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On the Carleson duality
Tuomas Hytönen and Andreas Rosén

Abstract. As a tool for solving the Neumann problem for divergence-form equations, Kenig

and Pipher introduced the space X of functions on the half-space, such that the non-tangential

maximal function of their L2 Whitney averages belongs to L2 on the boundary. In this paper,

answering questions which arose from recent studies of boundary value problems by Auscher and

the second author, we find the pre-dual of X , and characterize the pointwise multipliers from X to

L2 on the half-space as the well-known Carleson-type space of functions introduced by Dahlberg.

We also extend these results to Lp generalizations of the space X . Our results elaborate on the

well-known duality between Carleson measures and non-tangential maximal functions.

1. Introduction

A fundamental estimate in harmonic analysis is Carleson’s inequality for Car-
leson measures. See [3, Theorem 2] and [4, Theorem 1] for the original formu-
lations and applications in the theory of interpolating analytic functions, or for
example Stein [11, Section II.2.2] and Coifman, Meyer and Stein [5] for more re-
cent accounts in the framework of real-variable harmonic analysis. This inequality
states that for a function f(t, x) and a measure dμ(t, x) in the upper half-space
R1+n

+ :={(t, x);t>0 and x∈Rn}, one has the estimate
∫∫

R1+n
+

|f(t, x)| dμ(t, x) � sup
Q

(
μ(Q̂)

|Q|

) ∫
Rn

N∗f(y) dy,

where the supremum is over all cubes Q in Rn and Q̂:=(0, �(Q))×Q is the Carleson
box, �(Q) and |Q| being the sidelength and measure of Q. Furthermore N∗ denotes
the non-tangential maximal function

(N∗f)(y) := sup
{(t,x);|x−y|≤at}

|f(t, x)|, y ∈ Rn,

Andreas Rosén was earlier named Andreas Axelsson.



294 Tuomas Hytönen and Andreas Rosén

where a>0 is a fixed constant determining the aperture of the cone. The exact
value of a is less important, since for any a1, a2>0 the corresponding non-tangential
maximal functions N∗f are comparable in the Lp(Rn) norm for any 1≤p≤ ∞. See
Fefferman and Stein [7, Lemma 1].

Carleson’s inequality has numerous applications. Motivating for this paper
is its applications to boundary value problems for elliptic partial differential
equations. A recent application concerns boundary value problems for divergence-
form equations

divt,x A(t, x)∇t,xu(t, x)= 0,

with non-smooth coefficients A∈L∞(R1+n
+ ;C(1+n)×(1+n)) with uniformly positive

real part. To solve the Neumann problem with L2(Rn) boundary data, Kenig and
Pipher [9] introduced (a space equivalent to) the function space X consisting of func-
tions f(t, x), thought of as gradients of solutions u(t, x), with N∗(W2f)∈L2(Rn),
where

(Wqf)(t, x) := |W (t, x)| −1/q ‖f ‖Lq(W (t,x)), (t, x) ∈ R1+n
+ ,

is the Lq Whitney averaged function, with

W (t, x) :=
{

(x, y) ∈ R1+n
+ ; |y −x| <c1t and c−1

0 <
s

t
< c0

}

being the Whitney region around (t, x). (Again, the precise value of the fixed
constants c0>1 and c1>0 is less important.) The reason for replacing f by the
Whitney average W2f is that, unlike the potential u(t, x), the gradient f(t, x)=
∇t,xu(t, x) does not have classical interior pointwise De Giorgi–Nash–Moser bounds.

In the recent works of the second author with P. Auscher [1] and [2], the func-
tion space X above is fundamental. In these papers, new methods are developed to
solve the Neumann (as well as the Dirichlet) problem for systems of divergence-form
equations, which rely on solving certain operator-valued singular integral equations
in the function space X . Two questions arose, which motivated this paper.

• Which functions g(t, x) are bounded multipliers

X −→ L2(R1+n
+ ; dt dx),

f(t, x) �−→ g(t, x)f(t, x)?

It was shown [1, Lemma 5.5], using Carleson’s inequality, that g is a multiplier if
the modified Carleson norm

(1) sup
Q

(
1

|Q|

∫∫
bQ

W∞g(t, x)2 dt dx

)1/2
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is finite. We show in this paper (Theorem 3.1) that this modified Carleson norm in
fact is equivalent to the multiplier norm

‖g‖X →L2(R
1+n
+ ;dt dx) =sup

f �=0

( ‖gf ‖L2(R
1+n
+ ;dt dx)

‖f ‖ X

)
.

The modified Carleson norm (1) has been known for some time to be fundamental
in the perturbation theory for divergence-form equations. It was introduced already
by Dahlberg [6]. See also Fefferman, Kenig and Pipher [8] and Kenig and Pipher [9]
and [10].

• What is the dual, or pre-dual, space of X ? We show in this paper (Theo-
rem 3.2) that X is the dual space of the space of functions g(t, x) such that

∫
Rn

(
sup
Q�z

1
|Q|

∫∫
bQ

W2g(t, x) dt dx

)2

dz < ∞.

(We here identify a function f ∈ X with the functional g �→
∫∫

R1+n
+

fg dt dx.) Theo-
rem 3.2 also shows that the space X is not reflexive. The interest in understanding
duality for the space X comes from the dual relation between the Dirichlet problem
with L2(Rn) data and the Dirichlet problem with Sobolev H1(Rn) data. See [2,
Theorem 1.4] and [9, Theorem 5.4].

Beyond these two results, we prove more general Lp results for the Carleson
duality. On one hand, we consider not only W∞g and W2g, but more general Lq

Whitney averages. On the other hand, we measure the non-tangential maximal
function and the Carleson functional in Lp norms. For example, this may have
useful applications to boundary value problems with Lp data.

In Section 2, we first prove the corresponding results for a discrete vector-valued
model of the Carleson duality. Then in Section 3, we prove equivalence between
dyadic and non-dyadic norms, which yields the non-dyadic results.

The spaces we consider here are closely related to the tent spaces introduced
by Coifman, Meyer and Stein [5], and in fact reduce to them for certain choices of
the parameters. However, as a whole, the scale of spaces that we consider is new.
Since the precise connection to tent spaces is somewhat technical, we postpone a
more detailed commentary until Remark 3.3 below.

2. A discrete vector-valued model

In this section we study a dyadic model of the problem. We use the following
notation. Let D =

⋃
j∈Z Dj denote the dyadic cubes in Rn, where

Dj := {2−j(0, 1)n+2−jk ; k ∈ Zn}.
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Let WQ :=(�(Q)/2, �(Q))×Q denote the dyadic Whitney region, being in one-to-one
correspondence with Q∈ D. Note that unlike their non-dyadic counterparts W (t, x),
the regions WQ form a disjoint partition of R1+n

+ (modulo zero-sets). Define the
dyadic Hardy–Littlewood maximal function

MDh(x) := sup
Q:x∈Q∈D

1
|Q|

∫
Q

h(y) dy, x ∈ Rn,

for h∈Lloc
1 (Rn). Recall that MD is bounded on Lp(Rn), 1<p≤ ∞.

Our discrete vector-valued setup is as follows. We assume that to each Q∈ D,
there are two associated Banach spaces XQ and YQ. For a sequence f={fQ}Q∈D,
where fQ ∈ XQ, we define its non-tangential maximal function

(NX f)(x) := sup
Q:x∈Q∈D

‖fQ‖ XQ
, x ∈ Rn.

For fixed 1≤p<∞, let Xp denote the space of all sequences f such that ‖f ‖Xp :=
‖NX f ‖Lp(Rn)<∞. For a sequence g={gQ}Q∈D, where gQ ∈ YQ, we define the Car-
leson functional

(CY g)(x) := sup
Q:x∈Q∈D

1
|Q|

∑
R⊂Q
R∈D

‖gR‖ YR
, x ∈ Rn.

For a fixed number 1<p′ ≤ ∞, let Yp′ denote the space of all sequences g such that
‖g‖Yp′ :=‖CY g‖Lp′ (Rn)<∞. Note that the case p′ =1 is not interesting, since g=0
necessarily if ‖CY g‖L1(Rn)<∞.

We assume that for each Q∈ D there is a duality 〈 XQ, YQ〉 as below, with
constants C uniformly bounded with respect to Q.

Definition 2.1. Let X and Y be two Banach spaces. By a duality 〈 X , Y 〉, we
mean a bilinear map X × Y 
(f, g) �→〈f, g〉 ∈R and a constant 0<C<∞ such that

| 〈f, g〉| ≤ C‖f ‖ X ‖g‖ Y , f ∈ X , g ∈ Y ,

‖f ‖ X ≤ C sup
‖g‖ Y =1

〈f, g〉, f ∈ X ,

‖g‖Y ≤ C sup
‖f ‖ X =1

〈f, g〉, g ∈ Y .

We prove the following duality result.
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Theorem 2.2. Let { XQ}Q∈D and { YQ}Q∈D be pairwise dual Banach spaces
as above, and let 1/p+1/p′ =1, 1≤p<∞. Then there is a constant 0<C<∞ such
that

∑
Q∈D

| 〈fQ, gQ〉| ≤ C‖NX f ‖Lp(Rn)‖CY g‖Lp′ (Rn), fQ ∈ XQ, gQ ∈ YQ,

‖NX f ‖Lp(Rn) ≤ C sup
‖CY g‖L

p′ (Rn)=1

∑
Q∈D

〈fQ, gQ〉, fQ ∈ XQ,

‖CY g‖Lp′ (Rn) ≤ C sup
‖NX f ‖Lp(Rn)=1

∑
Q∈D

〈fQ, gQ〉, gQ ∈ YQ.

The application we have in mind is the following. For functions f(t, x) in
R1+n

+ , let fQ :=f |WQ
∈Lq(WQ)=:XQ, where the Banach space has norm ‖f ‖XQ

:=
|WQ| −1/q ‖fQ‖Lq(WQ) so that

NLqf = sup
Q:x∈Q∈D

|WQ| −1/q ‖f ‖Lq(WQ).

For functions g(t, x) in R1+n
+ , let gQ :=g|WQ

∈Lq̃(WQ)=:YQ, where the Banach
space has norm ‖g‖YQ

:=|WQ|1−1/q̃ ‖gQ‖Lq̃(WQ) so that

CLq̃f = sup
Q:x∈Q∈D

1
|Q|

∑
R⊂Q
R∈D

|WR|1−1/q̃ ‖g‖Lq̃(WR).

We generalize slightly the Carleson functional and define

Cr
Lq̃

f(x) = sup
Q:x∈Q∈D

(
1

|Q|
∑
R⊂Q
R∈D

|WR|(|WR| −1/q̃ ‖g‖Lq̃(WR))r

)1/r

for x∈Rn and 1≤r<∞.

Corollary 2.3. Let 1/p+1/p̃=1/q+1/q̃=1/r, with r ≤p<∞, r ≤q ≤ ∞ and
1≤r<∞. Then there is a constant 0<C<∞ such that

‖fg‖Lr(R1+n
+ ) ≤ C‖NLqf ‖Lp(Rn)‖Cr

Lq̃
g‖Lp̃(Rn),

‖NLqf ‖Lp(Rn) ≤ C sup
‖Cr

Lq̃
g‖Lp̃(Rn)=1

‖fg‖Lr(R1+n
+ ),

‖Cr
Lq̃

g‖Lp̃(Rn) ≤ C sup
‖NLq f ‖Lp(Rn)=1

‖fg‖Lr(R1+n
+ ).
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Note that the case p=q=r=2 solves a dyadic version of the multiplier question
for the space X from the introduction. In this case p̃=q̃=∞. Note also that the
case p=q=2, r=1, together with Theorem 2.4 below, solves a dyadic version of the
dual space question for the space X from the introduction. In this case p̃=q̃=2.

Proof. Replacing |f |r and |g|r by f and g, we see that it suffices to consider
the case r=1. In this case, the result follows from Theorem 2.2. �

Proof of Theorem 2.2. (i) For completeness, we start with the well-known proof
of the

∑
Q | 〈fQ, gQ〉| estimate. It suffices to estimate

∑
Q ‖fQ‖ ‖gQ‖. Note that

∑
R⊂Q

‖gR‖ ≤ |Q| inf
x∈Q

CY g(x) ≤
∫

Q

CY g dx

for any Q∈ D. Select, for given k ∈Z, the maximal dyadic cubes Dk ⊂ D such that
‖fQ‖>2k. Then

⋃
Q∈Dk Q={x∈Rn ;NX f(x)>2k }, and the cubes in Dk are disjoint.

We get
∑

Q:‖fQ ‖>2k

‖gQ‖ ≤
∑

Q∈Dk

∑
R⊂Q

‖gR‖ ≤
∑

Q∈Dk

∫
Q

CY g dx=
∫

x:NX f(x)>2k

CY g dx,

and hence
∑
Q∈D

‖fQ‖ ‖gQ‖ ≈
∑
Q∈D

∑
k:2k<‖fQ ‖

2k ‖gQ‖

=
∑
k∈Z

2k
∑

Q:‖fQ ‖>2k

‖gQ‖

≤
∑
k∈Z

2k

∫
x:NX f(x)>2k

CY g dx

=
∫
Rn

∑
k:2k<NX f(x)

2kCY g dx

≈
∫
Rn

NX fCY g dx

≤ ‖NX f ‖p‖CY g‖p′ .

(ii) Next we prove the estimate of ‖CY g‖p′ . Consider first the case p′ =∞. Pick
Q∈ D such that

1
|Q|

∑
R⊂Q

‖gR‖ ≥ 1
2 ‖CY g‖ ∞.
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Then construct f={fR}R∈D, choosing fR ∈ XR so that ‖fR‖=1/|Q| and ‖gR‖/|Q| ≈
〈fR, gR〉 if R⊂Q, and fR :=0 if R �⊂Q. It follows that ‖CY g‖ ∞ ≈

∑
R〈fR, gR〉 and

‖NX f ‖1=1 since NX f=1/|Q| on Q and NX f=0 off Q.
Next consider the case 1<p′ <∞. Select, for given k ∈Z, the maximal dyadic

cubes Dk ⊂ D such that
1

|Q|
∑
R⊂Q

‖gR‖ > 2k.

Then {x∈Rn ;CY g(x)>2k }=
⋃

Q∈Dk Q, and the cubes in Dk are disjoint. We obtain

| {x ; CY g(x) > 2k } | =
∑

Q∈Dk

|Q| ≤ 2−k
∑

Q∈Dk

∑
R⊂Q

‖gR‖.

Now let

f̂R :=
1

|R|

∫
R

CY g dx.

Note that f̂R does not depend on k, and that f̂R>2k for R⊂Q∈ Dk. We get
| {x;CY g(x)>2k }| ≤2−k

∑
R:f̂R>2k ‖gR‖ and

‖CY g‖p′

p′ ≈
∑
k∈Z

2p′k | {x ; CY g(x) > 2k }|

≤
∑
R∈D

∑
k:2k<f̂R

2(p′ −1)k ‖gR‖ ≈
∑
R∈D

(f̂R)p′ −1‖gR‖.

Now construct f={fR}R∈D, choosing fR ∈ XR such that

‖fR‖ =(f̂R)p′ −1 and (f̂R)p′ −1‖gR‖ ≈ 〈fR, gR〉.

We get
NX f(x) = sup

Q�x
(f̂Q)p′ −1 =(MD(CY g)(x))p′ −1.

Since p(p′ −1)=p′, this gives

‖NX f ‖p
p = ‖MD(CY g)‖p′

p′ � ‖CY g‖p′

p′ ,

and we conclude that
∑
Q

〈fQ, gQ〉 � ‖CY g‖p′

p′ � ‖CY g‖p′ ‖NX f ‖p.

(iii) Next we prove the estimate of ‖NX f ‖p. Consider first the case 1<p<

∞. Select, for given k ∈Z, the maximal dyadic cubes Dk ⊂ D such that ‖fQ‖>2k.
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Then {x∈Rn ;NX f(x)>2k }=
⋃

Q∈Dk Q, and the cubes in Dk are disjoint. Write
kQ :=maxQ∈Dk k ≤log2 ‖fQ‖. We obtain

‖NX f ‖p
p ≈

∑
k∈Z

2kp| {x ; NX f(x) > 2k } | =
∑
Q∈D

|Q|
∑

k:Q∈Dk

2kp

≈
∑
Q∈D

|Q|2kQp =
∑
Q∈D

2kQ |Q|2kQ(p−1) ≈
∑
Q∈D

‖fQ‖
(

|Q|
∑

k:Q∈Dk

2k(p−1)

)
.

Write ĝQ :=|Q|
∑

k:Q∈Dk 2k(p−1) and construct g={gQ}Q∈D, choosing gQ ∈ YQ such
that ‖gQ‖=ĝQ and ‖fQ‖ ‖gQ‖ ≈ 〈fQ, gQ〉. Then

1
|Q|

∑
R⊂Q

‖gR‖ �
∑
k∈Z

2k(p−1) 1
|Q|

∑
R⊂Q

R∈Dk

|R|

=
∑
k∈Z

2k(p−1) 1
|Q| | {x ; NX f(x) > 2k } ∩Q|

≈ 1
|Q|

∫
Q

(NX f)p−1 dx

≤ inf
Q

MD((NX f)p−1),

and therefore ‖CY g‖p′

p′ �‖(NX f)p−1‖p′

p′ =‖NX f ‖p
p, since p′(p−1)=p. We conclude

that ∑
Q∈D

〈fQ, gQ〉 � ‖NX f ‖p
p � ‖CY g‖p′ ‖NX f ‖p.

(iii′) We finally prove the estimate of ‖NX f ‖1, i.e. the case p=1. Let D0 be
the 2n dyadic cubes with sidelength 2M and one corner at the origin, where M is
chosen large enough, using the monotone convergence theorem, so that ‖NX f̃ ‖1 ≥
1
2 ‖NX f ‖1, where f̃Q :=fQ if Q⊂Q0 for some Q0 ∈ D0, and f̃Q :=0 otherwise. As-
suming the estimate proved for f̃ , we have

‖NX f̃ ‖1 �
∑

Q〈f̃Q, gQ〉
‖CY g‖ ∞

,

where we may assume gQ=0 unless Q⊂Q0 for some Q0 ∈ D0. This yields

‖NX f ‖1 ≤ 2‖NX f̃ ‖1 �
∑
Q

〈f̃Q, gQ〉
‖CY g‖ ∞

�
∑
Q

〈fQ, gQ〉
‖CY g‖ ∞

.

Thus, replacing f by f̃ , we may assume that fQ=0 unless Q⊂Q0 for some Q0 ∈ D0.
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Given f contained by D0 as above, we define recursively sets of disjoint dyadic
cubes Dj ⊂ D, j=1, 2, 3, ..., as follows. Having constructed Dj , let Q∈ Dj . Define
Dj+1

Q to be the set of maximal dyadic cubes R∈ D such that R⊂Q and ‖fR‖>2‖fQ‖.
Then let Dj+1 :=

⋃
Q∈Dj Dj+1

Q . Furthermore, let Df :=
⋃∞

j=1 Dj and

E(Q) :=Q\
⋃

R∈Dj+1
Q

R, Q ∈ Dj .

From the above construction, if x∈Qk ⊂Qk−1 ⊂...⊂Q0, where Qj ∈ Dj , then
‖fQk

‖>2k−1‖fQ1 ‖, k=2, 3, ..., where ‖fQ1 ‖>0. Hence, if NX f(x)<∞, then there
is a minimal Q
x with Q∈ Df . For this Q, we have x∈E(Q) and NX f(x)≤2‖fQ‖.
Thus

(2) NX f ≤ 2
∑

Q∈Df

‖fQ‖ 1E(Q) a.e.

so that ‖NX f ‖1 ≤2
∑

Q∈Df ‖fQ‖ |Q|. Conversely, if x∈Qk ⊂Qk−1 ⊂...⊂Q0, where
Qj ∈ Dj , are all the selected dyadic cubes containing x, then NX f(x)≥ ‖fQk

‖ ≥
2‖fQk−1 ‖ ≥...≥2k ‖fQ0 ‖. Thus

∑
Q∈Df

‖fQ‖ |Q| =
∫
Rn

∑
Q∈Df

Q�x

‖fQ‖ dx ≤
∫
Rn

NX f
∞∑

j=0

2−j dx ≤ 2‖NX f ‖1.

Now let c∈(0, 1) be a constant, to be chosen below, and define

Df
1 := {Q ∈ Df ; |E(Q)| >c|Q| } and Df

2 := Df \ Df
1 .

From (2) we have

‖NX f ‖1 ≤ 2
∑

Q∈Df
1

‖fQ‖ |Q|+2c
∑

Q∈Df
2

‖fQ‖ |Q| ≤ 2
∑

Q∈Df
1

‖fQ‖ |Q|+4c‖NX f ‖1.

Choose c= 1
8 to obtain ‖NX f ‖1 ≤4

∑
Q∈Df

1
‖fQ‖ |Q|. Construct g={gQ}Q∈D, choos-

ing gQ ∈ YQ such that ‖gQ‖=|Q| and 〈fQ, gQ〉 ≈ ‖fQ‖ |Q| if Q∈ Df
1 , and gQ :=0 oth-

erwise. Then ‖NX f ‖1�
∑

Q∈Df
1

〈fQ, gQ〉. To estimate

1
|Q|

∑
R⊂Q

‖gR‖ =
1

|Q|
∑
R⊂Q

R∈Df
1

|R|,
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note that if R∈ Df
1 ∩ Dj , then

∑
R′ ∈Dj+1

R
|R′ | ≤ 7

8 |R|. Thus

1
|Q|

∑
R⊂Q

R∈Df
1

|R| ≤ 1
|Q|

∞∑
j=0

(
7
8

)j |Q| =8.

Thus ‖CY g‖ ∞ ≤8. This completes the proof of the theorem. �

Consider now a duality 〈X , Y 〉 between two Banach spaces X and Y as in
Definition 2.1. We define the linear map L : X →Y ∗ sending f ∈ X to the linear
functional

Λf : Y −→ R,

g �−→ 〈f, g〉.

The estimate | 〈f, g〉| ≤C‖f ‖X ‖g‖ Y shows that ‖L‖X →Y ∗ ≤C, whereas it follows
from the estimate ‖f ‖X ≤C sup‖g‖ Y =1〈f, g〉 that L is injective with closed range
L(X )⊂ Y ∗. Thus the duality gives a topological, but not in general isometric, iden-
tification, through L, of X with the closed subspace L(X ) of Y ∗. The estimate
‖g‖Y ≤C sup‖f ‖ X =1〈f, g〉 furthermore shows that this subspace is “large” in the
sense that its pre-annihilator is

⊥L(X ) := {g ∈ Y ; Λg =0 for all Λ ∈ L(X )} = {0}.

In general we may have that L(X )�Y ∗, but if Y is reflexive, then necessarily
L(X )=Y ∗. Below we identify X and L(X ), and thus write X =Y ∗ if L(X )=Y ∗. We
also note that the above also holds with the roles of X and Y interchanged, giving
an identification of Y with a large closed subspace of X ∗.

The following result describes when the duality in Theorem 2.2 gives the full
dual spaces.

Theorem 2.4. With the above notation, consider the duality 〈 Xp, Yp′ 〉,

(f, g) �−→
∑
Q∈D

〈fQ, gQ〉

from Theorem 2.2. We have Yp′ �X ∗
p for any 1≤p<∞, as well as X1�Y ∗

∞.
If furthermore the duality 〈XQ, YQ〉 is such that XQ=Y ∗

Q for all Q∈ D, and if
1<p<∞, then Xp=Y ∗

p′ .
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Proof. (i) We first prove that X1�Y ∗
∞. Let Q1�Q2�Q3�... be dyadic cubes.

Define the functionals Λjg :=〈fQj , gQj 〉 on Y ∞, where we have chosen fQj ∈ XQj

such that ‖fQj ‖=1/|Qj |. It is clear that ‖Λj ‖ Y ∗
∞ ≈1. Consider the sequence space

�∞(Z+) and use Hahn–Banach’s theorem to construct lim∈�∞(Z+)∗ such that

lim({xn} ∞
n=1) = lim

n→∞
xn

for all convergent sequences {xn} ∞
n=1. Set Λg :=lim({Λjg} ∞

j=1). It is straightforward
to verify that Λ∈ Y ∗

∞ \ X1.
(ii) We next prove that Yp′ �X ∗

p for 1≤p<∞. Fix some cube Q0 ∈ D with
�(Q)=1. Define functionals

Λjf :=
∑

R⊂Q0

�(R)=2−j

〈fR, gR〉

on Xp, where gR ∈ YR is chosen such that ‖gR‖=|R|. Then

|Λjf | �
∑

R⊂Q0

�(R)=2−j

‖fR‖ |R| ≤
∫

Q0

NX f dx ≤ ‖NX f ‖p.

Define Λf :=lim({Λjf } ∞
j=1). It is straightforward to verify that Λ∈ X ∗

p \ Yp′ .
(iii) Finally we assume that XQ=Y ∗

Q and 1<p<∞, and aim to show that
Xp=Y ∗

p′ . Let Λ∈ Y ∗
p′ , and let Q∈ D. Pick fQ ∈ XQ=Y ∗

Q such that 〈fQ, gQ〉=
Λ({gQδQR}R∈D) for all gQ ∈ YQ, where δQR=1 if R=Q and δQR=0 otherwise. Let
f :={fQ}Q∈D. Then

(3) Λg =
∑
Q∈D

〈fQ, gQ〉

holds whenever gQ �=0 only for finitely many Q. From the monotone convergence
theorem it follows that ‖NX f ‖p�‖Λ‖ Y ∗

p′ , so that f ∈ Xp. We now use Lemma 2.5
below to deduce that (3) holds for all g ∈ Yp′ by continuity. �

Lemma 2.5. Assume that 1<p′ <∞. Then the subspace consisting of se-
quences g={gQ}Q∈D with gQ �=0 for finitely many Q∈ D, is dense in Yp′ .

Proof. (i) Let g ∈ Yp′ and let ε>0. Let Q1, ..., Q2n be the dyadic cubes with
one corner at the origin and sidelength 2M . Choose M large enough so that∫
Rn \Q0

|CY g|p′
dx≤εp′

, where Q0 :=Q1 ∪...∪Q2n . Set

g1
Q :=

{
gQ, Q �⊂Q0,

0, Q⊂Q0.
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Let Q′
j be a sibling of Qj , 1≤j ≤2n. Since g1

Q=0 for Q⊂Qj , it is clear that we have
supQj

CY g ≤infQ′
j
CY g. Therefore

‖CY g1‖p′

p′ =
∫
Rn \Q0

|CY g1|p
′
dx+

2n∑
j=1

∫
Qj

|CY g1|p
′
dx

≤
∫
Rn \Q0

|CY g|p
′
dx+

2n∑
j=1

∫
Q′

j

|CY g|p
′
dx� εp′

,

as CY g1 ≤CY g.
(ii) Next we consider small cubes inside Q0. Define

Cjh(x) := sup
Q�x

�(Q)≤2−j

1
|Q|

∑
R⊂Q

‖hR‖, h ∈ Yp′ .

Then Cjg(x)→0, as j→∞, for almost all x, by Lemma 2.6 below. Since Cjg ≤CY g ∈
Lp′ (Rn), it follows by dominated convergence that we can choose j<∞ such that
‖Cjg‖p′ ≤ε. Next choose δ>0 such that

∑
R:R⊂Q0,�(R)≤δ ‖gR‖ ≤ε2−nj |Q0| −1/p′

. Set

g2
Q :=

{
gQ, if Q⊂Q0 and �(Q)≤δ,

0, otherwise.

We have

CY g2(x) = max
(

Cjg
2(x), sup

Q�x
�(Q)>2−j

1
|Q|

∑
R⊂Q

‖g2
R‖

)

≤ max(Cjg
2(x), min(2nj , d(x, Q0)−n) ε2−nj |Q0| −1/p′

)

≤ max(Cjg
2(x), ε|Q0| −1/p′

min(1, d(x, Q0)−n)),

where d(x, Q0):=infy∈Q0 |x−y|. This shows that ‖CY g2‖p′ �ε, since

‖min(1, d(x, Q0)−n)‖p′ � |Q0|1/p′
.

It follows that g −g1 −g2 is finitely non-zero, with ‖g1+g2‖ Yp′ �ε. �

Lemma 2.6. Let Q0 ∈ D and assume that
∑

Q⊂Q0
aQ<∞, where 0≤aQ<∞

for Q⊂Q0. Then
1

|Q|
∑
R⊂Q

aR → 0, as Q 
 x, �(Q)→ 0,

for almost all x∈Q0.
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Proof. We argue by contradiction. Assume there exists δ>0 such that

E :=
{

x ∈ Q0 ; lim sup
Q�x

�(Q)→0

1
|Q|

∑
R⊂Q

aR >δ

}

has positive measure. Let A:=
∑

Q⊂Q0
aQ<∞. Choose j<∞ such that we have∑

Q⊂Q0,�(Q)>2−j aQ>A−δ|E|/2. Select the maximal cubes Qk ⊂Q0, k=1, 2, ...,
such that �(Qk)≤2−j and

∑
R⊂Qk

aR>δ|Qk |. We get that E ⊂
⋃∞

k=1 Qk, where
the cubes Qk are disjoint. This gives

A =
∑

Q⊂Q0

aQ =
∑

Q⊂Q0

�(Q)>2−j

aQ+
∑

Q⊂Q0

�(Q)≤2−j

aQ

≥
(

A− δ|E|
2

)
+

∞∑
k=1

δ|Qk | ≥ A+
δ|E|

2
,

which is a contradiction. The conclusion follows. �

3. The non-dyadic results

In this section, we derive the corresponding non-dyadic results on the Carleson
duality from the dyadic results in Section 2. We use the following notation. For
fixed constants c0>1, c1>0 and a>0, we use Whitney regions W (t, x), Lq Whitney
averages Wqf of functions f ∈Lloc

q (R1+n
+ ), and non-tangential maximal functions

N∗f , as in the introduction. Also define the Carleson functionals

Crg(z) := sup
Q�z

(
1

|Q|

∫∫
bQ

|g(t, x)|r dt dx

)1/r

, z ∈ Rn,

for 1≤r<∞, and the Hardy–Littlewood maximal function

Mh(z) := sup
Q�z

1
|Q|

∫
Q

h(y) dy, z ∈ Rn,

for h∈Lloc
1 (Rn). Here the suprema are over all (non-dyadic) axis-parallel cubes in

Rn containing z. We write C1g=Cg when r=1.
We aim to prove the following non-dyadic version of Corollary 2.3.

Theorem 3.1. Let 1/p+1/p̃=1/q+1/q̃=1/r, with r ≤p<∞, r ≤q ≤ ∞ and
1≤r<∞. Then there is a constant 0<C<∞ such that

‖fg‖Lr(R1+n
+ ) ≤ C‖N∗(Wqf)‖Lp(Rn)‖Cr(Wq̃g)‖Lp̃(Rn),
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‖N∗(Wqf)‖Lp(Rn) ≤ C sup
‖Cr(Wq̃g)‖Lp̃(Rn)=1

‖fg‖Lr(R1+n
+ ),

‖Cr(Wq̃g)‖Lp̃(Rn) ≤ C sup
‖N∗(Wqf)‖Lp(Rn)=1

‖fg‖Lr(R1+n
+ ).

For r=1, this means that there is a duality

(f, g) �−→
∫∫

R1+n
+

fg dt dx

between the Banach spaces Np,q and Cp′,q′ , defined by the norms

‖f ‖Np,q := ‖N∗(Wqf)‖Lp(Rn) and ‖g‖Cp′ ,q′ := ‖C1(Wq′ g)‖Lp′ (Rn),

with 1/p+1/p′ =1, 1/q+1/q′ =1, 1≤p<∞ and 1≤q ≤ ∞. We also prove the follow-
ing non-dyadic version of Theorem 2.4.

Theorem 3.2. With the above notation, consider the duality 〈Np,q, Cp′,q′ 〉.
We have, for 1≤q ≤ ∞, Cp′,q′ �N ∗

p,q for any 1≤p<∞, as well as N1,q�C∗
∞,q′ .

If 1<q ≤ ∞ and 1<p<∞, then Np,q=C∗
p′,q′ .

Remark 3.3. (Relation to the Coifman–Meyer–Stein tent spaces.) It is immedi-
ate that for q̃=r, we have the pointwise equivalence Cr(Wq̃g)=Cr(Wrg)≈Crg. For
r=2, this is the functional denoted simply by C by Coifman, Meyer and Stein [5].
They show [5, Theorem 3] that there is further the Lp equivalence

‖C2(g)‖Lp(Rn) ≈ ‖A2(g)‖Lp(Rn) =: ‖g‖Tp,2 , p ∈ (2, ∞),

where

A2(g) :=
(∫∫

|y−x|<t

|g(t, y)|2 dt dy

tn

)1/2

is the area integral and Tp,2 is the tent space. Observe also that N∗(W∞g) is
pointwise dominated by the non-tangential maximal function of g with a different
aperture, and hence

‖N∗(W∞g)‖Lp(Rn) ≈ ‖N∗g‖Lp(Rn).

In view of the previous observations, taking q̃=r=2 (and then q=∞) in The-
orem 3.1, it gives the following characterization of pointwise multipliers from the
tent space Tp̃,2 to L2(R1+n), where 1/p+1/p̃= 1

2 and p̃>2,

‖fg‖L2(R
1+n
+ ) ≤ C‖N∗f ‖Lp(Rn)‖g‖Tp̃,2 ,
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‖N∗f ‖Lp(Rn) ≤ C sup
‖g‖Tp̃,2=1

‖fg‖L2(R
1+n
+ ),

‖g‖Tp̃,2 ≤ C sup
‖N∗f ‖Lp(Rn)=1

‖fg‖L2(R
1+n
+ ).

On the other hand, Theorem 3.1 does not contain the known duality results
for these tent space, since duality in Theorem 3.1 corresponds to r=1, and for this
exponent the spaces appearing in the statement are outside the scale of classical
tent spaces as introduced by Coifman, Meyer and Stein.

Note that the norm of our space Np,∞ is the same as the norm of the tent space
Tp,∞ of Coifman, Meyer and Stein; however, our space consists of all measurable
functions for which this norm is finite, whereas the definition of Tp,∞ involves an
additional continuity condition, including certain continuity on the boundary of
R1+n

+ . This explains the seeming contradiction between our duality result that
C∞,1�N ∗

1,∞ and the well-known result of Coifman–Meyer–Stein that the dual of
T1,∞ coincides with the space of Carleson measures. In fact, our example which
shows the strict containment of the two spaces is precisely based on problems that
occur when approaching the boundary.

We prove Theorems 3.1 and 3.2 by showing equivalence of the corresponding
dyadic and non-dyadic norms. For this, we require the following two lemmata.

Lemma 3.4. Let 0≤u∈Lloc
1 (R1+n

+ ). Assume that W ⊂
⋃N

j=1 Wj ⊂R1+n
+ , where

|Wj | ≤C|W | for j=1, ..., N . Then for some 1≤j ≤N , we have

1
|Wj |

∫∫
Wj

u dt dx ≥ 1
CN

(
1

|W |

∫∫
W

u dt dx

)
.

Proof. The conclusion follows directly from the inequalities
∫∫

W

u dt dx ≤
N∑

j=1

∫∫
Wj

u dt dx ≤ N max
j

∫∫
Wj

u dt dx. �

The following lemma uses the estimation technique from [7, Lemma 1].

Lemma 3.5. Consider two functions f, g : Rn→[0, ∞). Assume that there are
constants 0<c1, c2<∞ such that f(z)>λ implies g>c1λ on some set B ⊂Rn with
0<sup{|y −z|;y ∈B}n ≤c2|B|. Then there is a constant 0<c3<∞ such that

‖f ‖Lp(Rn) ≤ c3‖g‖Lp(Rn),

for any 1≤p≤ ∞.
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Proof. Let λ>0. Let Eλ :={y ;g(y)>c1λ} and consider the indicator (charac-
teristic) function 1Eλ

. Let z ∈Rn be such that f(z)>λ. Then, by hypothesis, there
exists a set B ⊂Eλ and the hypothesis implies that

M(1Eλ
)(z) � |B|

sup{ |y −z| ; y ∈ B}n
≥ 1

c2
> 0.

By the weak L1-boundedness of M , we have

| {z ; f(z) >λ} | ≤ | {z ; M(1Eλ
)(z) � 1}| � ‖1Eλ

‖1 = |Eλ|.

This proves the estimate for p=∞. For 1≤p<∞, we estimate

∫
Rn

|f(x)|p dx =
∫ ∞

0

| {z ; f(z) >λ} |pλp−1 dλ

�
∫ ∞

0

| {z ; g(z) >c1λ}|pλp−1 dλ ≈
∫
Rn

|g(x)|p dx. �

In order to compare the Banach spaces Np.q and Cp′,q′ with their dyadic coun-
terparts, we make the following definitions. With notation as in Section 2, denote
by N D

p,q the space Xp with XQ=Lq(WQ), so that

‖f ‖N D
p,q

= ‖NLq (f)‖Lp(Rn).

Similarly denote by CD
p′,q′ the space Yp′ with YQ=Lq′ (WQ), so that

‖g‖CD
p′ ,q′

= ‖CLq′ (g)‖Lp′ (Rn).

In what follows, we shall identify functions f ∈Lloc
1 (R1+n

+ ) and sequences {fQ}Q∈D,
where fQ ∈L1(WQ), in the natural way, i.e. given f we set fQ :=f |WQ

, and given
{fQ}Q∈D we set f :=fQ on WQ.

Proposition 3.6. Let 1≤p<∞ and 1≤q ≤ ∞. Under the above identification,
the spaces Np,q and N D

p,q are equal, with equivalent norms

‖N∗(Wqf)‖Lp(Rn) ≈ ‖NLq (f)‖Lp(Rn).

In particular, up to equivalence of norms, the left-hand side is independent of the
exact choice of a≥0, c0>1 and c1>0, and the right-hand side is independent of the
exact choice of dyadic system.
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Note that this shows that we here in fact can choose a=0, i.e. the vertical max-
imal function, for N∗(Wqf). This is because we already have some non-tangential
control in Wqf .

Proof. (i) To prove the estimate ‖N∗(Wqf)‖Lp(Rn)�‖NLq (f)‖Lp(Rn), we use
Lemma 3.5. Assume NLqf(z)>λ. Then there is a cube Q∈ D such that z ∈Q and

|WQ| −1/q ‖f ‖Lq(WQ) ≥ λ.

Consider (non-dyadic) cubes W ⊂R1+n
+ with diam W =c2 dist(W,Rn). We fix c2>0

small enough, depending on c0 and c1, so that

W ⊂
⋂

(s,y)∈W

W (s, y).

It is clear that there is an integer N<∞ such that WQ is the union of at most N

such cubes W , uniformly for all Q. Lemma 3.4 shows that one of these cubes W ,
say W0, has |W0| −1/q ‖f ‖Lq(W0)�λ. It follows that |W (t, x)| −1/q ‖f ‖Lq(W (t,x))�λ

for (t, x)∈W0, and therefore N∗(Wqf)�λ on the projection B ⊂Rn of W0 ⊂R1+n
+ ,

and the stated estimate follows from Lemma 3.5.
(ii) Conversely, to prove the estimate ‖N∗(Wqf)‖Lp(Rn)�‖NLq (f)‖Lp(Rn), we

again apply Lemma 3.5. Assume N∗(Wqf)(z)>λ. Then

|W (t, x)| −1/q ‖f ‖Lq(W (t,x)) ≥ λ

for some (t, x) such that |x−z| ≤at. We see that there is an integer N<∞ such that
W (t, x) is contained in the union of at most N dyadic Whitney regions WQ, with N

independent of (t, x). Thus by Lemma 3.4, for some c>0, |WQ| −1/q ‖f ‖Lq(WQ) ≥cλ

for one of these Q. Since NLq (f)>cλ on Q and dist (z, Q)�t≈�(Q), Lemma 3.5
completes the proof. �

Proposition 3.7. Let 1≤p<∞ and 1≤q ≤ ∞. Under the above identification,
the spaces Cp′,q′ and CD

p′,q′ are equal, with equivalent norms

‖C(Wq′ g)‖Lp′ (Rn) ≈ ‖CLq′ g‖Lp′ (Rn).

In particular, up to equivalence of norms, the left-hand side is independent of the
exact choice of c0>1 and c1>0, and the right-hand side is independent of the exact
choice of dyadic system.
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Proof. It is straightforward to check that the estimates below go through for
q′ =∞ by properly interpreting the integrals.

(i) To prove the estimate

‖C(Wq′ g)‖Lp′ (Rn) � ‖CLq′ g‖Lp′ (Rn),

assume that CLq′ g(z)>λ. Then there is a cube Q∈ D such that z ∈Q and

1
|Q|

∑
R⊂Q

|WR|1−1/q′
‖g‖Lq′ (WR) >λ.

We claim that there is a constant c>0 such that

1
|WR|

∫∫
WR

(
1

|W (t, x)|

∫∫
W (t,x)

|g|q
′
ds dy

)1/q′

dt dx

≥ c

(
1

|WR|

∫∫
WR

|g|q
′
dt dx

)1/q′

.

Given this estimate, it follows that

cλ <
1

|Q|
∑
R⊂Q

∫∫
WR

Wq′ g dt dx=
1

|Q|

∫∫
bQ

Wq′ g dt dx ≤ C(Wq′ g)(z) dt dx,

and hence c CLq′ g(z)≤C(Wq′ g)(z), even pointwise, from which the inequality in
Lp′ (Rn) follows.

To prove the claimed reverse Hölder estimates, consider (non-dyadic) cubes
W ⊂R1+n

+ with diam W =c2 dist(W,Rn). We fix c2>0 small enough, depending on
c0 and c1, so that

W ⊂
⋂

(s,y)∈W

W (s, y).

It is clear that there is an integer N<∞ such that WR is the union of at most N

such cubes W , uniformly for all R. Lemma 3.4 shows that one of these cubes W ,
say W0, has

1
|W0|

∫∫
W0

|g|q
′
dt dx� 1

|WR|

∫∫
WR

|g|q
′
dt dx.

We obtain

1
|WR|

∫∫
WR

(
1

|W (t, x)|

∫∫
W (t,x)

|g|q
′
ds dy

)1/q′

dt dx

� 1
|W0|

∫∫
W0

(
1

|W (t, x)|

∫∫
W (t,x)

|g|q
′
ds dy

)1/q′

dt dx
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� 1
|W0|

∫∫
W0

(
1

|W0|

∫∫
W0

|g|q
′
ds dy

)1/q′

dt dx

=
(

1
|W0|

∫∫
W0

|g|q
′
dt dx

)1/q′

�
(

1
|WR|

∫∫
WR

|g|q
′
dt dx

)1/q′

.

(ii) Conversely, to prove the estimate ‖C(Wq′ g)‖Lp′ (Rn)�‖CLq′ g‖Lp′ (Rn), as-
sume that C(Wq′ g)(z)>λ. Then there is a cube Q such that z ∈Q and

1
|Q|

∫∫
bQ

Wq′ g dt dx>λ.

There is an integer N<∞ such that
⋃

(t,x)∈ bQ W (t, x)⊂
⋃N

j=1 Q̂j =:U for some dyadic

cubes Qj ∈ D with �(Q)≤�(Qj)≤N�(Q), 1≤j ≤N . Note that we can choose N

independent of Q. Let h:=|g|1U and W̃R :=
⋃

(t,x)∈WR
W (t, x), and note that there

are finitely many S ∈ D such that WS intersect W̃R (all with �(S)≈�(R)), uniformly
in R. Then

λ|Q| <

∫∫
bQ

(
1

|W (t, x)|

∫∫
W (t,x)

hq′
ds dy

)1/q′

dt dx

=
∑
R∈D

∫∫
WR

(
1

|W (t, x)|

∫∫
W (t,x)

hq′
ds dy

)1/q′

dt dx

≤
∑
R∈D

|WR|1−1/q′
(∫∫

WR

(
1

|W (t, x)|

∫∫
W (t,x)

hq′
ds dy

)
dt dx

)1/q′

�
∑
R∈D

|WR|1−1/q′
(∫∫

fW R

hq′
dt dx

)1/q′

�
∑
R∈D

∑
S∈D

WS ∩fW R �=∅

|WS |1−1/q′
(∫∫

WS

hq′
dt dx

)1/q′

=
∑
S∈D

|WS |1−1/q′
(∫∫

WS

hq′
dt dx

)1/q′ ∑
R∈D

fW R ∩WS �=∅

1
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�
∑
S∈D

WS ⊂U

|WS |1−1/q′
‖g‖Lq′ (WS)

≤
N∑

j=1

|Qj | inf
Qj

CLq′ g.

Thus there is c>0 and 1≤j ≤N such that CLq′ g>cλ on Qj . Lemma 3.5 applies
since we may assume that dist(z, Qj)��(Q)≤�(Qj). �

Proof of Theorem 3.1. The result follows from Corollary 2.3 and Proposi-
tions 3.6 and 3.7. Note that by replacing |f |r and |g|r by f and g, it suffices
to consider the case r=1. �

Proof of Theorem 3.2. The result follows from Theorem 2.4 and Proposi-
tions 3.6 and 3.7. �
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