinity are
Cq(J,∞) = δq0Z, for all q ∈ N. Again, using Morse’s identity, we conclude that the functional
J has another critical point and problem (1.1) has at least three nontrivial solutions. This
statement finishes the proof of this theorem.

Acknowledgments

The author is very grateful to Professor Djairo G. de Figueiredo from UNICAMP-Brazil for
his encouragement, comments, and helpful conversations. Also, he thanks the referee for a
very careful reading of this paper. This work was supported by CNPq-Brazil using the Grant
no. 140092/2008-0. Also, this article is a part of project 34574 developed at UFG-Brazil.

References

[1] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, NY, USA, 1992.
[2] J. Smoller, Shock Waves and Reaction-Diffusion Equations, vol. 258 of Fundamental Principles of

Mathematical Sciences, Springer, New York, NY, USA, 2nd edition, 1994.
[3] K. Chang, “An extension of the Hess-Kato theorem to elliptic systems and its applications to multiple

solution problems,” Acta Mathematica Sinica, vol. 15, no. 4, pp. 439–454, 1999.
[4] D. G. de Figueiredo, “Positive solutions of semilinear elliptic problems,” in Differential Equations (Sao

Paulo, 1981), vol. 957 of Lecture Notes in Mathematics, pp. 34–87, Springer, Berlin, Germany, 1982.
[5] M. F. Furtado and F. O. V. de Paiva, “Multiplicity of solutions for resonant elliptic systems,” Journal of

Mathematical Analysis and Applications, vol. 319, no. 2, pp. 435–449, 2006.
[6] E. M. Landesman and A. C. Lazer, “Nonlinear perturbations of linear elliptic boundary value

problems at resonance,” vol. 19, pp. 609–623, 1969-1970.
[7] E. A. B. Silva, “Linking theorems and applications to semilinear elliptic problems at resonance,”

Nonlinear Analysis: Theory, Methods & Applications, vol. 16, no. 5, pp. 455–477, 1991.
[8] T. Bartsch and S. Li, “Critical point theory for asymptotically quadratic functionals and applications

to problems with resonance,” Nonlinear Analysis: Theory, Methods & Applications, vol. 28, no. 3, pp.
419–441, 1997.

[9] T. Bartsch, K.-C. Chang, and Z.-Q. Wang, “On the Morse indices of sign changing solutions of
nonlinear elliptic problems,”Mathematische Zeitschrift, vol. 233, no. 4, pp. 655–677, 2000.



22 Abstract and Applied Analysis

[10] K.-C. Chang, “Principal eigenvalue for weight matrix in elliptic systems,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 46, no. 3, pp. 419–433, 2001.

[11] H.-M. Suo and C.-L. Tang, “Multiplicity results for some elliptic systems near resonance with a
nonprincipal eigenvalue,”Nonlinear Analysis: Theory, Methods and Applications, vol. 73, no. 7, pp. 1909–
1920.

[12] E. D. da Silva, “Multiplicity of solutions for gradient systems with strong resonance at higher
eigenvalues,” Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 11, pp. 3918–3928, 2010.

[13] Z.-Q. Ou and C.-L. Tang, “Existence and multiplicity results for some elliptic systems at resonance,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 7-8, pp. 2660–2666, 2009.

[14] S. Ahmad, A. C. Lazer, and J. L. Paul, “Elementary critical point theory and perturbations of elliptic
boundary value problems at resonance,” Indiana University Mathematics Journal, vol. 25, no. 10, pp.
933–944, 1976.

[15] K. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear
Differential Equations and Their Applications, Birkhäuser, Boston, Mass, USA, 1993.
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[18] L. Hörmander, “Uniqueness theorems for second order elliptic differential equations,” Communica-

tions in Partial Differential Equations, vol. 8, no. 1, pp. 21–64, 1983.
[19] O. Lopes, “Radial symmetry of minimizers for some translation and rotation invariant functionals,”

Journal of Differential Equations, vol. 124, no. 2, pp. 378–388, 1996.
[20] R. Regbaoui, “Strong uniqueness for second order differential operators,” Journal of Differential

Equations, vol. 141, no. 2, pp. 201–217, 1997.
[21] M. Sanada, “Strong unique continuation property for some second order elliptic systems,” Japan

Academy Proceedings. Series A, vol. 83, no. 7, pp. 119–122, 2007.
[22] S. Li and J. Q. Liu, “Some existence theorems on multiple critical points and their applications,” Kexue

Tongbao, vol. 17, pp. 1025–1027, 1984.
[23] J. Su, “Semilinear elliptic boundary value problems with double resonance between two consecutive

eigenvalues,” Nonlinear Analysis: Theory, Methods & Applications, vol. 48, no. 6, pp. 881–895, 2002.


