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1. I n t r o d u c t i o n  

The main result of this paper  is the following statement.  

THEOREM 1.1. Let N be a closed, connected and oriented Riemannian n-manifold, 

n~2.  If  there exists a nonconstant K-quasiregular mapping f: Rn--+ N, then 

dim H * ( N )  ~< C(n, g ) ,  (1.2) 

where d i m H * ( N )  is the dimension of the de Rham cohomology ring H*(N) of N, and 

C(n, K) is a constant only depending on n and K. 

As will be discussed shortly, Theorem 1.1 provides first examples of compact  mani- 

folds with small fundamental  group that  do not receive nonconstant quasiregular map- 

pings from Euclidean space. 

Recall tha t  a continuous mapping f :  X - + Y  between connected and oriented Rie- 

mannian n-manifolds, n>~2, is K-quasireguIar, K>~I, if the first distributional deriva- 

tives of f in local charts are locally n-integrable and if the (formal) differential Dr(x): 

Tx X-+ T/(x) Y satisfies 

I Df(x)  I n ~ K det Df(x)  (1.3) 

for almost every xEX.  In (1.3), and throughout this paper, IDf(x)l denotes the operator 

norm of the linear map Df(x),  and det Df(x)  its determinant.  We say that  a mapping 

is quasiregular if it is K-quasiregular for some K~> 1. The synonymous term a mapping 

of bounded distortion is also used in the literature. 

Nonconstant quasiregular mappings are discrete (the preimage of each point is a 

discrete set) and open according to a deep theorem of Reshetnyak [Rel]. Thus, quasireg- 

ular mappings are generalized branched coverings with geometric control given by (1.3). 
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Vl/71'n i s  Note that  the mild smoothness assumption, the membership in the Sobolev class Ioc, 

essential for an interesting theory; every smooth quasiregular mapping in dimension n ~ 3  

is locally injective. We refer to IRe2], [Ri4], [MR] for the basic theory of quasiregular 

mappings. 

Following a terminology suggested by Gromov [Gr4], we call an arbitrary (oriented 

and connected) Riemannian n-manifold N K-quasiregularly elliptic if there exists a non- 

constant K-quasiregular mapping f :  R " - +  N. Also, N is quasiregularly elliptic, or simply 

elliptic, if it is K-quasiregularly elliptic for some K~> 1. 

Few examples of closed quasiregularly elliptic manifolds are known. In fact, the 

only examples that  are known to the authors are the quotients of products of spheres, 

tori and complex projective spaces. We note that  Gromov in [Gr4, pp. 63 ff.] defines a 

notion of ellipticity based on Lipschitz mappings with "nonzero degree at infinity". In 

particular, he raises the interesting question whether the ellipticity of a manifold in his 

sense is equivalent to quasiregular ellipticity as defined above. 

Before describing the idea behind the proof of Theorem 1.1, we review what was 

known before about the quasiregular ellipticity problem, and point out some corollaries. 

First of all, if n = 2  and K- -1  in (1.3), we recover precisely the holomorphic functions 

of one variable; by the uniformization theorem, in dimension n=2 ,  we may assume with- 

out loss of generality that  X and Y have a conformal structure. Up to diffeomorphism, 

there are only two compact Riemann surfaces that  receive nonconstant quasiregular maps 

from R2- -C,  namely the sphere S 2 and the torus T 2. This follows from the quasiregular 

Liouville theorem; since the universal covering space of every compact Riemann surface 

of genus at least two is conformally equivalent to the unit disk in R 2, no such surface is 

elliptic. 

Indeed, if we restrict ourselves to Riemannian manifolds which are 1-quasiregularly 

elliptic, then a complete classification is possible in all dimensions. The following propo- 

sition may well be known to the experts, but we have not found it explicitly stated in 

the literature. 

PROPOSITION 1.4. Let N be a closed, connected and oriented Riemannian n-mani- 

fold, n>~3. I f  there exists a nonconstant 1-quasiregular mapping f :Rn- -+N,  then N is 

conformaUy equivalent to a quotient of the standard sphere S ~ or a fiat torus T n. 

Proof. It is well-known that,  for n~>3, there exists a constant K ( n ) > l  such that,  

for 1~ K ~ K(n) ,  every K-quasiregular map between Riemannian n-manifolds is a local 

homeomorphism IRe2, Theorem II.10.5, p. 232]. Moreover, a locally homeomorphic 

quasiregular map from R n into a simply-connected oriented Riemannian manifold is 

a homeomorphism onto its image, and omits at most one point [Gr4, p. 336]. 
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We apply the latter remark to the Riemannian universal cover/V of N, and to a lift 

] :  R '~ --+/V of f .  Then ] will be a 1-quasiregular (i.e. conformal) homeomorphism onto 

its image, which is either N minus a point Po or all of/V. In the first case, the inverse 

map ] - 1  has a removable singularity at Po and can be extended to a conformal map  

f r o m / ~  to the s tandard sphere S n. Hence N is conformally equivalent to a quotient of 

S n by a group of MSbius transformations that  acts without fixed points. If ] ( R n ) = N ,  

then ] gives a conjugation of the group action of the deck transformations on /V to a 

Bieberbach group acting on R n cocompactly and without fixed points. It  follows that  N 

is conformally equivalent to a quotient of a flat torus. The proposition follows. [] 

Most of the previous results on quasiregularly elliptic manifolds were based on the 

growth behavior of the fundamental  group. We next summarize what is known in this 

respect in the following theorem due to Varopoulos (see [VSC, pp. 146-147]). 

THEOREM 1.5. Let N be a closed, connected, quasiregularly elliptic Riemannian 

n-manifold, n>~2. Then the fundamental group of N is virtually nilpotent and has poly- 
nomial growth of degree at most n. 

The proof of Theorem 1.5 is based on Gromov's  theorem tha t  characterizes the 

virtually nilpotent finitely generated groups in terms of their growth [Gr3], and on the 

analysis of isoperimetric inequalities and n-parabolicity. See also [CHS]. 

The following corollary to Theorem 1.5 seems to have gone unnoticed in the litera- 

ture. 

COROLLARY 1.6. Let N be a closed, connected, quasiregularly elliptic Riemannian 

n-manifold, n ) 2 .  Then dimHl(N)<<.n. In particular, if n = 2  or n = 3 ,  then 

dim H*( N) < 2 n. (1.7) 

Proof. For the volume growth function V(r) on the universal cover N of N,  we have 

V(r)=O(r D) as r--+cc for some integer D<~n. This follows from Theorem 1.5. We claim 

that  k = d i m  Hi(N)  <~ D<~ n. 

To see this, let M be a positive integer, and observe that  there are ( 2 M + l )  k lat- 

tice points in z k c  R k ~--HI(N) with coordinates bounded in absolute value by M. Let 

71 , - - . ,vkEF~Tr l (N)  be deck transformations corresponding to a basis of H I ( N , R ) ~  

H ] (N)  under the canonical map  70 ( N ) - + H I ( N ,  R).  By applying V~ 1 ... V; k with la~ I~<M 

to a point XoE/V, we see that  there are at least ( 2 M + l )  k images of Xo under F con- 

tained in a ball centered at x0 with radius at most CM. But these images are uniformly 

separated, so tha t  

( 2 M +  1) k <~ C Vol( B(xo, CM ) ) <<. CM D, 
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where C > 0  is independent of M.  Because M was arbitrary, we obtain k<~D<~n as 

required. 

The second claim follows from the first by Poincar~ duality. [] 

If we denote by Q(n, K)  the smallest integer tha t  we can take in (1.2), then it is an 

interesting problem to decide whether in fact Q(n, K)<~Q(n) for each K~> 1. One could 

even ask whether the torus T n gives the extremal  answer, i.e., whether 

Q(n, K )  = dim H*(T n) = 2 '~ (1.8) 

for each n~>2 and K~>I. By Corollary 1.6, this is true in dimensions n = 2  and n = 3 .  

Theorem 1.1 bears a (modest) similarity to Gromov's  celebrated result stating that  

the sum of the Betti  numbers (over any coefficient field) of each closed manifold with 

nonnegative sectional curvature is bounded from above by a dimensional constant. It  

has been conjectured that  this constant is 2 n as in the case of the torus. (See [Gr2].) 

Quasiregularly elliptic manifolds in dimension n = 3  have been studied by Jor- 

makka [J]. His analysis is based on the growth behavior of the fundamental  group and 

follows from Theorem 1.5. In particular, the only 3-dimensional elliptic manifold that  

can be expressed as a nontrivial connected sum is R p 3 # R p  3 (which is a quotient of 

S 1 x S2). Jormakka also shows that  if the geometrization conjecture for 3-manifolds is 

true (including the Poincar6 conjecture, see [T]), then all compact  quasiregularly elliptic 

3-manifolds are quotients of either S 3, T 3 or S 1 x S 2. 

In dimension n = 4 ,  there already are simply-connected manifolds tha t  can be ex- 

pressed as nontrivial connected sums. In particular, Gromov and Rickman have asked 

whether S 2 x $ 2 # S  2 x S 2 (or, more generally, any simply-connected oriented and closed 

manifold) is quasiregularly elliptic [Ri3], [Grl, p. 200], [Gr4, 2.41]. Theorem 1.1 does not 

answer this interesting question, but it does follow from Theorem 1.1 that  if 

S L x S I # . . . # S I x S  z, 1 ) 2 ,  

receives a nonconstant K-quasiregular mapping from R 2t, then the number of sum- 

mands has an upper bound depending only on 1 and K.  We note that  S l x S z is elliptic 

[Ri3, p. 183]. 

Theorem 1.1 can be used to decide the nonellipticity of some compact  manifolds 

with small fundamental  group. The following corollary answers an explicit question of 

Rickman [Ri3]. 

COROLLARY 1.9. Let X and Y be arbitrary closed, connected and oriented Rie- 

mannian manifolds of dimension n and n - 1 ,  respectively. Assume that X has nontriv- 

ial cohomology in some dimension l= 1, ..., n - 1 .  Then the manifold N = X # S l  x Y does 

not receive nonconstant quasiregular maps from R n. 
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Pro@ Assume that  f :  R n - + x s ~ S l x  Y is K-quasiregular.  Then f has a K-quasi-  

regular lift f l : R  n--+N1, where N1 is a connected sum of R x Y  with infinitely many 

copies of X. This lift can be projected further to a K-quasiregular map f~: Rn--+N2 to 

a compact manifold N2 which is a connected sum of S 1 x Y with a finite, but arbitrari ly 

large, number of copies of X.  So we can make the dimension of the cohomology ring of 

N2 exceed any prescribed bound. By Theorem 1.1, f2 is constant as soon as dim H*(N2) 

is large enough, depending only on n and K.  Thus f is constant and the corollary 

follows. [] 

In the special case where Y = T  n-1 (so that  N=XC/:Tn), Corollary 1.9 was proved 

by Peltonen [P]. She used pa th  family methods that  are not strong enough to give the 

more general result of Corollary 1.9. 

Naturally, Corollary 1.9 admits a more general formulation. One can take a closed 

(oriented and connected) n-manifold Z with the property that  the fundamental  group 

7rl(Z) has subgroups of arbitrarily large (finite) index tha t  act cocompactly on the uni- 

versal cover Z. Then X:/CZ is not quasiregularly elliptic if X is as in Corollary 1.9. 

One can also consider noncompact  manifolds in a similar vein. For example, if 

N is the connected sum of infinitely many  copies of S t x S l, with a (natural) isometric 

Z-action, then N does not receive nonconstant quasiregular maps from R2z; i.e., N is 

nonelliptic. The reader can imagine more examples of this sort. 

Recall that  Rickman [Rill has proved tha t  if a l ,  ...,a v are distinct points in S n, 

then, in our terminology, the manifold S n \{a l ,  ..., ap} is K-quasiregularly elliptic only if 

p~R(n,  K ) < o o .  Although Theorem 1.1 can be viewed as a Picard-type theorem about  

the existence of quasiregular mappings, it does not imply this result of Rickman. It  

would be interesting to have a more general s tatement  that  would simultaneously embrace 

both  Theorem 1.1 and the Rickman Picard theorem. Note that  Rickman's  theorem is 

qualitatively sharp in dimension n = 3  [Ri2]. 

We do not know what noncompact  manifolds can replace R n in Theorem 1.1. Holo- 

palnen and Rickman [HR] have established the following general Picard-type theorem: 

Assume that  M is a complete Riemannian n-manifold satisfying both a Poincar4-type 

inequality and a doubling condition on its volume. If f :  M--+N is a nonconstant K-  

quasiregular mapping to an arbi trary (oriented and connected) manifold N,  then the 

number of ends of N is bounded by a constant that  depends only on n and K,  and 

on the da ta  associated with the Poincar6 and doubling conditions. It  is not hard to 

construct manifolds M satisfying the hypotheses of Holopainen and Rickman, and such 

tha t  M covers compact  manifolds of arbitrarily large cohomology. For instance, one can 

take M to be the universal cover of N = S  z x S I # T  2z. 

Finally, we state a result which shows that  there is a lower growth bound for every 
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nonconstant quasiregular map f :  R n - * N ,  if N is compact and not a homology sphere. 

Recall that  the averaged counting function A(r) of f is defined as 

1 fB det Of(x )  dx, (1.10) A(r) - Vol(N) (0,~) 

where Vol(N) is the total volume of N, and B(0, r) is the open n-ball in R n centered at 

the origin with radius r > 0. The following theorem answers another question of Rickman. 

THEOREM 1.11. Let f : R n - + N  be a nonconstant K-quasiregular mapping into a 

closed, connected and oriented Riemannian n-manifold N, n>.2. If  the 1-th cohomol- 

ogy group Hi (N)  of N is nontrivial for some l=1,  . . . , n - l ,  then there exists a positive 

constant ~ = ~ ( n ,  K ) > 0  such that 

l iminf A(r) > 0, (1.12) 
r--+ c~ r O~ 

where A(r) is the averaged counting function defined in (1.10). 

Theorem 1.11 is sharp in the sense that  if N is a homology n-sphere covered by S n, 

then one can exhibit quasiregular mappings f :  Rn--~N with arbitrarily slow but pre- 

scribed growth for A(r). Indeed, it is not hard to find such maps to S n, and the general 

case is obtained by postcomposing with a covering projection S~-+ N. We also note that  

the exponent c~ in (1.12) can be as small as one pleases if we make K large enough: take 

a slowly growing quasiconformal mapping g: R n - + R  n and postcompose g with a fixed 

uniformly continuous quasiregular mapping Rn--+N, if N is elliptic. 

To illustrate Theorem 1.11 by an example, let us consider the case N = S  z x S z, n=21. 

Then N is elliptic. If l = l ,  then N = T  2 and every K-quasiregular mapping f :  R2--+T 2 

factors, f=Trog, where g: R2--+R2 is K-quasiregular and 7r is the covering projection. By 

the properties of rr, it is easy to see that  (1.12) holds in this ease. On the other hand, if 

1 ~> 2, then N is simply-connected and no covering space argument can be used. 

We next discuss the idea behind the proofs of Theorem 1.1 and Theorem 1.11. 

To give the main idea, consider first the case where f :  C--+N is a holomorphic map 

to a compact surface of genus 9 >~2- A simple but  important  first step is to perform a 

rescaling argument to replace f by a holomorphic map F: C--+N with bounded derivative; 

if f is nonconstant, then so is F.  This sort of rescaling in classical complex analysis goes 

back to Bloch. In recent times, it has been advocated by Gromov [Gr4, p. 344] and 

Zalcman [Z]. We review the rescaling argument in w Thus, without loss of generality, 

we may assume that  f :  C--+N has bounded derivative. Now, if g~>2, there are two 

nonzero linearly independent holomorphie 1-forms on N, say ~1 and ~2. Because N is 
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compact and the derivative of f is bounded, the pullback forms rh=f*~ l  and r/2=f*~2 

can be written as 

~i(z) = ai(z) dz, i = 1, 2, 

with a~(z) bounded holomorphic; in particular, a i - c o n s t a n t  for i=1 ,  2, which implies 

that  f must be constant, for else 771 and ~2 should be linearly independent. 

We implement the above idea to quasiregular mappings as follows. Let f :  R n - + N  be 

K-quasiregular. Upon rescaling, we may assume that  f is uniformly continuous as a map 

between metric spaces. Fix an integer 1 = 1, ..., n -  1. By nonlinear Hodge theory (reviewed 

in w below), each cohomology class [c~] of closed/-forms contains a unique p-harmonic 

representative ~ ;  we choose the conformally invariant ease p = n / l .  If dim H t (N) = k, we 

pick p-harmonic/-forms ~1,..., ~k that  have unit LP-norm and are sufficiently separated 
__1 in L p. If 1---~n, we could simply choose an orthogonal basis consisting of harmonic 

forms. The pullbacks ~ i = f * ~  satisfy a fixed nonlinear elliptic system with measurable 

coefficients in R n. Such generalized Cauchy-Riemann systems in connection with quasi- 

conformal geometry have been studied by Donaldson and Sullivan [DS], and Iwaniec and 

Martin [IM] (see also [Ma D. From the fact that  f is uniformly continuous, it follows that  

the averaged counting function as defined in (1.10) satisfies 

d(r) = O ( ? ~  ~" - -}  0 0 .  (1.13) 

Using (1.13) and an equidistribution result of Mattila and Rickman [MR], we are able 

to show that  the LP-norms of the forms r/~ and r h - r  5 are controlled on suitably chosen 

balls (Lemma 5.2). 

After another rescaling, we may assume that  we have forms rl~ on the unit ball B n 

in R n with uniformly bounded norm, uniformly separated in L p. By the LP-Poincar~ 

lemma, there exist forms ai on the unit ball with da i=~i .  Moreover, a Caccioppoli- 

type argument shows that the forms a l , . . . , a k  form an s-separated set in L p, where 

s=s (n ,  K ) > 0 .  The final bound for the number k comes from this separation together 

with the LP-compactness of a homotopy operator T that  can be used to produce the 

forms ai from the given forms r/j. 

A detailed proof for Theorem 1.1 is presented in w167 5 below. 

The idea behind Theorem 1.11 is much simpler. If H I ( N ) r  as above we choose a 

p-harmonic/-form ~ r  on N, p=n/1. Its pullback ~=f* ~  satisfies an elliptic system in 

R n as discussed above. In particular, r/satisfies a certain type of reverse HSlder inequality 

from which a lower growth condition can be derived by rather standard methods. The 

proof is presented in w 

The notation used throughout the paper is standard, or self-explanatory. The ex- 

pression "A~-B with constants of comparability depending only on a, b, ..." means that  
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there exist constants C1, C2>0,  depending only on a, b, ..., such that  C1A~B<~C2A. 

Acknowledgments. We wish to express our debt to the paper  [CM] by Colding and 

Minicozzi as a source of inspiration. Although there are no formal similarities between 

the present paper  and the paper  by Colding and Minicozzi, the underlying principles are 

closely related. We also thank Kari  Astala for a helpful remark at the right time. Finally, 

we thank Seppo Rickman for many  inspiring discussions and interest in our work. 

2. Rescaling principle 

Suppose that  g: U-+R n is a K-quasiregular mapping defined on an open set UC_R n. I t  

is well-known that  g is locally H51der continuous with exponent a = I / K .  Let N be a 

closed, connected and oriented Riemannian n-manifold N,  n>~2. There exists e > 0  so 

that  every open geodesic ball B(p, ~) in N can be mapped onto an open subset in R n by 
a 2-bi-Lipschitz homeomorphism. By using these local bi-Lipschitz homeomorphisms we 

can reduce questions about  the local regularity of K-quasiregular mappings into compact  

Riemannian manifolds to the corresponding question for mappings between subsets of 

Euclidean spaces. In particular, it follows tha t  if f :  R n - + N  is K-quasiregular,  then it is 

locally HSlder continuous with e x p o n e n t / ~ = ~ ( K ) > 0 .  

The rescaling principle asserts that  if f : R ~ - + N  is nonconstant, then there exists 

a nonconstant K-quasiregular mapping F: R n - ~ N  that is uniformly HSlder continuous; 

more precisely, we have that  

d(F(x),  F(y)  ) ~ C I x - y l  ~ (2.1) 

for all x, y E R  n. Here d is the Riemannian distance on N,  /~=/3(K) is as above, and 

C~>I is a constant independent of x and y. 

This rescaling principle for quasiregular mappings f :  a n - + s  n has been proved by 

Miniowitz [Mi]. The general case follows along similar lines, and is discussed in [Gr4, 

pp. 344-345]. 

For the reader 's  convenience, we sketch the main point in the proof. We define a 

function 

Q f ( x ) =  sup d ( f ( x ) , f ( y ) )  
Ix-yl~<l Ix-Yl ~ ' x E R n '  

where/3 is as in (2.1). This function is locally bounded by the local ~-H51der continuity 

of f .  If  Q / i s  not bounded on R n, one can choose a sequence (x . )  of points with x~--+cxD 

and Q / ( x ~ ) ~ o c  as v-+c~. 
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Next, let 

~ ( x )  = Q f (x) [ dist(x' OB(x~' u) ) ] ~, 

We can find points a~EB(x.,u) such that  

1 p , ( a , ) >  ~ sup F , (x ) .  
xEB(x.,v) 

It is then easy to see that a subsequence of the K-quasiregular mappings 

f~(x)= f(a,+Q,x), Q~=Q/(a,) -1/~, 

converges locally uniformly to a nonconstant K-quasiregular mapping F: Rn--+N with 

QF bounded. 

COROLLARY 2.2. If a closed, connected and oriented Riemannian n-manifold N 
receives a nonconstant K-quasiregular mapping from R n, then it receives one whose 
averaged counting function as defined in (1.10) satisfies 

A(r) = 0 ( < ) ,  (2.3) 

Indeed, (2.3) holds for each uniformly continuous quasiregular mapping f: R n -+ N. 

Proof. By the rescaling principle, we may assume that  f :  R n - ~ N  is a uniformly con- 

tinuous nonconstant K-quasiregular mapping. Let G > 0 be such that  each open geodesic 

ball of radius e in N is 2-bi-Lipschitz to a round ball in R n. By the uniform continuity 

of f we can find 5>0  such that  f maps every ball of radius 25 in R n into a ball of radius 

e in N. Every ball B(0, r), r~> 1, can be covered by at most Cor n balls of radius 5, where 

Co=Co(n,5)>O. The assertion will follow if we can show that  there exists a constant 

C > 0  such that  

B det Of(x) dx <~ C (2.4) 
(p,~) 

for each pER n. By using our local 2-bi-Lipschitz homeomorphisms, in order to show (2.4), 

we may without loss of generality assume that  f maps B(p, 25) into a Euclidean ball 

of radius 2r and is K'-quasiregular with K'=K(n,K).  In this situation, (2.4) with 

C= C(n, K', r C(n, K, c )>  0 follows from a Caccioppoli-type estimate for qu~siregular 

mappings (see [BI, p. 274, (3.6)] or [Ri4, p. 141], for example). This proves the corol- 

lary. [] 
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3. Nonlinear Hodge theory and quasiregular mappings 

In this section, we briefly discuss nonlinear Hodge theory as far as it is relevant for the 

proofs of our main results. A thorough presentation of the facts quoted below can be 

found in the paper  IS]. 

Let N be a closed, connected and oriented Riemannian n-manifold, n>~2. We fix an 

integer l = l , . . . , n - 1 ,  and consider the l th cohomology group Hi(N). Each element in 

H z (N)  is represented by a smooth closed/-form c~. Let us denote by [c~] the corresponding 

equivalence class: c ~  if and only i f /3=c~+d7.  Here fl is a smooth /-form and 7 is a 

smooth ( l -1 ) - fo rm.  The Riemannian metric on N induces natural  inner products, and 

in particular norms, on the fibers A l T~N, aEN, of the l th exterior power A t T*N of 

the cotangent bundle T*N. 

We need the following fact: If 1 < p <  ec, then for each equivalence class [c~] E H l (N) 
there exists a unique p-integrable 1-form ~c~ that minimizes the p-energy within the equiv- 
alence class; i.e., 

]l~a II p = inf JN la-bd"/[P dV, (3.1) 

where the infimum is taken over all smooth (1-1)-forms ~, on N. Here (and hereafter) 

dV denotes integration with respect to the Riemannian volume. We have that  both  

= 0 (3 .2 )  

and 

d*(l~,~lP-2,~,~) =0  (3.3) 

hold in the sense of distributions, where d* is the formal adjoint of d. We call a p- 

integrable /-form on N p-harmonic if it satisfies (3.2) and (3.3). Note that  (a.3) is the 

Euler equation for the minimization problem (3.1). 

We also require the following result due to Ural ' tseva [Ur], [Uh]: Each p-harmonic 
form on N is Hi~Ider continuous, a fortior'i bounded. 

For the purposes of this paper,  we define a norm on H~(N) by the formula 

( / ~  ,1/p P=-['n I1[~]11 : =  I1~11~ = I~lPdV) , (3.4) 

It  is easy to see that  I[ " ]1 defines a norm. Indeed, it is nothing but the quotient norm on 

the space 

{LP-integrable closed l-forms}/{LP-integrable exact /-forms}, 
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where, of course, the terminology should be understood in the sense of distributions. 

The (finite-dimensional) normed space (Hi(N),  I1" II) will be featured more prominently 

in the next section. 

For the relationship between quasiregular mappings and nonlinear Hodge theory, 

see [DS], [IM], [ISS, w We need the following facts. Assume that  f :Rn--+N is a 

nonconstant K-quasiregular mapping, and that  { is a p-harmonic /-form on N in the 

conformally invariant case p=n/1. Then the pullback form 

~ = f * ( ~ )  

satisfies both 

and 

d~ = f*(d~) = 0 (3.5) 

d*( (C~, ~I} (P-2)/2G~I) = 0 (3.6) 

in the sense of distributions, where G: A * T*Rn--~A 1 T * R  n is a measurable bundle map 

which on almost every fiber A l T~R  n is induced by the linear map 

(det Df(x ) )2 /n (Df (x ) tD f ( x ) ) - i  

on TxR n. If we denote by Gx the restriction of G to a fiber A l T * R  n, then we have that  

det G x = l ,  and that,  for each/-form 4, 

(CxC(X), C(x)) IC(x)l 2 (3,7) 

for almost every x E R  n, with constants of comparability depending only on n and K. 

The ellipticity condition (3.7) will crucially be used in what follows; indeed, the fact that  

(3.7) holds is equivalent to the quasiregularity of f ,  as is easily seen. 

4. Equidistribution 

Let us assume that  we are in the situation of Theorem 1.1. Thus, f :  R ~--+N is a noncon- 

stant K-quasiregular mapping, and we want to bound the dimension of the cohomology 

ring of N. By the rescaling principle described in w (see Corollary 2.2), we may assume 

that  the averaged counting function A(r) of f satisfies the growth condition (2.3). In this 

section, we shall show how to combine this growth condition with an equidistribution 

theorem of Mattila and Rickman [MR] to obtain more information about the behavior 

of f .  
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To tha t  end, fix l - - l ,  ..., n - l ,  and consider the vector space Ht(N) equipped with 

the norm I1" II as in (3.4). Let k=d imHl (g ) .  As (HZ(N), I1" II) is a finite-dimensional 

normed space, we can find linearly independent elements [c~1], ..., [ak] �9 HI(N) so that  

I I [a i lH=l  and II[ctil-[aj]ll~>l (4.1) 

for all i , j= l ,  ...,k, i # j .  It  follows that  for the associated p-harmonic forms ~ i = ~  we 

have 

II~ lip = 1. (4.2) 

Since ~ i - ~ j  is cohomologous (in the distributional sense) to a i -c~ j ,  we see that  

II [ ~ 1 - [ ~ j ]  II = II [~e -~j ]  II ~ II~-~j  lip. 

Hence 

l <~ [[~i--~j[[p <~ 2 for i # j. (4.3) 

Next, consider measures #i and #ij on N given by 

dpi = I~ I p dV, 
d~j  = I~-~ j  I p dV, (4.4) 

where i , j= l ,  ...,k, i # j .  Note that  by (4.2) and (4.3), and since p=n/1, we have 

1 <~ # , (N)  ~< 2 ~. (4.5) 

Here and below we shall write #,  for any of the measures #~ and #ij defined in (4.4). 

Because the p-harmonic forms ~ are continuous by Ural ' tseva 's  theorem cited in w 

we have the growth condition 

#,(B~) <~ Cr ~' (4.6) 

for each of the above measures and for each Riemannian ball Br of radius r on N with 

a constant C )  1 independent of the ball. The averaged counting function v, = ~, .  with 

respect to a measure # ,  is defined by 

~,(r) - 1 /N n(r, a) d#,(a), (4.7) 
~.(N)  

where n(r, a) is the number of a-points of f with multiplicity regarded in the closed ball 

B(0, r) in R n. 

The growth condition (4.6) guarantees tha t  the hypotheses of the main theorem, 

Theorem 5.11, in [MR] are satisfied, and we can record the following result. 
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P R O P O S I T I O N  4 . 8 .  

arithmic measure, 

so that 

For each measure p, there exists a set E ,  C (0, co) of finite log- 

/E  dt - -  < c o ,  ( 4 . 9 )  
. t  

lim ~/u,~r___Aj = 1. (4.10) 
~ A(r) r~E. 

Now set 
k k 

E= (~lF~i)[J(i- i,~j=-i Eij)' 

so that  E is the union of the exceptional sets E .  as in Proposition 4.8. 

by (4.9), we have that  E has finite logarithmic measure as well; i.e., 

(4.11) 

Obviously, 

fE  dt ~- < oo. (4.12) 

Moreover, we deduce from (4.10) that  there exists a radius r / > 0  such that  

1 . . (r)  
~< A--~  4 2  whenever r>~r', r ~ E ,  (4.13) 

and whenever u. = up. is the averaged counting function for any of the measures #i and 

Pij given in (4.4). 

Next, we require the following real analysis lemma: 

LEMMA 4.14. 

n>O we have 

Let h: (0, (x~) ~ (0, cx~) be an increasing function such that fbr  some 

h(r) =O(r n) (4.15) 

as r-+cxD. Then there exists a constant L = L ( n ) > 0  such that 

l imsup 1 /E  dt 1 (4.16) 
R - ~  ~ Ln[1,RI t ~< 2' 

where EL = {r E [1, co): h(2r) >Lh( r )} .  

Proof. Results of this sort are typical in the value distribution theory of entire and 

meromorphic functions; rather than searching for a reference, we provide the elementary 

proof. 

For given L > 1 and R ~> 1, the set EL A [1, R] can be covered by intervals Ir = [ l r ,  2r], 

r EEL, 1 <~r <~ R. By standard covering arguments, one can select finitely many intervals 

I~ I, ..., Ir M of this type that  cover EL~ [1, R] and so that  no point in (0, cx~) lies in more 
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than two of the sets I~,. We may also assume, obviously, that  none of the intervals I~ 

contains another interval I~j. We then find that  

LM/2h(1) <~ h(2R) ~< CR n, 

and hence that  

M<~ 
C~ + 2n log R 

log L 

where C/~> 1 is independent of R and L. In particular, 

(C'+2nlogR) 
fELn[I,R]~ <<. M l o g 4  ~< \ logL log4, 

so that  (4.16) holds as soon as L ) 4  4n. [] 

To finish this section, we state the following crucial corollary to Proposition 4.8 and 

Lemma 4.14. The hypotheses and the notation are as in the beginning of the section. 

COROLLARY 4.17. There exist arbitrarily large values r such that 

r, 2r~E and A(2r)<~LA(r), (4.18) 

where L=L(n). 

Proof. We apply Lemma 4.14 to the function h(r) =A(r) .  This function is increasing, 

and condition (4.15) holds, so that  the lemma is applicable. 

Let L=L(n)>~I and EL be as in the lemma, and let E be the set given in (4.11). 

If ~E={~r : l  1 rEE}, then EU1E has finite logarithmic measure by (4.12). So we deduce 

from (4.16) that  

lim inf 1 fc dt 1 
R-~oo ~ ni1,RlT ~> 5' 

where G=(0 ,  oo)\(ELUEU �89 Since (4.18) holds for all red,  the lemma follows. [] 

5. C o n c l u s i o n  o f  t h e  p r o o f  o f  T h e o r e m  1.1 

In this section, we finish the proof of Theorem 1.1. We keep the notation of the previous 

section. Fix l = l , . . . , n - 1 .  Our task is to bound k=dimHZ(N). Since d i m H l ( N ) =  

dim H n - l ( N )  by Poincarfi duality, we may without loss of generality assume that  1 ~< �89 

Then p=n/l)2. We consider the p-harmonic forms ~1, ..., ~k as in w and their pultbacks 

~ = f * ( ~ ) ,  i =  1 , . . . , k .  
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These forms satisfy the elliptic system described in (3.5) and (3.6). 

and by (4.13) we can find a number r o >0  such that  

v. (r0) -~ A(ro) ~- A(2r0) ~- u. (2r0), 

where the constants of comparability depend only on n. 

estimate for the LP-norms of the forms r/i. 

LEMMA 5.2. The forms r/1,...,r/k satisfy 

/B ir/i[P dx ~ /B '~?ilV dx~-- A(r~ 
(O#o) (o,2~o) 

and 

233 

By Corollary 4.17 

(5 .1)  

This leads to the following 

i = 1, ..., k, (5 .3)  

Ir/i-~lJlP dx ~- fB Ir/i-r/J[P dx ~- A(ro), 
(O,~o) (o,2~'o) 

where the constants of comparability depend only on n and K. 

Proof. The quasiregularity of f implies that 

Ir/i (x)] = If*~i (x)] ~- [~i ( f (x))  ] (det Df(x)) z/n 

i , j=l , . . . , k ,  iCj ,  (5.4) 

lT]ilP dx~- s B~ ,]~ilPdx~-l, i= l,...,k, (5.5) 

Ir/i--rlylPdx~--/B -r/jlVdx 1, i , j = l ,  k, iCj ,  (5.6) 
B -  ,~lrli ~- "'" 

and 

The next step is to scale everything to the unit ball B ~ of R ~. Indeed, the system 

described in (3.5) and (3.6) is conformally invariant, as are the integrals in (5.3) and (5.4). 

After dividing the forms r/.i by A(ro) 1/p, and after performing the scaling, we can assume 

without loss of generality that we have LV-integrable/-forms r/l, ..., r/k in the unit ball B n 

of R n such that  each of the forms satisfy (3.5) and (3.6), and, in addition, 

By the choice of r0, we see that  (5.3) holds. A similar computation shows (5.4), and the 

lemma follows. [] 

L(0,~) l f * ~ i l  p dx ~_ s  a)I~(a)I p dV(a) = a(r). 

for almost every x c R  n. By the change of variables formula for quasiregular mappings 

[Ri4, pp. 20-21], and by (4.5), we therefore obtain for all r > 0  that  
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with constants of comparability only depending on n and K.  

This reduction understood, we apply the LP-Poincar6 lemma and find p-integrable 

( / -1) - forms c~1, ..., C~k in B n such that  

~i = dai,  i = 1,..., k. (5.7) 

In a moment we shall choose the forms a~ in a particular way, but with an arbi- 

t rary choice we have the following lemma which will be derived from a Caccioppoli-type 

inequality. 

LEMMA 5.8. In the situation described above in (5.5), (5.6) and (5.7), we have that 

for i , j=l, . . . ,k ,  i~ j .  

Proof. Let us write 

/B [ai-ajIP dx ~c(n,K)  >0 

for an /-form (, where G is given in (3.6). 

[BI, p. 288]), using p>~2 and (3.7), gives that  

(5 .9 )  

A( = (G(, ()(P-~)/2Gr 

A simple linear algebra computation (see 

(A~I - A @ ,  ~1 -~2)/> c[~1 - G ]  p 

for some constant c=c(n, K ) > 0 .  We thus have 

f~Bnl~Ti--~Tjf dx <. C Ja (A~?i-A~b,~]i-~ j} dx 
( 5 . 1 0 )  

C I s  (A~ - A~j, ~ ( ~  - ~y)} dx, 
I b  

where C ~  1 depends only on n and K,  and where ~E C ~  (B n) is a fixed cut-off function 

1 n But now with 0~<~<1, ]d~[~2 and ~ - 1  on ~B . 

~ ( ~  - ~ j )  = ~ ( d ~  - d ~ j  ) = d ( v ( ~  - ~ ))  - d V A  ( ~  - . j  ) ,  

and so it follows from (3.6) that  the right-hand side of (5.10) equals 

- C Jsf iA~?i - A~y, d~  A (ai  - a j  ) } dx. 
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This in turn can be estimated from above by 

C /BnlA~Ii- A~Ij I Idol I~i-c~jI dx 

~ C( /B,J~lP-l ldcp I la~-ajl dX + /BnlrljlP-11dr lai-c~jl dx) 

/ f \(P-1)/P\ (/B,ja~_ajjP dx)l/P ~C((/B+J~ilPdx)(P-1)/P~-~/B~J~Ij'Pdx) ) 
/ f \~/P 

<- C( JBJC~- ~ l P  dx ) , 

where C>~I depends only on n and K.  Note that  (3.7) and (5.5) were used here. The 

assertion (5.9) now follows from the above estimation and from (5.6), and the lemma is 

proved. [] 

We are now ready to give the punch line for the proof of Theorem 1.1. For each 

dimension n there exists a compact linear homotopy operator 

T: LP(A l T*B n) -+ LP(A z-1 T*B n) 

such that  dT(rl)=rl  (in the sense of distributions) for each closed p-integrable/-form 

on the unit ball B n. (See e.g. [IL, p. 39, Remark 4.1]. It is not clear to us how to 

derive [IL, Remark 4.1] from [Ia, (4.14)], but in any case the compactness of T for 

1 < p < o o  immediately follows from [IL, Proposition 4.1] and from the compactness of the 

embedding of the Sobolev space W ]'p in LP.) It follows from (5.9) and (5.5) that  the 

forms 

o ~ I : T ~ ] I ,  . . . ,  o~k=Trlk 
form a separated set in LP=LP(A~-I  T*B n) and are contained in the image of a ball 

under T, where the separation and the size of the ball depend only on n and K. By 

the compactness of T, this implies that the number k of the forms ai is bounded by a 

constant that  only depends on n and K.  

This completes the proof of Theorem 1.1. 

6. P r o o f  o f  T h e o r e m  1.11 

Let f :  R n - + N  be as in the statement of the theorem. Assuming that  HZ(N)~O for some 

/ = 1 , . . . , n - i ,  we can fix a p-harmonic /-form ~ on N, ~ 0 ,  for p=n/l. As explained 

in w the pullback 

= f*(~) 
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satisfies the system described in (3.5) and (3.6) in R ' .  Since det Df(x) is nonsingular at 

almost every point x E R  n, we have that  q r  

We claim the following well-known reverse Hhlder inequality for solutions of such 

systems. 

LEMMA 6.1. 

holds for all r>O. 

There exist numbers q=q( n, K)>p=n/l  and C= C ( n, K)>>. 1 such that 

2 B(O,~/2)lvlq dz) , m0.,,)l~lP dx) (6.2) 

Proof. The proof for (6.2) runs in two steps. First one uses a Caccioppoli-type 

inequality (as in [BI, p. 274] or [Ri4, p. 141], for example) together with the Sobolev 

Poincar~ inequality for differential forms (see [IL, Corollary 4.2], for example) to conclude 

that  ,l/,<. C(r_n f )"+1)In 
(r-n fB~/2lr]lP dx) , J B,.'rl"/(t+~) dx (6.3) 

where Br is an arbitrary ball of radius r, and B~/2 is the ball concentric to B~ but half 

its radius. The constant C~>1 depends only on n and K.  The crucial point is that  the 

exponent n/(l+ 1) on the right is strictly less than p=n/1. Inequality (6.3) is an example 

of a weak reverse H61der inequality; it is called "weak" because the ball on the right is 

twice as big as that  on the left. A nontrivial but by now standard real variable argument 

(originating in [Ge]) can be used to show that  (6.3) self-improves itself to (6.2). See [BI, 

pp. 281 ft.]. This proves the lemma. [] 

We now show how (6.2) implies the desired growth (1.12) for the counting func- 

tion A(r). Indeed, by a computation similar to the one in the proof of Lemma 5.2, the 

boundedness of ~ on N implies 

and hence 

B ]~][P dx <<. CA(r), 
(o,~) 

( r-n/B(O,r/2)[ I][q dxll/q~ Cr-n/pm(r)l/p 
where C~>I is independent of r. Since q>p and r/~0, we have that  

lira inf A ( _,  r , > 0 
r ---> 9 c  r a 

for a=n(1-p/q)>O. This completes the proof of Theorem 1.11. 
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