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On the Carleson duality

Tuomas Hyténen and Andreas Rosén

Abstract. Asatool for solving the Neumann problem for divergence-form equations, Kenig
and Pipher introduced the space X of functions on the half-space, such that the non-tangential
maximal function of their Lo Whitney averages belongs to L on the boundary. In this paper,
answering questions which arose from recent studies of boundary value problems by Auscher and
the second author, we find the pre-dual of X', and characterize the pointwise multipliers from X to
Lo on the half-space as the well-known Carleson-type space of functions introduced by Dahlberg.
We also extend these results to L, generalizations of the space X'. Our results elaborate on the
well-known duality between Carleson measures and non-tangential maximal functions.

1. Introduction

A fundamental estimate in harmonic analysis is Carleson’s inequality for Car-
leson measures. See [3, Theorem 2] and [4, Theorem 1] for the original formu-
lations and applications in the theory of interpolating analytic functions, or for
example Stein [11, Section I1.2.2] and Coifman, Meyer and Stein [5] for more re-
cent accounts in the framework of real-variable harmonic analysis. This inequality
states that for a function f(¢,z) and a measure du(t,z) in the upper half-space
RIT":={(t,r);t>0 and x€R"}, one has the estimate

S o ssw(BDY [ vwa

where the supremum is over all cubes @ in R™ and @::(0, £(Q)) xQ is the Carleson
box, £(Q) and |@Q| being the sidelength and measure of ). Furthermore N, denotes
the non-tangential mazximal function

(N*f)(y) = sSup |f(t,l‘)|, yeR",

{(t.a)le—y|<at}
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where >0 is a fixed constant determining the aperture of the cone. The exact
value of a is less important, since for any a;, as >0 the corresponding non-tangential
maximal functions N, f are comparable in the L,(R™) norm for any 1<p<oo. See
Fefferman and Stein [7, Lemma 1].

Carleson’s inequality has numerous applications. Motivating for this paper
is its applications to boundary value problems for elliptic partial differential
equations. A recent application concerns boundary value problems for divergence-
form equations

dive 5 A(t, )V zu(t,x) =0,

with non-smooth coefficients A€ Lo, (RYT™; CUH+m)*147)) with uniformly positive
real part. To solve the Neumann problem with La(R"™) boundary data, Kenig and
Pipher [9] introduced (a space equivalent to) the function space X consisting of func-
tions f(t¢, ), thought of as gradients of solutions u(¢,z), with N,(Waf)€ La(R™),
where

(Wo)(tsx) = W ()| fllo,owieays  (tz) € REF™,

is the L, Whitney averaged function, with
14+n —1 S
W(t,x) ::{(as,y)ER+ Jly—z| <eit and ¢ <;<co}

being the Whitney region around (t,z). (Again, the precise value of the fixed
constants ¢p>1 and ¢;>0 is less important.) The reason for replacing f by the
Whitney average Wsf is that, unlike the potential u(t,z), the gradient f(t, z)=
V¢ zu(t, x) does not have classical interior pointwise De Giorgi-Nash-Moser bounds.

In the recent works of the second author with P. Auscher [1] and [2], the func-
tion space X above is fundamental. In these papers, new methods are developed to
solve the Neumann (as well as the Dirichlet) problem for systems of divergence-form
equations, which rely on solving certain operator-valued singular integral equations
in the function space X'. Two questions arose, which motivated this paper.

e Which functions g¢(¢,z) are bounded multipliers

X — Ly(RM™ dt dx),
[t x) — g(t,2) f(t, x)?

It was shown [1, Lemma 5.5], using Carleson’s inequality, that g is a multiplier if
the modified Carleson norm

(1) sgp(%| //@ Woog(t,m)zdtdx>1/2
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is finite. We show in this paper (Theorem 3.1) that this modified Carleson norm in
fact is equivalent to the multiplier norm

<|9fL2(R}j“;dtdz))
1£1lx '

The modified Carleson norm (1) has been known for some time to be fundamental
in the perturbation theory for divergence-form equations. It was introduced already
by Dahlberg [6]. See also Fefferman, Kenig and Pipher [8] and Kenig and Pipher [9]
and [10].

e What is the dual, or pre-dual, space of X7 We show in this paper (Theo-
rem 3.2) that X is the dual space of the space of functions g(¢, ) such that

2
/ <supL /Ww(t,x)dtdx) dz < oo.
r» \Q3: Q| JJo

(We here identify a function feX with the functional g— [[gi+n fgdtdz.) Theo-
+

rem 3.2 also shows that the space X is not reflexive. The interest in understanding
duality for the space X comes from the dual relation between the Dirichlet problem
with Ly(R™) data and the Dirichlet problem with Sobolev H!(R") data. See [2,
Theorem 1.4] and [9, Theorem 5.4].

Beyond these two results, we prove more general L, results for the Carleson
duality. On one hand, we consider not only Ws.g and Wsg, but more general L,
Whitney averages. On the other hand, we measure the non-tangential maximal
function and the Carleson functional in L, norms. For example, this may have
useful applications to boundary value problems with L, data.

||9||X—>L2(R§r+";dt dz) = ?‘;18

In Section 2, we first prove the corresponding results for a discrete vector-valued
model of the Carleson duality. Then in Section 3, we prove equivalence between
dyadic and non-dyadic norms, which yields the non-dyadic results.

The spaces we consider here are closely related to the tent spaces introduced
by Coifman, Meyer and Stein [5], and in fact reduce to them for certain choices of
the parameters. However, as a whole, the scale of spaces that we consider is new.
Since the precise connection to tent spaces is somewhat technical, we postpone a
more detailed commentary until Remark 3.3 below.

2. A discrete vector-valued model

In this section we study a dyadic model of the problem. We use the following

notation. Let D=[J ez D; denote the dyadic cubes in R", where

D;:={277(0,1)"+2 7k ke Z"}.
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Let Wo:=(4(Q)/2,4(Q)) x Q denote the dyadic Whitney region, being in one-to-one
correspondence with Q€D. Note that unlike their non-dyadic counterparts W (t, x),
the regions Wg form a disjoint partition of R:™™ (modulo zero-sets). Define the
dyadic Hardy—Littlewood maximal function

Mph(z):= sup L/ h(y)dy, x€R",
Q:xeQED |Q| Q
for he L*°(R™). Recall that Mp is bounded on L,(R"), 1<p<oo.
Our discrete vector-valued setup is as follows. We assume that to each Q€D,
there are two associated Banach spaces X and )g. For a sequence f={fg}oep,
where foeXg, we define its non-tangential maximal function

(Nxf)(x):= sup |[follx,, z€R™
Q:x€QeD

For fixed 1<p<oo, let A}, denote the space of all sequences f such that ||f| x,:=
[Nx fllz,&n)<oc. For a sequence g={gq}qep, where go€)q, we define the Car-
leson functional

1 n
(Cyg)(x):= sup — > |grlys xR
Q:x€QED ‘Q| RCQ
ReD

For a fixed number 1<p’<oo, let ), denote the space of all sequences g such that
l9lly, :==[Cygllz,, (rn)<oo. Note that the case p’=1 is not interesting, since g=0
necessarily if ||Cyg||L, mn)<oo.

We assume that for each Q€D there is a duality (Xg,Yo) as below, with
constants C' uniformly bounded with respect to Q.

Definition 2.1. Let X and Y be two Banach spaces. By a duality (X,)), we
mean a bilinear map X' xY3(f, g)—(f,9)€R and a constant 0<C'<oo such that

I(f, 0l <Cllfllxllglly,  feX, gel,
Ifllx <C sup (f,g), feX,

llglly=1

||9||y§C” sup (f,g), g€V

flla=1

We prove the following duality result.
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Theorem 2.2. Let {Xg}gep and {Vg}toep be pairwise dual Banach spaces
as above, and let 1/p+1/p'=1, 1<p<oco. Then there is a constant 0<C <oco such
that

Z I(fq,90) < C”N/Yf”Lp(R")HCLYQHLP/(R")a foeXq, 9o€Xq,
QeD

[Nxfllz,mn) <C sup > (fo.99), foeXe,
”Cyg”Lp/(Rn):l QeD

ICygllz, ®m <C sup > (fo90) 90€Vq.
HNXfHLp(R"):l QeD

The application we have in mind is the following. For functions f(¢,z) in
R, let fo:=flwo €Ly(Wgq)=:Xq, where the Banach space has norm || f|x,:=
|WQ|71/q||fQHLq(WQ) so that

N, f= sup [Wol ™| fllL,weo)-
Q:xeQED

For functions g(t,z) in R, let gg:=glw, €L;(Wq)=:Yg, where the Banach
space has norm ||glly, :=|Wq|'="||gqllr,(wy) so that

1 o
Cr.f= sup  — > [Wg[" Vgl wn)-
Q:xEQED |Q‘ RCQ
RED

We generalize slightly the Carleson functional and define

1/r
1 _
iy @)= sw (o S IWal(Wal /gl v, )
b Q:z€Q€ED Q) %l | FaWn)
ReD

for e R™ and 1<r<oo.

Corollary 2.3. Let 1/p+1/p=1/q+1/G=1/r, with r<p<oo, r<g<oo and
1<r<oo. Then there is a constant 0<C <oo such that

HfQHLT(an) <C|Nr, fllz,®nICL,9llL;®n)

HNquHLp(Rn)SC sup ”fg”Lr(Rff")’

chqgl‘Lﬁ(R”):l

”ngg”Lﬁ(R") <C sup ||f9||L7,(R3r+n).
INLg fllz,@mn)=1
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Note that the case p=¢g=r=2 solves a dyadic version of the multiplier question
for the space X from the introduction. In this case p=¢g=o0c. Note also that the
case p=¢g=2, r=1, together with Theorem 2.4 below, solves a dyadic version of the
dual space question for the space X from the introduction. In this case p=g¢=2.

Proof. Replacing |f|" and |g|” by f and g, we see that it suffices to consider
the case r=1. In this case, the result follows from Theorem 2.2. [

Proof of Theorem 2.2. (i) For completeness, we start with the well-known proof
of the > [(fq. gq)| estimate. It suffices to estimate >, [|fo| [9q |- Note that

S lgwll <1Q inf Cyg(a) < / Cygde

RCQ

for any Q€D. Select, for given k€Z, the maximal dyadic cubes D¥ CD such that
| fol|>2%. Then Ugepr Q={r€R"; Ny f(z)>2*}, and the cubes in D* are disjoint.
We get

lgoll < gzl < /Cygdx— / Cyg da,
2 laall< 2, 2 -

Q[ fqll>2* Q€EDk RCQ QeDF
and hence

Y lfalllgell~ > > 2"lgel

QeD QED k:2F<| fo ||

=>2" > el

kez Q| fqll>2*

<22k/ Cygdx

kez ~JoNaf(@)>2*

/ 2kCyg dx
R®

k2k<N f(z

~ Ny fCygdx
R’!L

< INx fllpl[Cyglly-

(ii) Next we prove the estimate of ||Cyg||,». Consider first the case p’=o0. Pick
Q€D such that

RCQ
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Then construct f={fr}rep, choosing fr€Xg so that || fr|=1/|Q| and ||gr//|Q|~
(fr,gr) if RCQ, and fr:=0 if RZQ. It follows that ||Cyg|l~>_z(fr,9r) and
INx fll1=1 since Nxf=1/|Q| on Q and Ny f=0 off Q.
Next consider the case 1<p’<oo. Select, for given k€Z, the maximal dyadic
cubes D¥ CD such that )
0l Z lgrll >2".

RCQ
Then {zeR";Cyg(x) >2’“}:UQ€Dk Q, and the cubes in D* are disjoint. We obtain
{z:0yg(2)>2" =) 1QI<27* > > ozl
QED* QeD* RCQ

Now let )
fR::—/ Cygdzx.
Bl Jr

Note that fR does not depend on k, and that fR>2k for RCQED*. We get
{a;:Cyg(2)>2"} <277 52 ¢ o llgrll and

ICyglly, = D 27" [{z; COyg(x) > 2"}

keZ
<> 2R gR]lA > (fr)P T Igrll-
RG'Dka<fR ReD

Now construct f={fr}rep, choosing fr€Xr such that

Ifrll=(fr)? ' and (fr)* "‘llgrl = (fr,9r)-

We get

N f(x) = Zgr;(fcg)”/*l = (Mp(Cyg) (@) .

Since p(plfl)fp/, thiS gi\/es
X P y p/ ~ N p’?

and we conclude that

> (f0:90) Z 1Cyally ZICyglly N2 f -
Q

(iii) Next we prove the estimate of || Nx f||,. Consider first the case 1<p<
00. Select, for given k€Z, the maximal dyadic cubes D* CD such that || fgl|>2*.
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Then {xER";NXf(m)>2k}:UQ€Dk Q, and the cubes in DF are disjoint. Write
kq:=maxgepr k<log, | fql|. We obtain

INxfllp =Y 2" e Naf(x)> 25} =D (@l > 2%

keZ QED k:QeDk
~ Y |Qter= 37 2ke|glatet ) & 37 f@ll(Ql > 2‘“@-”).
QeDp QeDp QeDp k:QeDk

Write g :=[Q| > t.0epr 2k(r=1) and construct g={gg}gep, choosing gg€YVg such
that [lgql[=dq and ||/l lgqll~(fq, 9q)- Then

RCQ keZ RCQ
ReDF

= oh- ” |{x Ny f(z)>2"}1nQ)

keZ

%— p=l
<inf Mo (N )",

and therefore ||Cyg||?, SI(Na )P~ =[INx f|[5, since p'(p—1)=p. We conclude
that

> (far90) Z INx FIIE 2 1Cy gl | N flp-

QeD

(iii") We finally prove the estimate of ||Nx f||1, i.e. the case p=1. Let DY be

the 2" dyadic cubes with sidelength 2™ and one corner at the origin, where M is
chosen large enough, using the monotone convergence theorem, so that || Nx fll>
2HNXle, where fQ =fo if QCQO for some QoeDY, and fQ =0 otherwise. As-
suming the estimate proved for f , we have

> olfe:90)
[Cyglles

where we may assume go=0 unless QC Qo for some Qo€D°. This yields

F (fq:9 (fa,9
Vel <212 S 2 i 23 i

INxfll <

Thus, replacing f by f, we may assume that fo=0 unless QCQy for some Qo€D°.
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Given f contained by D as above, we define recursively sets of disjoint dyadic
cubes D/ CD, j=1,2,3,..., as follows. Having constructed D7, let Q€D’. Define
Dgl to be the set of maximal dyadic cubes ReD such that RCQ and || fr]|>2|| foll-

Then let Dj+1::UQ€Dj Dgrl. Furthermore, let Df::U;il D’ and

E@Q):=Q\ |J R QeD.

G+l
REDQ

From the above construction, if 2€Q,CQk_1C...CQo, where Q;€D, then
Il forll>25"  fo.ll, k=2,3, ..., where ||fq,|>0. Hence, if Nx f(x)<oo, then there
is a minimal Q> with Q€D’. For this @, we have € F(Q) and N f(z)<2| fol-
Thus

(2) Naf<2 > lfollleq ae
QeDs

so that ||[Nx fl1<2> geps [Ifoll |Q]. Conversely, if 2€Q,CQr—1C...CQo, where
Q;€D, are all the selected dyadic cubes containing z, then Ny f(x)>|fo,|>
2”ka71||Z"'Z2k||fQ0H' Thus

> lfellal=

QeDf R

3 HfQIId:cs/ Naf S 277 do <2 Nafs.
" e’ R» §=0
Q>3>x

Now let ¢€(0,1) be a constant, to be chosen below, and define
D = {QeD!;|EQ)|>clQl} and Df:=D\DI.
From (2) we have

INefli<2 Y Ifelll@l+2e Y lfelllRI<2 Y IIfoll|QI+4c] Naflhr-

QeDp! QeD? QeDf

Choose c=4 to obtain ||[Nx f|, <4 ZQeD{ |l foll1Q|. Construct g={g¢}gep, choos-

ing go€Vq such that [|go|=|Q| and (fo,90)~foll Q| if Q€D{, and go:=0 oth-
erwise. Then ||NXf||152QgD{<vagQ>- To estimate

ﬁ 3 \\gR||:@i| S IR,

RCQ RCQ
ReD{
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note that if ReDJND7, then > pepirt IR<EIR|. Thus

1 1 & ;

—§ R<—§ )1Q| =8.

@l £= 1Bl < Q) FO(S) @l
ReDf

Thus ||Cyg|lec <8. This completes the proof of the theorem. O

Consider now a duality (X,)) between two Banach spaces X and ) as in
Definition 2.1. We define the linear map L: X—)Y* sending f€X to the linear
functional

Af: Y —R,
g (f,9).

The estimate |(f,g)|<C| fllx|lglly shows that |L|x—y+<C, whereas it follows
from the estimate [|f[|x <Csupy,=1(f,g) that L is injective with closed range
L(X)CY*. Thus the duality gives a topological, but not in general isometric, iden-
tification, through L, of X with the closed subspace L(X) of Y*. The estimate
lglly <Csupjf|,=1(fg) furthermore shows that this subspace is “large” in the
sense that its pre-annihilator is

LL(X):={geY;Ag=0 for all Ac L(X)}={0}.

In general we may have that L(X)GY*, but if } is reflexive, then necessarily
L(X)=Y*. Below we identify X and L(X), and thus write X =Y"* if L(X)=Y*. We
also note that the above also holds with the roles of X and ) interchanged, giving
an identification of ) with a large closed subspace of A'*.

The following result describes when the duality in Theorem 2.2 gives the full
dual spaces.

Theorem 2.4. With the above notation, consider the duality (X,, Vp),

(f,9)— > {fo.90)

QeD

from Theorem 2.2. We have Yy G X, for any 1<p<oco, as well as X1 Y5 .
If furthermore the duality (Xq,Yq) is such that Xo=Y¢, for all Q€ED, and if
1<p<oo, then X,=Y.
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Proof. (i) We first prove that X3 CY% . Let Q1 2Q22Q32... be dyadic cubes.
Define the functionals Ajg:=(fq,,9q,) on Ve, where we have chosen fq, €Xg,
such that || fg,||=1/|Q;|. It is clear that ||A;||y- ~1. Consider the sequence space
loo(Z.) and use Hahn—Banach’s theorem to construct ime/,,(Z,)* such that

lim({zn i) = nlggo Ln

for all convergent sequences {z,}52 ;. Set Ag:=lim({A;g}32,). It is straightforward
to verify that Ae Y \ X;.

(ii) We next prove that Y,y Xy for 1<p<oco. Fix some cube Q€D with
£(Q)=1. Define functionals

Aifi= > (fr.9r)
RCQo
((R)=2"7

on X,, where gr€Yg is chosen such that ||gr||=|R|. Then

nAS S IflIRI< / Nof dz < [N fll,-
RCQO QO
(R)y=277
Define Af:=lim({A; f}52,). It is straightforward to verify that A€ X\ Y.

(iii) Finally we assume that Xo=J) and 1<p<oo, and aim to show that
X,=Yy. Let A€)y,, and let QeD. Pick foeXo=Y; such that (fg,g9q)=
A{9gdgr}rep) for all gg€YVq, where dgr=1 if R=0 and dgr=0 otherwise. Let
f={fo}oep. Then

(3) Ag=)_ (fa:90)

QeD
holds whenever go#0 only for finitely many (). From the monotone convergence
theorem it follows that ||Nx f|,S||Ally+, so that feX,. We now use Lemma 2.5
below to deduce that (3) holds for all g€),s by continuity. O

Lemma 2.5. Assume that 1<p’<oco. Then the subspace consisting of se-
quences g={gq }gep with go#0 for finitely many Q€D, is dense in Yy .

Proof. (i) Let geY, and let €>0. Let @1, ..., Q2n be the dyadic cubes with
one corner at the origin and sidelength 2. Choose M large enough so that
fRn\Qo |Cygl?’ de<e?’, where Qo:=Q1U...UQan. Set

gl — 9Q, Q¢Q0;
2700, QcQo.
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Let Q be a sibling of Q;, 1<j<2". Since g;,=0 for QCQ);, it is clear that we have
supg, Cyg<infg, Cyg. Therefore

2’”,
ICygtll%, = /R BT /Q Cyg' |7 da
n o j:l i

,
<[ lcygl dor Y [ 1oyl deser
R™\Qo j=17Q;

as Cygt<Cyyg.
(ii) Next we consider small cubes inside (Qp. Define

1
Cih(z):= sup = Z hrl, heVy.
Q3 QI =,
(Q)y<2™?

Then Cg(x)—0, as j— o0, for almost all , by Lemma 2.6 below. Since C;g<Cyge
L, (R"), it follows by dominated convergence that we can choose j<oo such that
Cj9llp» <e. Next choose 6>0 such that 3 o, o(r)<s lgrll<e27™|Qo| /7. Set

9¢ = .
@ 0, otherwise.

) {gQ, it QCQy and £(Q)<6,

‘We have

1

CygP(e) =max(Cigt @) sw 15 S lak])

Q3z |Q| RCQ
L(Q)>27’
< maX(ngQ(x), min(Z"j7 d(z,Qo)™") g2 |Q0|_1/p/)

< max(C;g%(x), | Qo™ min(1, d(x, Qo) ")),

where d(z, Qo):=inf,cq, |[r—y|. This shows that ||Cyg¢?|, Se, since
Imin(1, d(z, Qo) ™™l < Q0|7

It follows that g—g'—g? is finitely non-zero, with ||g* +g2Hyp, <e. O

Lemma 2.6. Let Qo€D and assume that 3, g aq<oo, where 0<ag<oo

for QCQq. Then
L| Z ar—0, asQ@Q>z, £(Q)—0,

@ RCQ
for almost all z€Qy.
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Proof. We argue by contradiction. Assume there exists § >0 such that

E:= {erO,hmsup 0] Za3>6}

Qa* RCQ

has positive measure. Let A::ZQCQ0 ag <oo. Choose j<oo such that we have
ZQCQO7Z(Q)>2_j ag>A—6|E|/2. Select the maximal cubes QrCQo, k=1,2, ...,
such that £(Qy)<277 and > _rcq, @r>06|Qk[. We get that EclUpe, Qk, where
the cubes Q) are disjoint. This gives

A= ag= ) agt ) ag
QCQo QCQo QCQo
2(Q)>277 L(Q)<2™’

> <A 6|E>+26|Q \>A+5|E|

which is a contradiction. The conclusion follows. O

3. The non-dyadic results

In this section, we derive the corresponding non-dyadic results on the Carleson
duality from the dyadic results in Section 2. We use the following notation. For
fixed constants co>1,¢; >0 and a>0, we use Whitney regions W (t, z), L, Whitney
averages W, f of functions fELlIOC(R}f"), and non-tangential maximal functions
N, f, as in the introduction. Also define the Carleson functionals

C"g(z) sup( // lg(t, x |Tdtdx> , z€R",
PERN[]

for 1<r<o0, and the Hardy—Littlewood maximal function

Mh(z):=sup — / y)dy, zeR™,
@3- Q|

for he LI°¢(R™). Here the suprema are over all (non-dyadic) axis-parallel cubes in
R" containing z. We write C'g=Cg when r=1.
We aim to prove the following non-dyadic version of Corollary 2.3.

Theorem 3.1. Let 1/p+1/p=1/q+1/G=1/r, with r<p<oo, r<g<oco and
1<r<oo. Then there is a constant 0<C <oo such that

1fallL, mieny < CUN«We )L, @) IC"(Wag)ll Ly ),
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VWl SC swp (gl ey
C™(Wag)llLz@mm)=1

[C"(Wag)llLyrny < C sup ||f9||LT(R§r+n).
INe(We f)llz,, (mrn)=1

For r=1, this means that there is a duality

(ro)— [[ | fodras

between the Banach spaces N, , and C}p 4, defined by the norms

£, = INe(We )L, ny and lglle,, = 1C"(Wyg)lr, @),

with 1/p+1/p'=1, 1/q+1/¢'=1, 1<p<oo and 1<g<oo. We also prove the follow-
ing non-dyadic version of Theorem 2.4.

Theorem 3.2. With the above notation, consider the duality (Np q,Cp q).
We have, for 1<q<oo, Cy o &Ny, for any 1<p<oo, as well as N1,,GC% ,

If 1<g<oo and 1<p<oo, then Np,=Cp, ..

Remark 3.3. (Relation to the Coifman—Meyer—Stein tent spaces.) It is immedi-
ate that for §=r, we have the pointwise equivalence C"(W39)=C"(W,.g)~C"g. For
r=2, this is the functional denoted simply by C' by Coifman, Meyer and Stein [5].
They show [5, Theorem 3] that there is further the L? equivalence

IC%(9)llz, @) = 1A%z, w7y =2 9]z, PE(2,00),

r=(ff et

is the area integral and T, is the tent space. Observe also that N,(Wiyg) is
pointwise dominated by the non-tangential maximal function of g with a different
aperture, and hence

where

[N (Wee )l L, ) = (| Nigll L, 7

In view of the previous observations, taking §=r=2 (and then ¢=00) in The-
orem 3.1, it gives the following characterization of pointwise multipliers from the
tent space T2 to Lo(R'"), where 1/p+1/p=1 and p>2,

1F9ll L, mismy < CIN L, ) ll9llTy 20
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INS iy € sup | Fllp gren,
lgllzy =1

lalr. <C s fgllmien
IN«fllz,@mny=1

On the other hand, Theorem 3.1 does not contain the known duality results
for these tent space, since duality in Theorem 3.1 corresponds to r=1, and for this
exponent the spaces appearing in the statement are outside the scale of classical
tent spaces as introduced by Coifman, Meyer and Stein.

Note that the norm of our space N, o is the same as the norm of the tent space
Ty, of Coifman, Meyer and Stein; however, our space consists of all measurable
functions for which this norm is finite, whereas the definition of 7T}, oo involves an
additional continuity condition, including certain continuity on the boundary of
R}f”. This explains the seeming contradiction between our duality result that
Co0,1 & N7 o and the well-known result of Coifman—Meyer—Stein that the dual of
T, coincides with the space of Carleson measures. In fact, our example which
shows the strict containment of the two spaces is precisely based on problems that
occur when approaching the boundary.

We prove Theorems 3.1 and 3.2 by showing equivalence of the corresponding
dyadic and non-dyadic norms. For this, we require the following two lemmata.

Lemma 3.4. Let 0<uc L*¢(RL™). Assume that WCU;yzl W; R, where
|W;|<CIW]| for j=1,...,N. Then for some 1<j<N, we have

1 1 1
— udtde > — | — udtdr ).
Wj|//wj _CN(|W| //W >

Proof. The conclusion follows directly from the inequalities

N
// udtdmﬁZ// udtdmﬁNmaX// udtdr. O
w j=1 Wj J W7

The following lemma uses the estimation technique from [7, Lemma 1].

Lemma 3.5. Consider two functions f,g: R"—[0,00). Assume that there are
constants 0<cy,ca<oco such that f(z)>\ implies g>c1 A on some set BCR™ with
O<sup{ly—z|;y€B}"™<co|B|. Then there is a constant 0<cz3<oo such that

£z, & <esllgll,®n),

for any 1<p<coc.
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Proof. Let A>0. Let Ex:={y;g(y)>c1A\} and consider the indicator (charac-
teristic) function 1g,. Let z€R™ be such that f(z)>A. Then, by hypothesis, there
exists a set BC F and the hypothesis implies that

M(1p)(2) el

> > = >0
sup{|ly—z|;y € B}" ~ ¢y

By the weak L;-boundedness of M, we have
{z; £(2) > A < [{z; M(15,)(2) 1 S [y [l = | ExL-

This proves the estimate for p=oc. For 1<p<oco, we estimate
[ 1t@Prde= [ =560 > Xpetis
n 0

5/ {z;9(z) > A} pA~tdA~ [ |g(z)|Pdz. O
0 Rn

In order to compare the Banach spaces N, 4 and C)p o with their dyadic coun-
terparts, we make the following definitions. With notation as in Section 2, denote
by NP the space X, with Xo=L4(Wg), so that

1 lvp, = N2, (£, -
Similarly denote by Cﬁq/ the space Y,y with Yo=L(Wg), so that
lollez_, = 1Cr, @)llz, o

In what follows, we shall identify functions f€LP¢(RL™™) and sequences { fotoen,
where foeLi(Wg), in the natural way, i.e. given f we set fq:=f|w,, and given
{fa}tqep we set fi=fq on Wy.

Proposition 3.6. Let 1<p<oo and 1<q<oo. Under the above identification,
the spaces Np 4 and N;’q are equal, with equivalent norms

[N W )llL,rm) = | N, (2, @)

In particular, up to equivalence of norms, the left-hand side is independent of the
ezxact choice of a>0, co>1 and ¢1 >0, and the right-hand side is independent of the
exact choice of dyadic system.
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Note that this shows that we here in fact can choose a=0, i.e. the vertical max-
imal function, for N,(W,f). This is because we already have some non-tangential
control in W f.

Proof. (i) To prove the estimate ||N.(W,f)|lL,®») 2Nz, (f)llz, @), We use
Lemma 3.5. Assume Np, f(z)>A. Then there is a cube Q€D such that z€@Q and

-1
Wol ™ fll,(weo) = A

Consider (non-dyadic) cubes W CR™™ with diam W =c, dist(W, R"). We fix c3>0
small enough, depending on ¢y and ¢y, so that

W cC ﬂ W(s,y).
(s,y)eW

It is clear that there is an integer N <oo such that Wy is the union of at most NV
such cubes W, uniformly for all ). Lemma 3.4 shows that one of these cubes W,
say Wo, has [Wol || fll,cwe) 2 A Tt follows that [W(t,2)| ™[ 1|1, w e 2\
for (¢t,x)eWy, and therefore N,(W,f)Z A on the projection BCR"™ of WocRI™,
and the stated estimate follows from Lemma 3.5.

(ii) Conversely, to prove the estimate || N.(W,f)|lL, &) SINL, ()2, ®"), We

again apply Lemma 3.5. Assume N, (W, f)(z)>A. Then

-1
W (t2)| ™ F Loy ow ey = A

for some (t, x) such that |x—z|<at. We see that there is an integer N <oo such that
W (t, x) is contained in the union of at most N dyadic Whitney regions W, with N
independent of (¢, ). Thus by Lemma 3.4, for some ¢>0, \WQ\_l/quHLq(WQ)zc)\
for one of these Q. Since Np (f)>cA on @ and dist (2, Q) St~4(Q), Lemma 3.5
completes the proof. [

Proposition 3.7. Let 1<p<oo and 1<q<oo. Under the above identification,
the spaces Cp o and Cqu/ are equal, with equivalent norms

ICWeg 9z, rm = CL, 9L, ®n)-
In particular, up to equivalence of norms, the left-hand side is independent of the

exact choice of co>1 and ¢1>0, and the right-hand side is independent of the exact
choice of dyadic system.



310 Tuomas Hyténen and Andreas Rosén

Proof. 1t is straightforward to check that the estimates below go through for
¢’ =00 by properly interpreting the integrals.
(i) To prove the estimate

ICWe 9z, w2 ICL, 9L, R,
assume that Cp_,g(2)>A. Then there is a cube Q€D such that z€Q and

1

a1 2 WP gl iy > A

RCQ

We claim that there is a constant ¢>0 such that

1 1 v
— —_ g 7 s dy dt dx
it e <|W<t,x>| [/ )

1 , vd
>c —// lg|? dtdx) .
<|WR| Wr
Given this estimate, it follows that

c)\<i Z/ Wq/gdtdx:i// Wy gdtde <C(Wyg)(z)dt de,
Q) RcQ” Y Wr Rl JJa

and hence c¢Cp ,g(2) <C(Wyg)(2), even pointwise, from which the inequality in
L, (R") follows.

To prove the claimed reverse Holder estimates, consider (non-dyadic) cubes
WCRM™ with diam W =c, dist(W, R™). We fix ¢, >0 small enough, depending on
co and cq, so that

we () Wis).
(s,y)eW

It is clear that there is an integer N <oo such that Wg is the union of at most N
such cubes W, uniformly for all R. Lemma 3.4 shows that one of these cubes W,

say Wy, has
i [, ot ez g [, o
— lg|? dtde—// lg|? dtdx.
Wol JJw, Wrl JJws
We obtain

Ll (v [ oa0)”
— S —— lg|? dsdy> dt dzx
|WR| Wr |W(t,$)| W (t,x)
1 1 , Y
> T lg|? dsdy> dt dx
[Wol //Wf)(lW(t’x)l //W(t,m)
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> 1 // ( 1 // ‘ ‘ , 1/1]/
> — — g|? dsdy> dt dx
Wol JJw, \IWol JJw,
1 , 1/‘1,
= = lg|? dtdx)
<|Wo| //WO

1 , ve
2\ = lg]? dtdaz) .
<|WR| //WR

(ii) Conversely, to prove the estimate |C(Wy 9L, SICL, 9llL, @n), as-
sume that C (W, g)(z)>A. Then there is a cube @ such that z€@ and

|22//AWq/gdtdx>)\.
Q

There is an integer N <oo such that (J, , .5 W(t, ) CU?L1 @j =:U for some dyadic
cubes Q; €D with (Q)<l(Q;)<N{(Q), 1<j<N. Note that we can choose N
independent of Q. Let h:=|g|1y and WR::U(t,w)eWR W (t, ), and note that there

are finitely many S€D such that W intersect W g (all with ¢(S)=~¢(R)), uniformly
in R. Then

1 ) 1/¢
NI < //@(W(t,xn //WW) " ds"y> drde

1 : Hd
=2 //WR(W(t,xn //W@,x) " My) e

ReD

, 1 , Ld
< |Wg|t—1/ (// <7 // ha dsdy) dtdx)
Z f wr \W(t,2)[ J Jw(e.2)

ReD

1/q
S [Welte <//w hd dtdx)
R

ReD

1/q
<Y st (//W h dtdx)

ReED  SeD
WsnW p#£2

1/q
=) Wyl (//WS h4 dtdx) oo

SeD __ ReD
WrNWs#9
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S D WYl e

SeD
WsCU

N
< Z |Q;|inf Cp 9.
= Qj

Thus there is ¢>0 and 1<j<N such that C’Lq,g>c/\ on @);. Lemma 3.5 applies
since we may assume that dist(z, Q;)S(Q)<l(Q,;). O

Proof of Theorem 3.1. The result follows from Corollary 2.3 and Proposi-
tions 3.6 and 3.7. Note that by replacing |f|" and |g|" by f and g, it suffices
to consider the case r=1. U

Proof of Theorem 3.2. The result follows from Theorem 2.4 and Proposi-
tions 3.6 and 3.7. O
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