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1. I n t r o d u c t i o n  

Recall that  a von Neumann algebra is said to be diffuse if it does not contain a minimal 

projection. We say that  a yon Neumann algebra 3,l is solid if for any diffuse von Neumann 

subalgebra A in 34, the relative commutant  . A ' N M  is injective. A solid yon Neumann 

algebra is necessarily finite. We prove the following theorem which answers a question 

of Ge [G] whether the free group factors are solid. 

THEOREM 1. The group von Neumann algebra s  of a hyperbolic group F is solid. 

Recall that  a factor 34 is said to be prime if A d ~ A d l ~ 3 4 2  implies that  either 341 

or 342 is finite-dimensional. The existence of such factors was proved by Popa  [P2] 

who showed tha t  the group factors of uncountable free groups are prime. The case for 

countable free groups had remained open for some time, but was settled by Ce [G]. This 

was generalized by ~tefan [~t] to their subfactors of finite index. Our theorem gives a 

further generalization. Indeed, combined with a result of Popa  [P3] (Proposition 7 in 

this paper),  we obtain the following proposition. 

PROPOSITION 2. A subfactor of a solid factor is again solid, and a solid factor is 

non-F and prime unless it is injective. 

Notably, this provides infinitely many  prime II l-factors  (with the property (T)). 

Indeed, thanks to a theorem of Cowling and Haagerup [CH], for lattices Fn in Sp(1, n), 

we have s  whenever mT~n. However, we are unaware of any non-injective solid 

factor with the Haagerup property other than the free group factor(s). This proposition 

also distinguishes the factor ( s  1])*L;F~ from the free group factor s 

which answers a question of Shlyakhtenko. 
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2. P r e l i m i n a r y  resu l t s  on  r e d u c e d  g r o u p  C*-a lgebras  

For a discrete group F, we denote by A (resp. Q) the left (resp. right) regular representa- 

tion on 12P, and let C~F (resp. CoF ) be the C*-algebra generated by A(F) (resp. Q(F)) 

in B(12F) and/2F=(C~,F)" be its weak closure. The C*-algebra C~F (resp. the von Neu- 

mann algebra/2F) is called the reduced group C*-algebra (resp. the group yon Neumann 

algebra). 

The study of C*-norms on tensor products was initiated in the 1950s by Turumaru, 

but the first substantial result was obtained by Takesaki [T] who showed that  the minimal 

tensor norm is the smallest among the possible C*-norms on a tensor product of C*- 

algebras. He also introduced the notion of nuclearity and found that  the reduced group 

*F C*-algebra C~ 2 of the free group F2 on two generators is not nuclear. Namely, the 

,-homomorphism 

C~,F2| ~ E ai| > a i x ~  ~ B(12F2) 
i=1  i=1  

is not continuous with respect to the minimal tensor norm. Yet, Akemann and Ostrand 

[AO] proved the remarkable theorem that  it is continuous if one composes it with the 

quotient map 7r from B(12F2) onto the Calkin algebra B(12F2)/K(12F2). By a completely 

different argument, Skandalis (Th~or~me 4.4 in [Ski) proved the same for all discrete sub- 

groups in connected simple Lie groups of rank one, and Higson and Guentner (Lemma 5.2 

in [HG]) for all hyperbolic groups. In summary, we have the following result. 

THEOREM 3. Let F be a hyperbolic group or a discrete subgroup in a connected 

simple Lie group of rank one. Then, the *-homomorphism 

i=1  

is continuous with respect to the minimal tensor norm on C~r| 

The crucial ingredient in the proof was the amenability of the action of F on a 

suitable boundary which is 'small at infinity'. For the information on amenable actions, 

we refer the reader to the book [AR] of Anantharaman-Delaroehe and Renault. Since F 

acts amenably on a compact set, C~,F is embeddable into a nuclear C*-algebra and thus 

has the property (C) of Archbold and Batty (Theorem 3.6 in [AB]). Although we do not 

need this fact, we mention that  the property (C) is equivalent to exactness by a deep 

theorem of Kirehberg IN]. By Effros and Haagerup's theorem (Theorem 5.1 in lEg]), the 

property (C) implies the local reflexivity. In summary, the following lemma is true. 
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LEMMA 4. Let F be as above. Then, C~F is locally reflexive, i.e., for any finite- 

dimensional operator system Ec(C~F)**, there is a net of unital completely positive 

maps Oi: E-+C~F which converges to idE in the point-weak* topology. 

3. P r o o f  o f  t h e  t h e o r e m  

We recall the following principle [Ch]: If ~: A-+B is a unital completely positive map 

and its restriction to a C*-subalgebra AoCA is multiplicative, then we have q~(axb)= 

q2(a)~(x)q~(b) for any a, beAo and x~A.  

Let Arc f14 be finite von Neumann algebras with a faithful trace T on A/[. Then, there 

is a normal conditional expectation c2r from ~4 onto Af, which is defined by the relation 

~-(cx(a)x)=T(ax) for aEAA and xeAf .  This implies that  a v o n  Neumann subalgebra 

of a finite injective von Neumann algebra is again iujective. Moreover, ear is unique in 

the sense that  any trace-preserving conditional expectation from A/I onto A/" coincides 

with c]r Indeed, for any aEA/[ and x C N ,  we have 

T(c' (a)x) = T(c'(ax))  = T(ax) = T(eN(a)x). 

We say that  a yon Neumann subalgebra A/[ in B(7{) satisfies the condition (AO) 

if there are unital ultraweakly dense C*-subalgebras BcJt4  and C c ~ 4  t such that  B is 

locally reflexive and the *-homomorphism 

u : B | 1 7 4  >~r aixi c B ( n ) / K ( 7 - / )  
i = ]  

is continuous with respect to the minimal tensor norm on B| 

We have seen in w tha t  the group von Neumann algebra s  satisfies the condition 

(AO) whenever F is a hyperbolic group or a discrete subgroup in a connected simple Lie 

group of rank one. 

LEMMA 5. Let BC ~4 and C C M ~ be unital ultraweakly dense C*-subalgebras with 

B locally reflexive, and let ArC M be avon Neumann subalgebra with a normal conditional 

expectation cH onto A/'. Assume that the unital completely positive map 
n n 

OPjV: B |  ~ E a~| ~ E c.~'(ai)x~ C B(7-/) 
i = l  i=1  

is continuous with respect to the minimal tensor norm on B|  Then Af is injective. 

Proof. Since B| CcB(7-l)| and B(7-/) is injective, 6pr162 extends to a unital 

completely positive map ~: B(7-/)| C--+B(7-/). Then, �9 is automatically a C-bimodule 

map. Put  ~ p ( a ) = ~ ( a |  for a e B ( H ) .  Then, for every aeB(7-t)  and xeC ,  we have 

xr = ~ ( l | 1 7 4  = ~(a|  = ~ ( a | 1 7 4  = r 
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Hence, r maps B('~) into C ' = M .  It follows that  ~=aN~b: B ( 7 / ) - + H is a unital com- 

pletely positive map such that  ~IB=gr Let I be the set of all triples (s ~', ~) where 

gCAf and ~CAf .  are finite subsets and r  is arbitrary. The set I is directed by the 

order relation (gl ,~l ,c l )E(E2,f f2 , r  if and only if E1CE2, ~'1C~'2 and r Let 

i =  (g, 9 r ,  6)E1 and let E C N" be the finite-dimensional operator system generated by g. 

We note that  E C M = p B * *  and r where pEB** is the central pro- 

jection supporting the identity representation of B on 7-/. Since B is locally reflexive 

(cf. Lemma 4), there is a unital completely positive map 0i: E - ~ B  such that  for aEg  

and f E f f ,  we have I(ei(a), r - ( a ,  r162 Take a unital completely positive ex- 

tension ~)~: B(?-/)--+B(~/) of 0i, and let a i=~0 i :  B(N)--+Af. It follows that  for aGE and 

fEY,  

I(~(a) ,  f ) - ( a ,  f )  l = I(r f )  - (a, f )  l = I(e~(a), r162 - (a, c ~ ( f ) ) l  < r 

Therefore, any cluster point, in the point-ultraweak topology, of the net {(ri}i~z is a 

conditional expectation from B(?-l) onto Af. [] 

We now prove Theorem 1, or more precisely the following result. 

THEOREM 6. A finite yon Neumann algebra M satisfying the condition (AO) is 

solid. 

Proof. Let A be a diffuse von Neumann subalgebra in M .  Passing to a subalgebra 

if necessary, we may assume that  A is abelian and prove the injectivity of N '=A~NM.  

It suffices to show that  ~.~c in Lemma 5 is continuous on  ]~@min C .  Since A is diffuse, 

it is generated by a unitary u E A  such that  l i m k - ~  uk=0 ultraweakly. Indeed, every 

diffuse abelian von Neumann algebra with separable predual is .-isomorphic to L ~ [0, 1], 

and the unitary element u(t)=e2~itcL~[O, 1] has the required property (where i here, 

but not elsewhere, is the imaginary unit). Let ~Pn(a)=n -1 ~-~.~=1 ukau-k  for acB(?-l), 

and let ~:B(~)--+B(7-I) be its cluster point in the point-ultraweak topology. It is not 

hard to see that  ~1~ is a trace-preserving conditional expectation onto X and hence 

�9 1M=cr162 It follows that  for a n y  Ein__l ai@xiC.~@. /~  t, we have 

q2 aixi = r162 =aPW ai|  . 
i=1 \ i = 1  

Since l im~_~ uk=0  ultraweakly, we have K(?- l )cker~ .  This implies that  ~ = ~ r  for 

some unital completely positive map ~:B(N)/K(?-/)-+B(7-I).  Since ~ in the condi- 

tion (AO) is continuous o n  B@minC , so is (I)Af=02/]. [] 

The following proposition was communicated to us by Popa [P3]. The author is 

grateful to him for allowing us to present it here. 
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PROPOSITION 7. Assume that the type II1 factor A4 (with separable predual) con- 

tains a non-injective yon Neumann subalgebra Afo such that AfgNfl4 ~ is a diffuse yon 

Neumann algebra, where All ~ is an ultrapower algebra of All. Then there exists a non- 

injective yon Neumann subalgebra .hflC A4 such that Af~ AA/[ is diffuse. 

Proof. Replacing it with a subalgebra if necessary, we may assume that  the non- 

injective yon Neumann subalgebra No is generated by a finite set {xl, x2, ..., Xm}. By 

Connes' characterizations of injectivity (Theorem 5.1 in [Co]), it follows that  there exists 

X / c >0  such that  if { 1, . . . ,x~}CA/[  are so that ]]x~-xil]2<~c then {x~}i generates a non- 

injective yon Neumann subalgebra in ~4. Indeed, if there existed injective von Neumann 

algebras BkCA4 such that  lima I]xi-cgk(x~)[]2=0 for all i, then for any ~j~=l aj |  

Af0| we would have 

~< lim inf eB~ aj 
aj B(n) k--~ B(n) 

n n 

= l i m i n f  ~ - ~ r 1 7 4  <~ a j |  , 
k -~. oo 

which would imply C* (N'0, Ad')~N'0|  Ad' and the injectivity of Af0 (cf. the proof of 

Lemma 5). 

Since JV'g A 2t4 ~ is diffuse, it follows by induction that there exists a sequence of mu- 

tually commuting, ~--independent two-dimensional abelian ,-subalgebras An C A/l, with 

minimal projections of trace �89 such that  

E 
< for al l  i. 

But if we let Bn=AIVA2V.. .VA,,  then we also have 

for all i. 2n+1 

Since ~B-nMOSA:~+lnM=C~;~+lnM, if we let A = V ~ B n  and take into account that  

cA,n~  =limn-~oo r  (see e.g. [P1]), then by triangle inequalities we get 

]]x~-CA,nM(Xi)]]2 <~c for all i. 

Thus, if we take All to be the yon Neumann algebra generated by 

then All satisfies the required conditions. [] 
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4. R e m a r k  

We note the possibility that ,  for a hyperbolic group F, the . -homomorphism 

i=1 \ i=1 " 

may be continuous with respect to the minimal tensor norm. If this is the case, then it 

would follow that  a yon Neumann subalgebra ArC/:F is injective if and only if 

c* (At, c ; r )  n K(t2F) = {0}, 

which would reprove our results (modulo Theorem 2.1 in [Co]). 
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