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An improved Riemann mapping theorem
and complexity in potential theory

Steven R. Bell

Abstract. We discuss applications of an improvement on the Riemann mapping theorem

which replaces the unit disc by another “double quadrature domain,” i.e., a domain that is a

quadrature domain with respect to both area and boundary arc length measure. Unlike the

classic Riemann mapping theorem, the improved theorem allows the original domain to be finitely

connected, and if the original domain has nice boundary, the biholomorphic map can be taken to

be close to the identity, and consequently, the double quadrature domain is close to the original

domain. We explore some of the parallels between this new theorem and the classic theorem, and

some of the similarities between the unit disc and the double quadrature domains that arise here.

The new results shed light on the complexity of many of the objects of potential theory in multiply

connected domains.

1. Introduction

The unit disc is the most famous example of a “double quadrature domain.”
The averages of an analytic function on the disc with respect to both area measure
and with respect to boundary arc length measure yield the value of the function at
the origin when these averages make sense. The Riemann mapping theorem states
that when Ω is a simply connected domain in the plane that is not equal to the
whole complex plane, a biholomorphic map of Ω to this famous double quadrature
domain exists.

We proved a variant of the Riemann mapping theorem in [16] that allows the
domain Ω �=C to be simply or finitely connected. The theorem states that there
is a biholomorphic mapping of such regions onto a one-point double quadrature
domain, i.e., a bounded domain such that the average of a holomorphic function
with respect to area measure is a fixed finite linear combination of the function
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and its derivatives evaluated at a single point, and such that the same is true of
the average with respect to arc length measure (with different constants, of course)
when these averages make sense. If the domain is a bounded domain bounded by
finitely many C∞ smooth non-intersecting curves, the double quadrature domain
can be taken to be as C∞ close to the original one as desired, and the biholomorphic
map C∞ close to the identity. (For definitions and a precise statement of the result,
see [16].) If the boundary curves are Jordan curves, then a standard argument in
conformal mapping theory shows that we may conformally map the domain to a
nearby domain bounded by real-analytic curves via a conformal map that is close
to the identity in the sup norm on the closure of the domain. If we now apply the
C∞ theorem to the domain with real-analytic boundary and compose, we find that
the double quadrature domain can be taken to be close to the original domain, and
the biholomorphic map close to the identity in the sup norm on the closure of the
domain.

Double quadrature domains satisfy a long list of desirable properties, many
of which are spelled out in [16]. The purpose of this paper is to add to that
list and derive some consequences from it. We will show that double quadrature
domains have many properties in common with the unit disc that allow the objects
of potential theory and complex analysis to be expressed in rather simple terms. In
particular, the action of many classical operators on rational functions will be seen
to be particularly simple.

In Section 3, we show that the solution to the Dirichlet problem with rational
data on an area quadrature domain is real algebraic modulo an explicit finite-
dimensional subspace. Since derivatives of Green’s function with respect to the
second variable are solutions to a Dirichlet problem with rational data, this yields
information about the complexity of Green’s function and the closely related Poisson
kernel. The results yield a method to solve the Dirichlet problem using only algebra
and finite mathematics in place of the usual analytical methods.

In Section 4, we explain how biholomorphic and proper holomorphic mappings
between double quadrature domains are particularly simple, and in Section 5, we
show how to pull back the results of Section 3 to more general classes of domains
that arise naturally. We define two classes, which we name algebraic and Briot–
Bouquet, that are interesting from this point of view.

In Section 6, we show that many of the classical operators attached to a double
quadrature domain map rational functions to rational or algebraic functions. The
Szegő projection, for example, maps rational functions to rational functions as an
operator from L2 of the boundary to itself, and maps rational functions to algebraic
functions as an operator from L2 of the boundary to the space of holomorphic
functions on the domain. The Kerzman–Stein operator maps rational functions



An improved Riemann mapping theorem and complexity in potential theory 225

to rational functions. Furthermore, the Dirichlet-to-Neumann map sends rational
functions on the boundary to rational functions on the boundary. These results
demonstrate that double quadrature domains are very much like the unit disc in
this regard.

In the last Section 7, we explain an analogy between the techniques of this paper
and classical Fourier analysis. The analogy reveals a way to view the main results
of the paper on multiply connected domains as a way of doing Fourier analysis on
multiple curves.

For the history of the study of quadrature domains and the many applications
they have found, see the book [19] and the article [23] therein, and Shapiro’s classic
text [27]. Darren Crowdy [17] has shown that double quadrature domains arise in
certain problems in fluid dynamics, so the present work could find applications in
that area. Harold Shapiro has pioneered another approach to the subject matter
of this paper via the Friedrichs operator (see [26] and Chapter 8 of [27]). Many
of the results and techniques of this paper can no doubt be reworked from that
perspective. We leave this interesting pursuit for the future.

2. Basic properties of quadrature domains

Suppose that Ω is a bounded finitely connected domain in the plane. Björn
Gustafsson [21] proved that if Ω is an area quadrature domain, then Ω must have
piecewise real-analytic boundary and the Schwarz function S(z) associated to Ω
extends meromorphically to the domain. (Aharonov and Shapiro [1] first proved
extendability of the Schwarz function in the simply connected case.) Consequently,
since S(z)=z̄ on the boundary, z extends meromorphically to the double given
values S(z) on the “backside,” and S(z) extends given values z̄ on the backside.
Gustafsson showed that the field of meromorphic functions on the double is gen-
erated by the extensions of z and S(z), i.e., the extensions form a primitive pair.
This implies that a meromorphic function on the domain that extends meromorphi-
cally to the double must be a rational combination of z and the Schwarz function.
Since z and S(z) both extend to the double, they are algebraically dependent.
Therefore S(z) is an algebraic function (as noted by Gustafsson, and by Aharonov
and Shapiro in the simply connected case). If Ω has no cusps in the boundary, then
Gustafsson [21] showed that the boundary is given by finitely many non-intersecting
real-analytic real-algebraic curves of a special form.

If Ω is a boundary arc length quadrature domain, then Gustafsson [22] showed
that the boundary is real-analytic and the complex unit tangent vector function T (z)
must extend as a meromorphic function on the double. (Shapiro and Ullemar [28]
first showed this in the simply connected case.)
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If Ω is a double quadrature domain, then all of the properties above hold and it
follows that T (z) must be a rational combination of z and S(z), and consequently,
since S(z)=z̄ on the boundary, T (z) is a rational function of z and z̄. It is proved in
[16] that the Bergman kernel K(z, w) and the Szegő kernel S(z, w) are both rational
combinations of z, S(z), w̄, and S(w), and consequently are rational functions of z,
z̄, w, and w̄ when restricted to the boundary cross the boundary. Furthermore, the
complex polynomials belong to both the Bergman span and the Szegő span associ-
ated to the domain. The Kerzman–Stein kernel A(z, w) is also a rational function
of z, z̄, w, and w̄. (We will show in Section 6 that the Kerzman–Stein operator
sends rational functions to rational functions on double quadrature domains. Many
of the ideas used in the work leading up to the main results of this paper trace back
to the papers of Kerzman and Stein [24] and Kerzman and Trummer [25].)

These are the basic properties of quadrature domains that we shall need in
order to proceed.

3. The Dirichlet problem, Green’s function, and Poisson kernel on
quadrature domains

Peter Ebenfelt [18] proved that if Ω is a bounded simply connected area quadra-
ture domain and R(z, z̄) is a real-valued rational function of z and z̄ with no sin-
gularities on bΩ×bΩ, then the Poisson extension of R(z, z̄) to Ω is the real part of
a rational function of z and the Schwarz function S(z) for Ω. Consequently, the
Poisson extension is the real part of an algebraic function. Ebenfelt’s proof is short
and uses a very appealing reflection argument. In our desperation to generalize
Ebenfelt’s theorem to bounded multiply connected quadrature domains, we found
two alternative proofs that we could generalize more readily than the reflection
argument. Each proof gives new insight into the extension problem, and we will
need both approaches later, so we now present both alternative proofs of Ebenfelt’s
theorem in the simply connected case as a way to launch into the generalizations.
(Besides, you can never have too many proofs of a good theorem.)

Suppose Ω is a bounded simply connected area quadrature domain with no
cusps in the boundary, and suppose ψ(z)=R(z, z̄) is a real-valued rational function
of z and z̄ with no singularities on bΩ×bΩ. We know that Ω has C∞ smooth
real-analytic boundary and that the Schwarz function S(z) for Ω extends mero-
morphically to Ω. Furthermore, the field of meromorphic functions on the dou-
ble of Ω is generated by z and S(z). Since S(z)=z̄ on the boundary, by writ-
ing R(z, z̄)=R(z, S(z)) for z in the boundary, we can see that the only possible
type of singularity for a rational function of z and z̄ on the boundary would
have pole-like behavior at isolated points. Note that writing R(z, z̄)=R(z, S(z))
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yields an extension of ψ from bΩ to Ω as a meromorphic function and that writing
R(z, z̄)=R(S(z), z̄) yields an extension of ψ from bΩ to Ω as an antimeromorphic
function. The Poisson extension of ψ to Ω is given as the real part of a holomorphic
function h that extends C∞-smoothly up to the boundary.

Note that a meromorphic function that extends smoothly to the boundary
extends meromorphically to the double if and only if there is an anti-meromorphic
function on the domain that extends smoothly to the boundary with the same
boundary values.

Since h+h̄=2ψ on the boundary, we may write

h = −h̄+2R(S(z), z̄)

on the boundary to see that h extends meromorphically to the double. Conse-
quently, h is a rational functions of z and S(z). Since, as remarked above, S(z)
is algebraic, it follows that h is algebraic. Hence, the Poisson extension is real
algebraic.

When we extend this argument to the multiply connected setting, we will need
to use a generalization of the fact proved in [3] (see also [4], p. 35), that the Poisson
extension of ψ to Ω, when Ω is C∞ smooth and simply connected, is given by h+H ,
where

h =
P (Saψ)

Sa
and H =

P (Laψ̄ )
La

.

Here, P denotes the Szegő projection associated to Ω, Sa(z)=S(z, a) is the Szegő
kernel, La(z)=L(z, a) is the Garabedian kernel, and a is a fixed point in Ω. For the
basic properties of these objects, see [4], pp. 1–35. Note, in particular, that on a C∞

smooth bounded finitely connected domain, L(z, a) is C∞ smooth on Ω×Ω minus
the diagonal and S(z, a) is C∞ smooth on Ω×Ω minus the boundary diagonal.
Furthermore, L(z, a) has a simple pole in z at z=a and is non-vanishing on Ω×Ω
minus the diagonal. If Ω is simply connected, then S(z, a) is non-vanishing on Ω×Ω
minus the boundary diagonal. Since the Szegő projection maps C∞(bΩ) into itself
(see [4], p. 13), it follows that h and H are holomorphic functions in C∞(Ω). In the
simply connected case, it is easy to show that h and H extend meromorphically to
the double as above, and that is a major part of what we will do in the multiply
connected setting.

The second proof of Ebenfelt’s theorem uses Green’s function. Let f : Ω→
D1(0) be a Riemann map associated to our simply connected bounded area quadra-
ture domain. Aharonov and Shapiro [1] showed that f is algebraic. Green’s function
associated to Ω is given by

G(z, w) = − log
∣
∣
∣
∣

f(z)−f(w)
1−f(z) f(w)

∣
∣
∣
∣
.
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Since
∂

∂w
log

∣
∣
∣
∣

z −w

1−z w̄

∣
∣
∣
∣
=

1− |z|2
2(w −z)(1−wz̄)

,

it is easy to use the complex chain rule to verify that derivatives of the form

G(m)(z, w) :=
∂m

∂wm
G(z, w)

are rational combinations of f(z) and f(z) in the z variable for fixed w. Note that
G(m)(z, w) is harmonic in z, vanishes for z in the boundary, and has a singularity of
the form c/(z −w)m in z with c �=0 at z=w. If R(z, z̄) is rational in z and z̄ without
singularities on bΩ, then R(z, S(z)) extends meromorphically to Ω and is pole free
on the boundary. It is therefore possible to find constants cjk and positive integers
mj associated to the poles wj of the meromorphic function so that

R(z, S(z))−
N∑

j=1

mj∑

k=1

cjkG(k)(z, wj)

has removable singularities at the poles wj . This, therefore, is the Poisson exten-
sion of R(z, z̄) to the interior. Since S(z) and f(z) are both algebraic and extend
meromorphically to the double of Ω, Ebenfelt’s result follows.

We will now generalize these arguments to the multiply connected setting.
The ideas generalize nicely, but the end results are considerably more complicated
to state. Although the next theorem seems long and complicated, the bottom line
is that the solution to the Dirichlet problem with rational boundary data on a
double quadrature domain is real algebraic modulo an explicit finite-dimensional
subspace. (Note that double quadrature domains are bounded area quadrature
domains without cusps on the boundary because bounded boundary arc length
quadrature domains have real-analytic boundaries.)

Theorem 3.1. Suppose that Ω is a bounded n-connected area quadrature do-
main with no cusps in the boundary. Suppose further that ψ(z)=R(z, z̄) is a rational
function of z and z̄ with no singularities on bΩ×bΩ. The solution to the Dirichlet
problem with boundary data ψ is equal to

h0(z)+H0(z)+
n−1∑

j=1

cj(hj(z)+Hj(z)+log |z −bj |),

where h0 and H0 are algebraic meromorphic functions on Ω that are rational com-
binations of z and the Schwarz function S(z) for Ω. The cj are complex constants,
and the points bj are fixed points in the complement of Ω, one in the interior of
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each bounded component of C\Ω. The functions hj and Hj , j=1, ..., n−1, are
meromorphic functions on Ω whose derivatives are algebraic functions that extend
meromorphically to the double of Ω, and hence h′

j and H ′
j are rational combinations

of z and S(z). The functions Hj , j=0, 1, ..., n−1, are holomorphic on Ω, but the
hj may have poles at n−1 points in Ω specified in the proof below. The constants
cj are determined via the condition that the poles on Ω should cancel so that

h0+
n−1∑

j=1

cjhj

is holomorphic on Ω.

It should also be noted that all the functions hj and Hj , j=0, 1, ..., n−1, extend
C∞ smoothly up to the boundary of Ω in Theorem 3.1. The functions h0 and
H0 and the constants cj depend on the boundary data, but the hj and Hj for
j=1, 2, ..., n−1 do not. Since z and S(z) extend to form a primitive pair for the
double, the functions that extend to the double in Theorem 3.1 can be expressed as

N −1∑

k=0

Pk(z)S(z)k,

where Pk are rational functions in z and N is the number of poles of S(z) in Ω
counted with multiplicities (see Farkas and Kra [20], p. 249). It is interesting to note
that h0 and H0 are rational functions of z and z̄, when restricted to the boundary,
that extend algebraically to the interior of Ω.

Theorem 3.1 can be interpreted to mean that the solution to the Dirichlet
problem with rational boundary data on a bounded area quadrature domain with-
out cusps in the boundary is a real algebraic function h0+H0 modulo an (n−1)-
dimensional subspace spanned by the functions

hj +Hj +log |z −bj |,

which also have a rather simple structure. In particular, since the derivatives of hj

and Hj are rational functions of z and S(z), where S(z) is algebraic, these functions
are abelian integrals in the classical sense. We will show that there are other
interesting domain functions that can serve as the basis for the (n−1)-dimensional
subspace in Theorem 3.1 as we proceed.

The starting point for proving Theorem 3.1 is the following general theorem.
Note that, on an area quadrature domain, rational functions of z and z̄ without
singularities on the boundary are precisely the functions on the boundary that are
restrictions to the boundary of meromorphic functions on the double without poles
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on the boundary. Indeed, as we have seen, since S(z)=z̄ on the boundary, we have
R(z, z̄)=R(z, S(z)) on the boundary, which extends meromorphically to the double
if R is rational, and which cannot have any poles on the boundary curves if R(z, z̄)
has no singularities. Conversely, any meromorphic function on the double can be
expressed as a rational combination of z and S(z), and hence, when restricted to
the boundary, as a rational function of z and z̄.

Theorem 3.2. Suppose that Ω is a bounded n-connected domain bounded by
n non-intersecting C∞ smooth curves, and suppose ψ is a C∞ function on the
boundary of Ω that is the restriction to the boundary of a meromorphic function on
the double of Ω. Then the solution to the Dirichlet problem on Ω with boundary
data ψ is given by

h0(z)+H0(z)+
n−1∑

j=1

cj(hj(z)+Hj(z)+log |z −bj |),

where h0 and H0 are meromorphic functions on Ω that extend meromorphically to
the double of Ω. The functions hj , j=1, ..., n−1, are meromorphic functions on Ω
such that (

h′
j − 1

2
1

z −bj

)

dz

extends to the double as a meromorphic 1-form. The functions Hj , j=1, ..., n−1,
are holomorphic functions on Ω such that

(

H ′
j − 1

2
1

z −bj

)

dz

extends to the double as a meromorphic 1-form. The Hj , j=0, 1, ..., n−1, are holo-
morphic on Ω, but the hj may have poles at n−1 points in Ω specified in the proof
below. The cj are complex constants, and the points bj are fixed points in the comple-
ment of Ω, one in the interior of each bounded component of C\Ω. The constants
cj are determined via the condition that the poles on Ω should cancel so that

h0+
n−1∑

j=1

cjhj

is holomorphic on Ω.

We will explain how Theorem 3.1 follows from Theorem 3.2 after we prove
Theorem 3.2.
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Proof. To prove Theorem 3.2, let a be a point in Ω such that the n−1 zeroes
of S(z, a) are distinct and simple. (That such an a exists is proved in [3], or see [4],
p. 106.) Let b1, b2, ..., bn−1 be points, one from the interior of each of the bounded
components of C\Ω. We will solve the Dirichlet problem with boundary data ψ by
the method described on p. 1367 of [2] (or better, see pp. 53–55 of [4]). There, it is
shown that there are constants c1, c2, ..., cn−1 such that the Poisson extension of ψ

is given by

h(z)+H(z)+
n−1∑

j=1

cj log |z −bj |,

where, writing φ=ψ −
∑n−1

j=1 cj log |z −bj |, we have

h =
P (Saφ)

Sa
and H =

P (Laφ̄ )
La

.

Here, both h and H are holomorphic on Ω. (The function h looks like it might
possibly have simple poles at the n−1 simple zeroes of Sa, but the method ensures
that the numerator vanishes at the zeroes of Sa(z).) Both h and H extend C∞

smoothly to the boundary. Let Lj(z)=log |z −bj |. We now consider h as a linear
combination of

h0 =
P (Saψ)

Sa

and the functions

hj = − P (SaLj)
Sa

.

We next apply Theorem 6.1 of [2] (see also Theorem 14.1 of [4] on p. 53) which
states that a C∞ smooth function u on the boundary can be expressed as f+F on
the boundary, where

f =
P (Sau)

Sa

is a meromorphic function that extends C∞-smoothly to the boundary and

F =
P (Laū)

La

is a holomorphic function that extends C∞-smoothly to the boundary. Hence,

h0 =
P (Saψ)

Sa
=ψ − P (Laψ̄ )

L̄a
.

Since ψ extends to the double as a meromorphic function without poles on the
boundary curves of Ω, it follows that ψ(z)=G(z) on the boundary, where G is
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a meromorphic function on Ω that extends smoothly to the boundary. Hence, it
follows that h0 has the same boundary values as a function that extends to Ω as an
antimeromorphic function. Thus h0 extends to the double.

We will now show that the functions hj have special extension properties, too.
We may reason as above to see that

hj = − P (SaLj)
Sa

= −Lj +
P (LaL̄j )

L̄a
.

Hence,
hj(z) = − log |z −bj |+g(z)

on the boundary, where g is a holomorphic function on Ω that extends smoothly
to the boundary. Notice that if u is a function defined on a neighborhood of the
boundary of Ω and z(t) parametrizes the boundary in the standard sense, then

d

dt
u(z(t)) =

∂u

∂z
z′(t)+

∂u

∂z̄
z′(t).

Apply this idea to both sides of the last formula for hj , divide by |z′(t)|, and note
that z′(t)/|z′(t)| is equal to the complex unit tangent vector function T (z) at z=z(t)
to obtain

h′
j(z)T (z) = − 1

2
T (z)
z −bj

− 1
2

T (z)
z̄ −b̄j

+g′(z) T (z)

for z in the boundary. This shows that

(1)
(

h′
j(z)+

1
2

1
z −bj

)

T (z) =
(

g′(z)− 1
2

1
z̄ −b̄j

)

T (z)

on the boundary. It follows that
(

h′
j(z)+

1
2

1
z −bj

)

dz

extends to the double of Ω as a meromorphic 1-form.
Very similar reasoning can be used to handle H . Indeed, consider H as a linear

combination of

H0 =
P (Laψ̄)

La

and the functions

Hj = − P (LaLj)
La

.
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Since La has a simple pole at a and no zeroes on Ω\ {a}, these functions are holo-
morphic on Ω. Now, we may apply Theorem 6.1 of [2] as we did with h0 to see
that

H0 =
P (Laψ̄)

La
= ψ̄ − P (Saψ)

Sa

.

Since ψ extends to the double as a meromorphic function without poles on the
boundary curves of Ω, it also follows that ψ(z)=G(z) on the boundary, where G

is a meromorphic function on Ω that extends smoothly to the boundary. Hence, it
follows that H0 extends meromorphically to the double. Next, we apply the same
idea to Hj to see that

Hj = − P (LaLj)
La

= −Lj +
P (SaLj)

Sa

.

Thus,
Hj(z) = − log |z −bj |+g(z),

where g is a meromorphic function on Ω that extends smoothly to the boundary.
It follows that

H ′
j(z)T (z) = − 1

2
T (z)
z −bj

− 1
2

T (z)
z̄ −b̄j

+g′(z) T (z)

for z in the boundary. This shows that

(2)
(

H ′
j(z)+

1
2

1
z −bj

)

T (z) =
(

g′(z)− 1
2

1
z̄ −b̄j

)

T (z)

on the boundary. It follows that
(

H ′
j(z)+

1
2

1
z −bj

)

dz

extends to the double of Ω as a meromorphic 1-form. Finally, the last sentence
in the theorem about the cancellation of the poles follows from the proof of the
formula for the solution of the Dirichlet problem given in [4]. �

Conditions like equations (1) and (2) that appear in the proof of Theorem 3.2
yield that

h′
j(z)+

1
2

1
z −bj

and H ′
j(z)+

1
2

1
z −bj

belong to the Class A of [9], and are therefore given by finite linear combinations
of functions from a list of simple domain functions, as shown in [9].

We now turn to the proof of Theorem 3.1.
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Proof of Theorem 3.1. Since Ω is a bounded area quadrature domain, we know
that the Schwarz function S(z) for Ω extends meromorphically to Ω and S(z)=z̄ on
the boundary. We also know that the field of meromorphic functions on the double
is generated by the extensions of z and S(z). It was shown in [11] (Theorem 1.5)
that T (z)2 extends to the double as a meromorphic function on such domains. (If
Ω is also a boundary arc length quadrature domain, then T (z) itself extends to the
double as a meromorphic function.) These simple facts are all that is needed to
deduce Theorem 3.1 from Theorem 3.2. The conclusions about h0 and H0 follow
immediately. Since T (z)2 extends meromorphically to the double, it is given by the
boundary values of a meromorphic function τ on Ω that extends smoothly to the
boundary. Now, noting that 1/T (z)=T (z), equations (1) and (2) can be further
manipulated to yield the conclusions in Theorem 3.1 about hj and Hj . Indeed,
equation (1) yields that

h′
j(z) = − 1

2
1

S(z)−bj

+
(

g′(z)− 1
2

1
z̄ −b̄j

)

τ(z)

on the boundary, and this shows that h′
j extends meromorphically to the double.

Consequently, h′
j is a rational combination of z and S(z). Similarly, H ′

j can be
shown to satisfy the same conditions. �

Another nice consequence of Theorem 3.1 is the following result about the
solution to the Dirichlet problem with rational data on an area quadrature domain
without cusps on the boundary. The Bergman span associated to a domain is the
complex linear span of functions of z of the form K(m)(z, w) where w are points in
the domain, K(0)(z, w)=K(z, w), and K(m)(z, w)=(∂/∂w̄)mK(z, w) are derivatives
of the Bergman kernel in the second variable.

Theorem 3.3. Suppose that Ω is a bounded n-connected area quadrature do-
main without cusps on the boundary, and suppose ψ(z)=R(z, z̄) is a rational func-
tion of z and z̄ with no singularities on bΩ×bΩ. The solution to the Dirichlet
problem with boundary data ψ is equal to

u =h+H+
n−1∑

j=1

cj log |z −bj |,

where h and H are holomorphic functions on Ω such that all their derivatives are
algebraic functions that are rational combinations of z and the Schwarz function
S(z) for Ω. Furthermore, h′ ′ and H ′ ′ and all higher-order derivatives are in the



An improved Riemann mapping theorem and complexity in potential theory 235

Bergman span. The functions ∂u/∂z and ∂u/∂z̄ are holomorphic and antiholomor-
phic functions on Ω, respectively, that extend meromorphically and antimeromorphi-
cally to the double. All the real partial derivatives of u are real algebraic functions.
The points bj are fixed points in the complement of Ω, one in the interior of each
bounded component of C\Ω.

Proof. To prove Theorem 3.3, we need Theorem 1.4 in [11], which states that,
if g is a holomorphic function that extends meromorphically to the double of a
bounded area quadrature domain with no cusps on the boundary, then g′ extends
meromorphically to the double. Hence, if we express the solution u to the Dirichlet
problem as we did in the proof of Theorem 3.2 via

u =h+H+
n−1∑

j=1

cj log |z −bj |,

then
∂u

∂z
=h′ +

n−1∑

j=1

cj
1

2(z −bj)
,

which extends to the double because Theorem 3.2 plus Theorem 1.4 in [11] yield
that

h′ =h′
0+

n−1∑

j=1

cjh
′
j

extends to the double (and 1/(z −bj) extends to the double because z does). Simi-
larly, H ′ extends meromorphically to the double, and

∂u

∂z̄
=H ′ +

n−1∑

j=1

cj
1

2(z̄ −b̄j)

extends to the double as an antimeromorphic function.
Note that once it is known that a function f extends meromorphically to the

double, it is seen to be a rational function of z and S(z). Since S(z) extends to the
double, so does S′(z). Consequently, S′(z) is a rational function of z and S(z), and
it follows inductively that all the derivatives of f extend to the double as rational
combinations of z and S(z).

We now combine Theorem 3.3 with Theorem 1.4 in [11] and Lemma 4.1 in [10]
to complete the proof. Lemma 4.1 in [10] states that, if g is a holomorphic function
that extends meromorphically to the double of a bounded smoothly bounded finitely
connected domain with no poles on the boundary, then g′ is in the Bergman span
of the domain. Hence, if we differentiate a second time, we see that h′ ′ and H ′ ′
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belong to the Bergman span, and we may repeat this process to see that all higher
order derivatives also belong to the Bergman span. �

The arguments leading to the conclusions of Theorems 3.2 and 3.1 can be
repeated using the harmonic measure functions ωj(z) in place of log |z −bj | to obtain
similar results. If γj is one of the n−1 boundary curves of Ω bounding one of the
bounded components of C\Ω, then ωj is the solution to the Dirichlet problem
with boundary values equal to one on γj and equal to zero on the other boundary
curves. The Dirichlet problem can be solved in a manner very similar to the Szegő
projection method used above using the ωj in place of log |z −bj |. Indeed, this
method was developed in [2] and [3] and is described on pp. 89–91 of [4]. The
proofs of Theorems 3.2 and 3.1 can be repeated line for line and at the point
where equations (1) and (2) come into play, the following argument is invoked. The
classical functions F ′

j are defined via F ′
j(z)=2(∂/∂z)ωj(z). (They are holomorphic

on Ω, but they are not the derivative of a holomorphic function on Ω in spite of the
prime in the notation. They are locally the derivative of a holomorphic function
with real part equal to ωj .) In the proof, where the formula

hj(z) = −ωj(z)+g(z)

is obtained, differentiate along the boundary as before to obtain

h′
j(z)T (z) = − 1

2F ′
j(z)T (z)− 1

2F ′
j(z)T (z)+g′(z) T (z).

This shows that
(

h′
j + 1

2F ′
j

)

dz extends as a meromorphic 1-form to the double. If Ω
is an area quadrature domain, then the functions F ′

j extend meromorphically to the
double of Ω (see Theorem 1.1 of [11]). The rest of the proof follows smoothly after
this point. It is worth stating the resulting theorem for area quadrature domains
here.

Theorem 3.4. Suppose that Ω is a bounded n-connected area quadrature do-
main without cusps in the boundary, and suppose ψ(z)=R(z, z̄) is a rational func-
tion of z and z̄ with no singularities on bΩ×bΩ. The solution to the Dirichlet
problem with boundary data ψ is equal to

h0+H0+
n−1∑

j=1

cj(hj +Hj +ωj),

where h0 and H0 are algebraic meromorphic functions on Ω that are rational com-
binations of z and the Schwarz function S(z) for Ω. The cj are complex constants.
The functions hj and Hj , j=1, ..., n−1, are meromorphic functions on Ω whose
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derivatives are algebraic functions that extend meromorphically to the double of Ω,
and hence h′

j and H ′
j are rational combinations of z and S(z). The functions Hj ,

j=0, 1, ..., n−1, are holomorphic on Ω, but the hj may have poles at n−1 points in
Ω specified in the proof above. The constants cj are determined via the condition
that the poles on Ω should cancel so that

h0+
n−1∑

j=1

cjhj

is holomorphic on Ω.

The theorem analogous to Theorem 3.4 corresponding to Theorem 3.2 with ωj

in place of log |z −bj | also holds.
We have generalized the first alternative proof of Ebenfelt’s theorem to the

multiply connected setting. Next, we generalize the second alternative proof. In
[6], [8] and [9], the derivative G(1)(z, w)=(∂/∂w)G(z, w) is expressed in terms of
simpler domain functions of one variable in various ways. The virtue of this second
proof allows us to apply these results to obtain information about the form of the
solution to the Dirichlet problem with rational data in double quadrature domains.

Suppose that Ω is a bounded n-connected double quadrature domain. Theo-
rem 1.1 of [8] states that there are points A1, A2, A3 and wk, k=1, 2, ..., n−1 in Ω
such that

(3) G(1)(z, w) = r0(z, w)+
n−1∑

k=1

ρk(z)rk(w),

where r0(z, w) is a rational combination of S(w, Aj), S(z, Aj), and S(z, Aj) for
j=1, 2, 3, rk(w) is a rational combination of S(w, Aj) for j=1, 2, 3, and ρk is given
by

ρk(z) =G(1)(z, wk)− S(z, wk)L(z, wk)
S(wk, wk)

.

On a double quadrature domain, the Szegő kernel S(z, b) extends meromorphically
to the double in z for each fixed b∈Ω. The same holds for the Garabedian ker-
nel L(z, b). The functions G(1)(z, wk) are solutions to the Dirichlet problem with
boundary data 1

2 (z −wk)−1. Consequently, we may apply Theorem 3.1 to express
G(1)(z, wk) in elementary terms. When we collect everything together, we find that

(4) G(1)(z, w) =R0(z, w)+
n−1∑

k=1

σk(z)Rk(w),
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where R0(z, w) is a rational combination of w, S(w), z, z̄, S(z) and S(z), Rk(w) is
a rational combination of w and S(w), and σk(z) is equal to the function (hk(z)+
Hk(z)+log |z −bk |) appearing in Theorem 3.1. Higher order derivatives G(m)(z, w)
have the same form since S′(w) also extends to the double, and are therefore rational
functions of w and S(w). Hence, we could use the idea of the second proof of
Ebenfelt’s theorem to first extend R(z, z̄) as a meromorphic function, and then
to subtract off a linear combination of terms G(m)(z, wj) to remove the poles to
obtain the solution of the Dirichlet problem with boundary data R(z, z̄). Although
formula (4) is new, the form of the solution to the Dirichlet problem obtained is
very similar to that given by Theorem 3.1.

We remark here that if we use Theorem 8.1 of [6] to express the derivatives of
Green’s function instead, we obtain the following theorem, which does seem new.

Theorem 3.5. If Ω is a bounded double quadrature domain, then the solution
to the Dirichlet problem with rational boundary data is equal to

Φ+
n−1∑

k=1

ck(λk −ωk),

where Φ is a function in C∞(Ω) that is a rational combination of z, the Schwarz
function for Ω, and the conjugates of these two functions. Here,

λk(z) =
1

S(z, z)

∫

w∈γk

|S(z, w)|2 ds

are the non-harmonic measure functions studied in [6].

The Poisson kernel p(z, w) associated to a bounded smoothly bounded domain
Ω is related to the classical Green’s function via

p(z, w) = − i

π

∂G

∂w
(z, w)T (w),

where z ∈Ω and w ∈bΩ. On a double quadrature domain, since T (w) extends mero-
morphically to the double, T (w) is therefore a rational function of w and w̄=S(w),
and it follows from equation (4) that the Poisson kernel associated to the domain is
equal to an expression analogous to the right-hand side of equation (4) as follows.

Theorem 3.6. The Poisson kernel associated to a double quadrature domain
Ω is given by

p(z, w) =Q0(z, w)+
n−1∑

k=1

σk(z)Qk(w)
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for z ∈Ω and w ∈bΩ, where Q0(z, w) is a rational combination of w, w̄, z, z̄, S(z),
and S(z), Qk(w) is a rational combination of w and w̄, and σk(z) is equal to the
function hk(z)+Hk(z)+log |z −bk | from Theorem 3.1, h′

k and H ′
k being rational

functions of z and S(z).

If we use formula (7.5) from [6] to express the Poisson kernel associated to
a double quadrature domain instead, we may deduce that p(z, w) is a rational
combination of z, S(z), z̄, S(z), w, and w̄, plus a sum of the form

n−1∑

k=1

(λk(z)−ωk(z))μk(w),

where the functions μk are rational functions of w and w̄.
We have derived formulas for derivatives of Green’s function in quadrature

domains. It is also possible to deduce formulas for Green’s function itself. Indeed,
if Ω is a bounded area quadrature domain without cusps in the boundary, then
Green’s function associated to Ω for a point b0 ∈Ω is given by

G(z, b0) = − log |z −b0|+u,

where u solves the Dirichlet problem on Ω with boundary data log |z −b0|. We may
express u as we did in the proof of Theorem 3.1 to write

u =h(z)+H(z)+
n−1∑

j=1

cj log |z −bj |,

where, writing φ=log |z −b0| −
∑n−1

j=1 cj log |z −bj |, we have

h =
P (Saφ)

Sa
and H =

P (Laφ̄ )
La

.

Let Lj(z)=log |z −bj | for j=0, 1, 2, ..., n−1. We now consider h as a linear combi-
nation of

h0 =
P (SaL0)

Sa

and the functions

hj = − P (SaLj)
Sa

.

The same argument used above in the proof of Theorem 3.1 yields that

h0 =
P (SaL0)

Sa
= L0 − P (LaL̄0)

L̄a
.
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Hence,
h0 = L0+ḡ,

where g is holomorphic on Ω. We may now differentiate this formula along the
boundary to obtain

h′
0(z)T (z) =

1
2

T (z)
z −b0

+
1
2

T (z)
z̄ −b̄0

+g′(z) T (z)

for z in the boundary. This shows that
(

h′
0(z)− 1

2
1

z −b0

)

T (z) =
(

g′(z)+
1
2

1
z̄ −b̄0

)

T (z)

on the boundary. We can now use the argument that we used in the proof of
Theorem 3.1 to see that h′

0 extends to the double as a meromorphic function.
Similar reasoning can be applied to H . The bottom line is that

G(z, b0) = − log |z −b0|+h0(z)+H0(z)+
n−1∑

j=1

cj(hj(z)+Hj(z)+log |z −bj |),

where the hj and Hj are such that h′
j and H ′

j are algebraic functions of z which are
rational combinations of z and S(z) for j=0, 1, 2, ..., n−1. It would be interesting
to figure out the dependence of the functions on the right-hand side of this formula
in b0, but the results of [13] lead one to believe that it might be rather messy.

We close this section by remarking that the harmonic measure functions ωk

associated to a bounded area quadrature domain Ω without cusps in the boundary
can be expressed in terms of simpler functions. There exist real constants cj so that

u :=ωk −
n−1∑

j=1

cj log |z −bj |

is equal to the real part of a holomorphic function G on Ω (i.e., so that the pe-
riods vanish). Note that G′ =2∂u/∂z is equal to F ′

k plus a linear combination of
1/(z −bj). Since F ′

k and all the 1/(z −bj) extend meromorphically to the double on
area quadrature domains, it follows that G′ extends meromorphically to the double.
Hence, we may state the following theorem.

Theorem 3.7. The harmonic measure functions associated to a bounded area
quadrature domain without cusps in the boundary can be expressed via

ωk =Re Gk+
n−1∑

j=1

ckj log |z −bj |,
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where Gk are holomorphic functions on Ω such that G′
k extends meromorphically to

the double. Consequently, G′
k are algebraic functions that are rational combinations

of z and the Schwarz function. The points bj are points in the complement of Ω,
one in the interior of each bounded component of the complement, and (ckj) is a
non-singular matrix of real constants.

4. Mappings between quadrature domains

Gustafsson [21] proved that if Ω1 is a bounded finitely connected domain
bounded by Jordan curves and f : Ω1→Ω2 is a biholomorphic mapping, then Ω2 is
an area quadrature domain if and only if f extends meromorphically to the double
of Ω1. If f is a biholomorphic mapping between two area quadrature domains,
this result can be applied in both directions. We also know from [21] that finitely
connected area quadrature domains have Schwarz functions that extend meromor-
phically to the domain, and the field of meromorphic functions on the double is
generated by the extensions of z and the Schwarz function. Hence, it follows that f

is a rational combination of z and the Schwarz function S1(z) for Ω1. Since S1(z)=z̄

on the boundary, it follows that f is a rational function of z and z̄ when restricted
to the boundary. As S1(z) is algebraic, f is algebraic. It is shown in [11] (Theo-
rem 1.4) that, on an area quadrature domain, if H extends to the double, then so
does H ′. Thus, f ′ is also a rational function of z and S1(z) on Ω, and a rational
function of z and z̄ when restricted to the boundary. In fact, all the derivatives of
f have this property.

We may conclude from this discussion that biholomorphic mappings between
area quadrature domains are rather like automorphisms of the unit disc (where
S(z)=1/z).

Gustafsson’s result about biholomorphic maps was generalized to proper holo-
morphic mappings in [14] (Theorem 1.3 and p. 168). Hence, exactly the same
conclusions can be drawn about proper holomorphic mappings between bounded
area quadrature domains. Proper holomorphic mappings between area quadrature
domains are rather like finite Blaschke products.

We next consider a biholomorphic mapping f : Ω1→Ω2 between bounded dou-
ble quadrature domains. Such a map would have all of the properties mentioned
above, plus the property proved in [16] that

√
f ′ belongs to the Szegő span of Ω1.

Since the Szegő kernel S(z, a) and its derivatives (∂/∂ā)mS(z, a) extend meromor-
phically to the double in z for each fixed a on double quadrature domains (see [16]),
it follows that

√
f ′ is a rational function of z and S1(z). Consequently, f ′ is the

square of such a function and f ′ is the square of a rational function of z and z̄ when
restricted to the boundary.
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5. Classes of domains with simple kernels

The results of Section 3 can be pulled back via conformal mappings. When
the conformal mappings have additional properties, more detailed information can
be gleaned.

Call a bounded finitely connected domain Ω an algebraic domain if there is a
complex algebraic proper holomorphic mapping of Ω onto the unit disc. This class of
domains was studied in [6]. There, it is shown that these domains are characterized
by having algebraic Bergman kernels, or Szegő kernels, or Ahlfors maps. A list of
equivalent ways to characterize the domains is given in [6] (see also [9]).

Call a bounded finitely connected domain Ω a Briot–Bouquet domain if there
is a proper holomorphic mapping f of Ω onto the unit disc such that f ′ and f

are algebraically dependent, i.e., such that a non-zero polynomial of two complex
variables P (z, w) exists such that P (f ′, f)≡0 on Ω. It was shown in [9] that domains
in this class are characterized by having Bergman kernels or Szegő kernels generated
by only two holomorphic functions of one complex variable. A list of equivalent ways
to characterize the domains is given in [9]. One of the equivalent conditions is that
Ahlfors maps associated to Ω are Briot–Bouquet functions.

The next theorem will allow us to harvest the consequences of the theorems of
Section 3 for algebraic and Briot–Bouquet domains.

Theorem 5.1. Suppose f : Ω1→Ω2 is a biholomorphic mapping between
bounded domains bounded by finitely many non-intersecting C∞ smooth curves.
Suppose further that Ω2 is an area quadrature domain. Let S2(z) denote the Schwarz
function for Ω2.

If Ω1 is an algebraic domain, then f is algebraic. Consequently, so is S2 ◦f .
If Ω1 is a Briot–Bouquet domain, then f is a Briot–Bouquet function, and so

is G◦f whenever G is a meromorphic function on Ω2 that extends meromorphically
to the double of Ω2. In particular, S2 ◦f is a Briot–Bouquet function.

In both cases, f and S2 ◦f extend meromorphically to the double of Ω1 and
form a primitive pair for the field of meromorphic functions on the double.

Proof. It is shown in [11] that area quadrature domains are algebraic domains,
and it is shown in [12] that biholomorphic mappings between algebraic domains
are algebraic (since biholomorphic maps in Bergman coordinates are algebraic and
Bergman coordinates themselves are rational combinations of the Bergman kernel,
which is algebraic in algebraic domains). Hence, the first part of the theorem is
proved.

Suppose now that Ω1 is a Briot–Bouquet domain. Since Ω2 is an area quadra-
ture domain, the mapping f extends to the double of Ω1 as a meromorphic function.
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Assume that G extends meromorphically to the double of Ω2. Since the property of
extending to the double is preserved under conformal changes of variables, it follows
that G◦f also extends meromorphically to the double of Ω1.

It is shown in [7] that the field of meromorphic functions on the double of a
smoothly bounded finitely connected domain is generated by two Ahlfors mappings
associated to the domain. Hence, there are Ahlfors maps g1 and g2 associated to two
distinct points in Ω1 such that f(z)=R(g1(z), g2(z)), where R is a complex rational
function of two variables. Differentiating this formula reveals that f ′ is equal to
g′
1 times a rational function of g1 and g2 plus g′

2 times a rational function of g1

and g2. Since Ω is a Briot–Bouquet domain, the Ahlfors maps are Briot–Bouquet
functions (see [9]). Hence, there are non-zero polynomials P1 and P2 of two complex
variables such that Pj(g′

j , gj)≡0, j=1, 2. Now the procedure used in [9] to construct
the compact Riemann surface to which all the kernel functions extend can be applied
here. Since g1 and g2 extend meromorphically to the double of Ω1, we may use the
identities Pj(g′

j , gj)≡0, j=1, 2, to extend g′
1 and g′

2 as meromorphic functions on
a compact Riemann surface that is a finite branched cover of the double of Ω1.
Now both f and f ′ extend meromorphically to this compact Riemann surface, and
they are therefore algebraically dependent. Hence, there is a non-zero polynomial
P of two complex variables such that P (f ′, f)≡0 on Ω, i.e., f is a Briot–Bouquet
function. The same reasoning can be applied to G◦f to conclude that it, too, is a
Briot–Bouquet function. �

If f : Ω1→Ω2 is a biholomorphic mapping between smoothly bounded domains,
then Green’s functions associated to the domains transform via

G1(z, w) =G2(f(z), f(w)).

Consequently,
G

(1)
1 (z, w) =G

(1)
2 (f(z), f(w))f ′(w),

and we can use the results of Section 3 to pull back results about the Poisson
kernel and Green’s functions on double quadrature domains to algebraic and Briot–
Bouquet domains. Before we state the resulting theorem, note that the complex
unit tangent function transforms via

T2(f(z)) =
f ′(z)

|f ′(z)| T1(z),

and so
p1(z, w) = p2(f(z), f(w))|f ′(z)|

(which could also be deduced directly from considerations of arc length, but the
transformation rule for the complex unit tangent vector functions is worth writing
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down here because it allows one to pull back complexity results about the tangent
function from double quadrature domains).

Theorem 5.2. Suppose that Ω is a bounded domain bounded by finitely many
non-intersecting C∞ smooth curves that is either an algebraic or Briot–Bouquet
domain, and suppose that f(z) is a biholomorphic mapping of Ω onto a double
quadrature domain with Schwarz function S(z). The Poisson kernel associated to
Ω is given by

p(z, w) =Q0(z, w)+
n−1∑

k=1

σk(z)Qk(w)

for z ∈Ω and w ∈bΩ, where Q0(z, w) is a rational combination of f(w), S(f(w)),
f(z), S(f(z)), f(z), and S(f(z)) times |f ′(w)|, Qk(w) is a rational combination of
f(w) and S(f(w)) times |f ′(w)|, and σk(z) is equal to gk(z)+Gk(z)+log |f(z)−bk |,
where gk and Gk have derivatives that are rational functions of f(z) and S(f(z))
times f ′(z). In the case when Ω is an algebraic domain, f(z), f ′(z), and S(f(z))
are algebraic and |f ′(z)| is real algebraic, and gk and Gk have algebraic derivatives.
In the case when Ω is a Briot–Bouquet domain, f(z), S(f(z)), and f ′(z) are Briot–
Bouquet functions, and gk and Gk have derivatives that are Briot–Bouquet functions
times f ′(z).

In Theorem 5.2, since an algebraic domain is also a Briot–Bouquet domain,
the techniques of [12] can be used to show that f ′(z) extends meromorphically to
a compact Riemann surface that is a finite cover of the double to which f(z) and
S(f(z)) also extend. Hence, if G1 and G2 are a primitive pair for the compact
Riemann surface, all of the functions f , f ′, and S ◦f are rational combinations of
the same two functions G1 and G2. Thus the Poisson kernel is composed of basic
building blocks that are surprisingly simple.

6. Classical boundary operators on double quadrature domains

Suppose that Ω is a bounded double quadrature domain. We will now show
that the Szegő projection associated to Ω, as an operator from L2(bΩ) to itself,
maps rational functions of z and z̄ to the same class of functions. Suppose that
u(z)=R(z, z̄) is such a function without singularities on the boundary bΩ. The
Szegő projection P satisfies

Pv = v −P ( vT )T

on the boundary (see p. 13 of [4]). Now, since u extends antimeromorphically to Ω
as R(S(z), z̄) and as T (z) is equal to the boundary values of a meromorphic function
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on the double without poles on the boundary curves, we see that the holomorphic
function Pu has the same boundary values as an antimeromorphic function on Ω
that extends smoothly up to the boundary. Hence, Pu extends meromorphically to
the double, and is therefore a rational combination of z and S(z). Now, restricting
to the boundary shows that Pu is a rational combination of z and z̄, and the proof
is complete. It also follows that the extension of Pu to Ω as a holomorphic function
is a rational function of z and S(z) without singularities on Ω. Thus, as an operator
from L2(bΩ) to the space of holomorphic functions on Ω with L2 boundary values,
P maps rational functions of z and z̄ to algebraic functions.

It is easy to see that the Cauchy transform has the same behavior on an area
quadrature domain. Indeed, we may write

(Cu)(z) =
1

2πi

∫

bΩ

u(w)
w −z

dw =
1

2πi

∫

bΩ

R(w, S(w))
w −z

dw,

and the residue theorem yields that Cu is a rational function of z with poles at the
poles of the meromorphic function R(w, S(w)) that fall outside Ω. The L2 adjoint
of the Cauchy transform satisfies

C ∗u =u− C( uT )T

(see [4], p. 12). If Ω is a double quadrature domain, then T is the restriction to
the boundary of a rational function of z and z̄. Hence, it follows that C ∗ maps the
space of rational functions of z and z̄ without singularities on the boundary into
itself. It now follows that the Kerzman–Stein operator A=C − C ∗ enjoys the same
property.

We now consider the Dirichlet-to-Neumann map on a double quadrature do-
main. If ψ(z)=R(z, z̄) is a rational function without singularities on the boundary,
then Theorem 3.4 states that the solution to the Dirichlet problem with boundary
data ψ is given by

h0+H0+
n−1∑

j=1

cj(hj +Hj +ωj),

where the properties of the functions involved in the formula are listed in the state-
ment of the theorem. The normal derivative of this function is

−ih′
0T +iH ′

0T +
n−1∑

j=1

cj(−ih′
jT +iH ′

jT −iF ′
jT )

(see p. 87 of [4]). All of the functions in this formula are rational in z and z̄ on the
boundary. Hence, the normal derivative of the solution to the Dirichlet problem
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is rational, and we have shown that the Dirichlet-to-Neumann map sends rational
functions to rational functions on a double quadrature domain.

We close this section by remarking that, since dz=T (z) ds and dz̄=T (z) ds,
and since T (z) extends to the double as a meromorphic function or as an antimero-
morphic function on a double quadrature domain Ω, it is possible to convert an
integral of the form ∫

bΩ

R(z, z̄) ds,

where R(z, z̄) is a rational function of z and z̄, to an integral
∫

bΩ

R(z, S(z))G(z) dz,

where G(z) and the Schwarz function S(z) are meromorphic functions, and conse-
quently, the integral can be computed by means of the residue theorem. The same
conversion can be made for integrals involving dz or dz̄ in place of ds. Thus, com-
puting integrals in double quadrature domains is rather like computing integrals of
rational functions of trigonometric functions on the unit circle.

7. Fourier analysis on multiply connected domains

The results of this paper are probably most interesting in the realm of double
quadrature domains, however, the ideas espoused here can be viewed as a new way
of thinking about Fourier analysis in multiply connected domains. Classical Fourier
analysis is expanding functions in powers of eiθ and e−iθ. If we write eiθ=z, then
e−iθ=z̄=1/z, and 1/z is the Schwarz function for the unit disc. On the unit disc,
the Poisson extension of a rational function R(z, z̄) can be gotten by first extending
R(z, z̄) as the meromorphic function R(z, S(z)) and then subtracting off appropriate
derivatives (∂/∂w)mG(z, w) of Green’s function at points w where the meromorphic
function has poles. Since Green’s function is

− log
∣
∣
∣
∣

z −w

1−w̄z

∣
∣
∣
∣
,

these derivatives are rational functions of z and z̄. The extension obtained in this
way is the same as the harmonic extension of the Fourier series from the boundary
obtained in classical analysis. (This gives another way to see that the harmonic
extension of a rational function on the boundary of the unit disc is also rational.
See [15] and [18] for more on this subject in multiply connected domains.)

In this paper, we have generalized this idea to the multiply connected setting.
If Ω is a bounded finitely connected domain bounded by n non-intersecting C∞
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smooth curves, then it is proved in [7] that there are two Ahlfors maps g1 and g2

associated to Ω such that the field of meromorphic functions on the double of Ω
is generated by g1 and g2. Note that g1 and g2 are proper holomorphic maps of
Ω onto the unit disc, and that |gj(z)|=1 when z ∈bΩ, j=1, 2. These functions will
take the place of e±iθ in what follows.

The rational functions of z and z̄ on the unit circle are exactly the functions that
extend from the unit circle to the double of the unit disc as meromorphic functions.
On Ω, this class corresponds to the class of all rational functions of g1(z), g2(z),
g1(z), and g2(z), which is the same as the class of all rational functions of g1(z)
and g2(z), since gj(z)=1/gj(z) when z ∈bΩ, j=1, 2. It is interesting to note that
this class of functions is dense in the space of C∞ functions on the boundary, and
hence also dense in the space of continuous functions on the boundary. Indeed, any
C∞ function on the boundary can be decomposed as h+HT , where h and H are
holomorphic functions in C∞(Ω) (see [4], p. 13). It was proved in [5] (see also [4],
p. 29) that the complex linear span of functions of z of the form S(z, b), as b ranges
over Ω, is dense in the space of holomorphic functions in C∞(Ω). Fix a point a∈Ω,
and let Sa(z)=S(z, a) and La(z)=L(z, a) as always. The Szegő and Garabedian
kernels satisfy the identity

(5) Sa =
1
i
LaT

on the boundary (see [4], p. 24). Given a function ϕ in C∞(bΩ), we may decompose
Saϕ as h+HT and we may use identity (5) to obtain

ϕ=
h

Sa
−i

H

L̄a
.

Next, if we approximate h and H by linear combinations of functions of the form
Sb, we see that ϕ can be approximated by linear combinations of Sb/Sa and the
conjugates of Sb/La. But such quotients extend meromorphically to the double
of Ω (since identity (5) reveals that Sb/Sa is equal to the conjugate of Lb/La on
the boundary, and Lb/Sa is equal to the conjugate of Sb/La on the boundary).
Hence, the space of functions on the boundary that are restrictions of meromorphic
functions on the double without poles on the boundary is dense in C∞(bΩ).

Consequently, one approach to solving the Dirichlet problem would be to first
approximate a continuous function on the boundary by rational combinations of g1

and g2. The approximation can be extended meromorphically to the double. Next,
the poles of the extended function can be subtracted off by derivatives of Green’s
function in the second variable to obtain a solution to the Dirichlet problem for the
approximation. Various forms of the derivatives of Green’s function can be used to
deduce facts about the complexity of the solution. For example, Theorem 1.2 of [13]
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expresses Green’s function in finite terms involving a single Ahlfors map, say g1. Or
Theorem 3.2 of the present work can be applied to see that the solution is a rational
function of g1 and g2 and their conjugates modulo an explicit (n−1)-dimensional
subspace.
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