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w I. Introduction. 

I n  the  presen t  paper  we s tudy a l inea r  difference system of order  n in 

y~ (~),... y, (x), 

(~) y~(x+ i)= ~ .~j(x) y~(x) 
j = l  

( ] ( a i j ( x ) ) ] ~ o ;  i =  I ,  2 , . . .  ?~), 

1 Na t iona l  Research  Fellow, H a r v a r d  Un ive r s i ty .  

1--32511. Acta mathematica. 60. hnpr im~ ]e 1 septembre 1932. 
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in which the coefficients aij(x) will be taken either as known rational  functions 

of x or, more generally, as series convergent for Ixl > r which, except for a 
1 

finite number  of ascending powers, are in descending powers of x or of xl, 

(p, a positive integer). Still more generally it may be supposed tha t  the coeffi- 

cients are merely represented asymptotically by such series in certain regions of 

the complex plane. 

The equations (I) will be wri t ten in the matrix form as follows 

(I a) Y(x+i )=A(x )  Y(x), 

(Y(x)~(yij (x)); A (x) ------- (a~-j (x))); 

here, for j - -  I ,  2 , . . .  ~t, the elements yu(x) , . . ,  y,,j(x) in the j - th  column of 

Y(x) form a solution 

of the equations (I). Such a solution Y(x) of the matr ix  equation (I a) will be 

called a matrix solution in case I Y(x)[ ~ o. 

In a preceding paper by Birkhoff ~ the well known fact  was pointed out, 

t ha t  such a system (I) may be related to a single difference equation of the 

~-th order 

(2) L,  (y) --= a o (x) y (x + , )  + a, (x) y (x + n - - I  ) - F ' '  a- an (X) y (X) : O, 

(ao (x) o; (x) o) 

by means of a linear t ransformat ion 

n 

(3) y (x) = F, (x) yj (x), 
j = l  

in such a wise tha t  whenever Yl (x) . . . .  y~(x) is a solution of (I), the correspond- 

ing y(x) obtained from (3) is  a solution of (2), and, conversely, whenever y(x) 
is a solution of (z), then the ~2 functions y~(x), . . .  y~(x) determined by the n 

equations 

1 Formal Theory of Irregular Linear Difference Equations, these Acta, vol. 54, I93O, PP. 
205--246 (cited hereafter as (I)). 
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y (,~) = ~ zJ (~) yj (~), 
j--1 

(4) y(x-[-  I) = Z ~j(x ~- I )a j j , (x)y j , (x) ,  
j, jl=l 

:~](Z + ~ --" I ) - -  . ~  ~j (.93 + n - -  I) g j j I (X  ~- ~ - - 2 )  . . . .  ajn_2jn_l(X) yjn_l(32) 
J,j ..... Jn~l 

form a solution of (I) .  Here a o(x) . . . .  a~(x) are known functions of the same 

type as the a~j(x) while Z~(x) . . . .  Z~(x) are known rat ional  functions of x, ar- 

bitrary except tha t  certain special conditions are not  to be satisfied. Conversely 

of course an equation (2) can be related to a system (I), for instance by writ ing 

(5) Yl(X-}- I )  = y2(x ) ,  ~]2(X+ I) : f f 3 ( X ) ,  . . . ,  yt~--I(X-]- I) = y n ( z ) ,  

~0 (x) y~ (x + ~) = - ~1 (x) y~ (x) - ~.~ (x) yn-~ (x) . . . . .  ~,, (z) ~1 (x) 

in which case y = Yl (x) will satisfy (2). Since in (2) we have a o ( x ) ~ o ,  w i thou t  

any loss of generality it  may be supposed tha t  a o ( x ) ~  ~. In  much of the text, 

along with an equation of type (2) there will be occasion to consider the 

related system 

(6) ]~(X -]- I) : D ( x )  ] 7 (x ) ,  

O~ I~ O~ . . . 0 

D ( x ) = t  o , o , I  o . . . .  t~(([ij(x)).  

I f  Y ( x ) =  (yij(x)) is a matrix solution of (6) then 

(6 a) (Yi j (X)) : (yj (X ~- i - -  I)) 

and the functions Yl (x) , . . .  y,~(x) will constitute a fundamenta l  set of solutions 

of (2). The converse is also true. 

The fundamenta l  result  of the paper referred to above is tha t  every system 

of type (i), or single equation (2), admits precisely n linearly independent  formal 

solutions with elements of the general type 
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p--1  1 

ee(~)s(x), Q ( x ) = ~ x l o g x  + T x  + d x V  + ... + ~xV 

( 1 1 

s ( x ) : x  ~ a + b x  P + . . . ) + ( a l + b l x  ~ + -  . ) l o g x + . . .  
(7 a) 

1 + (a ~ + b  "~x ~ ; + . . . ) l o g ~ x  , 

p is a positive integer, /~p is an integer and m is a positive integer or o. Here 

p does not  need to be the same as the integer, denoted by the same letter, 

occurring in connection with  the coefficients of a system, or single equation. 

The following definition will be introduced. 

Definition 1. A formal  series s (x) which is of  the form (7 a) will be termed 

an s-series. 

An element e q(~)s(x) may be thought  of as representative of y(x)  for in- 

stance, in which case the corresponding yl(x)  . . . .  y , (x )  are given by such 

&series with the same exponential  factor  e ~(~). Two series (7)which differ merely 

by a periodic factor  e 2 ~ ~ V ~  ()., an integer) are considered to be linearly 

dependent.  The series involved may converge but  in general will diverge. 

Wi th  an equation of order n, of type (2), there will be associated n functions 

Qj(x) ( j  = I, . . . . ) .  

For purposes of classification the fol lowing terminology is found to be 

convenient.  The difference system (I) or single equation (2) will be called nor- 

mal if p ~ I in all of the formal series, so tha t  each Qj(x) reduces merely to 

g / x  log X+TiX;  otherwise i t  will be called anormal, since then there enter  anor- 

mal series with p > x. This agreement  is in accordance with tha t  used for 

l inear differential eqtmtions. Moreover the system (I) or equation (2) will be 

called regular or irregular, according as there is only a single value of #j or 

more than  one such value. Finally any difference system (I) or equation (2) is 

cailed singular when it is not  both normal and regular. 

The earlier methods of NSrlund, Galbrun, Carmichael and Birkhoff were 

applied primarily to the regular normal  case1; for a system (I), this ease may 

be looked upon as the 'general '  case from a certain point of view. 

I Cf. N. E. NSrlund, Differenzen Rechnung, Berlin (1924). See also Birkhoff 's  papers  Ge- 
neral Theory of Linear Difference Equations, Trans.  Am. Math.  Soc., vol. I2 ( I9 I I )  pp.  243--284 
(hereafter  ci ted as (II)); The Generalized Riemann Problem for Linear Differenlial Equations and 
the Allied ~roblems for Linear Difference and q-Difference Equations, Proc. Am. Acad. Ar ts  and 
Sciences, vo]. 49 (I913), PP. 521--568 (hereafter  ci ted as (III)). 
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Fur the rmore  Galbrun ~ has t rea ted  a single difference equation of order  n 

with rat ional  coefficients in the special case of the special anormal  regular  type 

in which ~ pair  of anormal  series enter  with p -~ 2, so t h a t  the  two correspond- 

ing polynomials Q (x) in V x  have the respective forms 

z ( x )  + y x  - 

In  a recent  impor tan t  paper  Adams 2 has shown tha t  to some extent  Birkhoff 's  

methods  continue to apply in the i r regular  normal  case. 

In  the present  paper the a n a l y t i c  theory  of l inear difference system (or 

single equation) is developed so as to upply wi thout  restr ic t ion upon the form 

of the formal  series. The methods consist, on one hand,  of suitable modifica- 

t ions of those of paper  I I ;  on the other  hand,  an impor tan t  rSle is played by 

certain new methods involving factor izat ion and group summations.  The main 

resul t  of the paper  is embodied in the Fundamenta l  Existence Theorem of sec- 

t ion 9. In  most  of the text  preceding section 8 we restr ict  ourselves to  a 

quadran t  I', 

z=< arg x <= ~ + ~ (Ixl> # > o) 
2 

the lower boundary  of which, h, is a port ion of a line parallel  to the axis of 

reuls and lying below this axis. In  quadrants  o ther  than  F results will hold 

precisely analogous to those obtained with reference to F. 

As a ma t t e r  of nota t ion we shall write 

( x )  = ( x )  - 

Moreover,  in addit ion to definition (I), i t  will be found convenient  to set 

for th  the following definitions. 

Definiton 2. A branch extending to infinity and satisfying the equation 

Q ' i j ( x ) :  o will be called a B '  curve. I f  ~ Q ' ~ j ( x ) ~  o there is no B' curve. 

Definition 3. Let  G denote a par t  of F with the right boundary coincident 

with that of F: Let  the left boundary of G have a limiting direction at infinity; 

1 g. Galbrun, Sur certaines solutions exceptionnelles d'une dquation lin6aire aux diffdrences 
finies, Bull. Soc. Math. de France, vol. 49 (I9ZI), PP. 2o6--24I. 

" C. R. Adams, On the Irregular Cases of the Linear Ordinary Difference Equations, Trans. 
Am. Math. Soc., vol. 3 ~ (I928), pp. 5o7--54. 
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i f  this direction is coincident with that of the negative axis of reals assume this 

boundary to be of the form v = h( - -  u)e(h>o; I > e > o; x ~ u + l 5 : -  Iv). Let C 

denote a curve in G, with a limiting direcffon at infinity. V(x) will be said to 

possess an order k o along C if, as Ixl--*r162 along C, 

- - , o  ~ k < k o  
lev(~)- 2"~ ~:l/~q-'l l 

--~oc k >  k o. 

A function V(x) will be said to be proper in G, or le"( )l will be said to be com- 

parable with p'~V~ll~ I in G, i f  along every curve C, lying in G and of the above 

description, V(x) has an order k o (in general, dependent on C). A set Qj(x) 

( j =  I , . . .~:)  will be said to be proper in e i f  all the Q~j(x) ( i , j ~ - I , . . . n )  are 

ln'oper in G. The region G may reduce to a single curve C. 

Definit ion 4. An operator L, (y)  (or equation L,, ( y )=  o), with coefficients 

known in a region G and of the type, in G, which has been assumed with reference 

to (I) and (2), wiU be termed proper in G i f  the equation L , , ( y ) = o  has a funda- 

mental set of solutions with the asymptotic form of the formal series in each of the 

several regions, separated by B' curves, which form G. Solutions of this kind will 

be said to be proper. 

Definit ion 5. A fi~nction p (x), of period uniO and analytic in an upper 

half  plane, will be called proper i f  

p (x) ~ pe ~'~V=il~ 

(p, a constant; 1t, an integer) 

in a region whose left boundary is of the form v-=- h (--u) e and whose right boundary 

is of the form v = h u  ~ (h > o, e > o). 

Definit ion 6. An operator L ,  (y) (or equation Ln (y ) - -o)  which is proper in 

G will be called completely proper in G if, in G, proper fundamental sets of solu- 

tions exist which are connected by proper periodic functions. 

Definit ion 7. A set 

Q ,  ( x )  , . . . q , ,  ( x )  

has a point of division in G i f  this set can be separated into two groups 
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q, (x), . . .  Q,,(x); Q~+~ (~),. . .  Qn(x) 

(I ~ 1 " <  n) 

so that for x in G 

Q'~ (x) => ~ Q'~+. (x) 

( ~ =  I ' , . . .  F ;  ~ =  I ,  . . .  n - -  F) .  

Definit ion 8. Let G denote a subregion of F, the lower boundaries of G and 

F being coincident. An operator L,,(y) (or equation L~(y )= o) with coefficie~ts of 

the same kind, in G, as in (I) and (2) will be said to be Q-factorable in G i f  the 

set of Q's, 

Q, (x), . . .  Q, (x), 

belonging to L~ (y), has a point of divi,~ion in G. 

Definition 9. Let F be a curve extending to infinity and lying in I .  Let 

RF be the portion o f  F between F and the right boundary of F. The curve �9 and 

the region RF will be termed proper for the set 

Q, (x), Q, (~) 

i f  this set is proper along F and ah'o in RF. 

2. 

Let  us write 

Some Properties of B' and Proper Curves. 

(I)  Qj (x)  = ~tj x l og  x -}- P j  (x) ( j  = i ,  . . .  n).  

W i t h  a system (or equation) of order  n we have associated n polynomials,  
1_ 

Pj(x) (j--~ I, . . .  n), in xP, of degree not  greater  than  p and wi thout  constant  

terms. These polynomia ls  occur in the exponent ia l  parts  of the formal  series 

(7, (7 a); w I). In  this connect ion subscripts I to n are a t tached to p, m, r, 7, 

(I, . . .  v so as to differentiate between the n exponent ia l  factors which accompany 

the n formal  power series (when we consider a single e q u a t i o n ) o r  so as to 

differentiate between the n columns of the formal  mat r ix  (when a system is 

considered). Unless s tated otherwise, we shall take for  each of these elements a 

common value of p and m; this can always be effected by taking these integers  
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1 

sufficiently great. I t  is obvious of course tha t  if one determinat ion of x~  

and of log x is made in such a formal solution, all of other determinations of 
1 

xPJ , namely 

1 1 1 

o~ x P j ,  O)2 x P j ,  . . . fDpj--l xP j  

where w is a primitive pi-th root of unit)', and certain of the other determina- 

tions of log x, namely 

/ -  . . . .  

l o g x + 2 ~ l  ~ - I ,  log, x §  I , . . .  log x +  2 ( m j - I ) z V -  I, 

yield other related formal  solutions. Thus with one such formal solution is 

associated a group of mjpj solutions which are linearly independent.  

For  the present we suppose a cut made along the positive axis of reals 
1 

and take the principal determinat ion of x v and log x on the upper side of the 

cut. In  much of the text  we deal with 'solutions the left '  in such a cut plane. 

When  we 'work from the right '  there is a similar procedure, with a cut made 

along the negative axis of reals. 

The B'  curves will be seen to be of outs tanding importance (Def. 2; w I). 

Along such a curve ~ Q'ij (x) ~- o; conversely, any curve for which ~ Q';j (x) ~ o 

( i~ j )  is a B '  curve, except when tt; : t t j  while P'~i(x) is a pure imaginary con- 

stant.  In  fact, the equation 

2)  ~ r Q ,~. (x) = o 

can be writ ten more explicitly in the form 

,uij (log Ix] + I) ~,- ~P ' i 5  (x) = o 

( ~ ~ )  p - - I  - -  
P ' i j ( X ) = T i  j + . . . .  d~jx P+ ...; ~ i j = l ~ - - , u j ,  7~.~-----7~--7J, d ~ =  d i - -  ; 

P 

this justifies the last statement.  There is no B'~j eurve 1 when g~r since for 

Ixl large the first member of the above equation would be arbitrarily large 

while the seeond term would remain finite in fact  approaehing ~t7~ J. Conse- 

quently it  follows tha t  for the existence of a B ' i j  curve i t  is necessary tha t  

r ( p 
1 T h e  B'  c u r v e  a l o n g  w h i c h  ~ Q i j ~ x ) =  o i s  d e n o t e d  b y  B i j .  
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~tij ~ ~}~Tij ~ O. 

are algebraic.  Thus  when a B ' i j  curve exists i t  is 

R i ~  (~)  - ~t  [ P ' ~ j  (~ )  - r~Jt = o 

6 i jx  P + - . .  + = o .  

I f  there  exists an anormal  series (with pi > I), the p i  determina t ions  of 

yield p~ associated series solutions with the s~me value of ~t and  the same 

Obviously the B '  curves 

g iven by the equat ion 

o r  

1 

x P i  

real  pa r t  of y; in this case the  necessary condit ions for  the existence of a B'~j 

curve are satisfied. 

I f  p i - - p ~ ' =  I there  exists no B ' . .  , w curve since then P i j ( x )  is a pure  im- 

ag inary  constant .  I t  is clear then  t ha t  if a B'~j curve exists i t  satisfies an 

equat ion 

(2 b) ~ ~ i j x  + ' + - ~ i j x  v = o 
P 

(wJ=lwJ]e'-~'iJ; wj#o ;  i = < s ~ p -  ~). 

The leading t e rm in (z b) is 

consequent ly  

by the  equat ion 

(a z a rg  x); 

there  will be several  B ' i j  curves wi th  l imi t ing  direct ions a defined 

o 

I t  is of interest  to de termine  in wha t  cases there  are no B' curves. F rom 

preceding it is clear t ha t  whe mus t  then  have  for all i and j e i ther  the 

t t i j  # o or #i j  ~ o, ~ T ! J  # o, or else ttij = o, }}~7i j  z o, P ' i j  - -  7 i j  ==- O. Suppose 

then  t ha t  we consider those fo rma l  series for  which tti has  a given value and 

a t  the same t ime }tl7~ has a given value. For  the  cor responding  formal  solu- 

tions we shall  have  

2 - - 3 2 5 1 1 .  A c t a  mathemat ica .  60. I m p r i m 6  le 1 s e p t e m b r e  1932, 
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P%.  (x) - -= P ( x ) .  

Now if Pi(x) has various determinations, then pi and ~7i  are the same for all 

o f  these, so that these determinations fall into the same group, and P'~ j -7 i j -~o  

in all eases. Consequently P'~(x)-'/~ must be identically zero, so that Pi(x)~TiX.  

The case in which there are no B '  curves is accordingly the general normal 

case, regular or irregular. 

The B' curves are important for the analytic theory since they limit the 

scope of validity of iterations and summations. 

In  the cases hitherto treated with success there hare been no B '  curves. 

Generally speaking the B' curves, or any other curves depending on the 

Q(x)'s are not to be regarded as fixed up to a translation. The region F 

consists of several consecutive regions separated by B' curves. These regions 

will be denoted as 

�9 ( 2 )  . . . .  ( , , ) ,  . . .  

where (I) is the region having for its lower boundary that  of I'. Unless there 

is only one such region, so that  (I) is 1", the upper boundary of (I) will be 

denoted by B'; in general, the right boundary of (n~) will be denoted by Bm. 

The number of these regions is finite, the right boundary of the last one of 

them being coincident with that of F (i.e., with the positive half of the axis of 

imaginaries or a line parallel to that  axis). Moreover, these regions may be 

considered overlapping in the sense that  any such two consecutive regions may 

be considered as having a strip of, say, unit width in common. In the sections 

leading up to w 9 it will be assumed that B" curves are simple in the sense that 

as we pass across such a curre precisely two of the functions ~ Q' (x) are inter- 

changed in order. How to meet the situation when the above is not the case 

will be apparent from the text. 

The following lemma will be now proved. 

axis 

Then 

(3) 

Lemma 1. Let B m be a B ' i j  curve with the limiting direction of the negative 

of reals. Assume that i t  is not coincident with the negative axis of reals. 

sij 
] / - -  . . . .  (bij l~j Qij(X) . . . . .  --  I (6ijX -~ a i j ( - -  x) p ~- ) ~- ( . . . .  X) I~-+ ) 

( a , a , . . .  b , . . . ,  real; a, b ~ o ;  p > s i j > l )  i>=I) 
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and the equation of B "~ will be of the form 

di j 

(3 a) v = ~ ( -  u) ~ + . . .  

( x = u H - V - I v ;  d i j = p - - s i j +  I)j; c>o) .  

Moreover, in the region between a curve t~ri#, 

(3 b) v -- 7 (-- u) ' (7 > o) 

(lying, of course, below B ~) and the positive axis of ima.qinaries (as well as farther 

to the right) the function Q~i(x) is proper. 

rij 
Proof. Writ ing Qq(x) in the form (3) we note that  a term in xP with 

p>Fii>=I actually enters, since otherwise the negative axis of reals is evidently 

the only possible corresponding B' curve; this possibility is excluded by hypo- 

thesis. Hence b i j ~ o .  The equation of the curve will be of the form 

[ p ( _ ~ )  + + 

§ -- " + . . . .  O .  

p(--x)  

If  sij < l'~j the dominant term in the parenthesis is clearly the second one 

of those displayed. The expression in the parenthesis would be nearly real for 

Ix] large, Hence there could be no B" curve of the specified type in this case. 

If  sr  the parenthesis has a dominant term 

sij 

and this is also impossible since bij yA O. 

There remains the c a s e  8ij>Fij with a~# r o, when the dominant term 

is the first explicitly written. Here there is actually a B' curve with horizontal 

direction to the left, Now we may write the above equation in the form 
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~ h ( x ) = o ,  h ( x ) ~  ( _  x) --~;---~p-*'i[( s~.jaii + 4- V - ~ :  i ...... ~ , . 7 _ ~ . ~  -4- . . .  . 

( - . )  ; 

Along the curve, for [x] large, h'(x) will be arbitrarily near to a small real 

value. Furthermore by suitably ordering i and j we may make a~j negative so 

that h (x) will approach a positive value. Introducing a new variable s 

h (x) becomes 

r 

I __ I I 8 i j  a i j  

1) - -  si j P - -  si J l P 
( - - ~ )  ~ ( - ~ )  ,, 

+.], 

' I ( "-';' )] , ,_<; ~ + V : : i  at(--2)- i; + . . .  
( - ~ )  ,, 

(dl ~ o). 

In the last parenthesis the power series has real cofficients. 

follows that 

-P [ %~'-q.~ ] 
- -  2 = h (x) v -  "~j I 4- I f - - -  ~ d ,  h (x) v - * , j  + . . . .  

By inversion it 

(d., ~ o). 

Hence, writing 2 = ~ + 1/--  I e, we have 

--p p--s i j + F i j 

- - ( t = h ( x ) P - s i J ( I + . . . ) ,  --,e-~d,h(x) p-~ij + ... 

so that the B '  curve in the 2 plane will have the form 

di j 

a = d 3 ( - ~ )  p + . . - (G~o;  p>&.;  = p - s i ~ + i ~ j _ > , ) .  

Consequently the equation in the x plane will be of the form (3 a). 

We shall prove now that the function Qij(x) is proper in a region RFri j 

between a curve Frii, given by (3 b), aud the positive axis of imaginaries (as 

well as further to the right until a line, in the first quadrant, is reached making 

an arbitrarily small angle with the positive axis of reals). In other words, we 

wish to show that along any particular curve, lying in R~,ri j and having a 

limiting direction at infinity, a definite finite order k o (depending on the curve) 
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for eqiJ (z) as compared with e 2~V-ix exists in the sense that ,  as [x[ becomes in- 

finite along this curve, we have 

(4) lira e eij(x)-2kztl/~x=~~176 (k > ko) 
(o  (~ < ko). 

(If we work below the real axis, e 2~V~i~ is replaced by e - ~ z l / - ~ . )  I t  can 

be easily verified that ,  since in Q~j(x) the constant  #~j is zero, @j(x) will be 

proper in the whole plane excepting possibly in two arbitrarily small sectors 

containing the positive and negative axes of reals, respectively. In other words, 

Qij(x) will certainly be proper in any region in which there can be no curves 

having l imiting direction at  infinity, coinciding with tha t  of the real axis. For  

simplicity of demonstrat ion ~he subscripts i, j in the following will be omitted. 

I t  is sufficient to consider curves F~ lying in /~ie r and given by equations of 

the form 

(5) v = h ( - u F  (h>o;p>~_-_r) ;  

here 6 is not  necessarily an integer. 

For x on F~ we shall have 

so that ,  along Fs,  

(5 a) 

and 

(5 b) 

-- a : tg -x --  p-0~ -~ . . . .  

( - - u )  " 

s 

8hlxl~ 
( ~) .' ~ ( ~ _  ~)-- p + .  

~}~ V - - I  ( - - X )  p ]xIP s in  P p_~ 
( -  uU-  

/7 F F 
F 

m ( -  ~)~ =1@ cos - ( ~ - ~ ) =  I~1 ~ +. . . .  p 

Using (5), (5 a), (5b) and the fact that ,  along F~., IXl = - - u  + . . .  we have 

for x on Fa 

~ [sha ~+~-~ ] 
~ [Q (x) - 2 ~ ~ y ~ I  x] = (2 ~ ~ -  o) h ( -  u)~ + t ~  ( -  u) ~' + 

(5 c) 
+ b ( - - u ) ~ + . . .  ; 
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here the terms displayed in the parentheses are correspondingly the leading 

ones. When ~-~ F the leading term in the second member of (5 c)wil l  be 
1" 

[(2 k z  -- o)h + b] (--  u)~; on the other hand, when ~> F the leading term will be 
d 

(2 k z - - a ) h ( - - u ) ~ .  In the first case the order ko will satisfy the equation 

( 2 k o J r - - a ) h  + b = o  

and in the second case it will satisfy the equation 

2koZ--a-~O. 

This completes the proof of the lemma. ~ 

The following lemma will be proved. 

Lemma 2. I f  in the region (I) + ... + (m) the set 

. . .  

has no point of  division then this set has a proper curve F in (m) or fur ther  to 

the left (Of. Def. 7; w I). 

Proof. This is obviously true, in any case when the limiting direction of 

the upper boundary of (I) + -.. + (m) is not that of the negative axis of reals. 

Accordingly we assume that  the upper boundaries of the regions (I), . . .  (m), 

B 1, B ~ , . . . B  "~, 

each have limiting directions coinciding with that of the negative axis of reals. 

By hypothesis, if the set of functions Q(x) is separated into two groups 

(6)  te (x); q:+,(x) . . . .  Q / x )  

there exists at least one member of the first group and at least one member 

of the second group which interchange order in (I)+ . -  +(m). This statement 

will hold true for s = I , Z , . . . F - - i .  Consider (6) with s =  I. Let Qk1(x) be 

the member with the least subscript which interchanges order with Ql(x). This 

would necessitate existence, in ( I )+ . - .  + (m), of a B'~, ~ curve. Obviously there 

I I t  is  suf f ic ien t ly  obvious  t h a t  ex i s t ence  of an order  k o a long  F F in su res  t he  des i red resul t ,  
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could be no B ' i j ( j =  z , . . .  ]c~ -- I) curves in (~ )+ . . .  + (m), but necessarily curves 

p p 
B ; ,  k l ,  B3,  k l ,  �9 �9 �9 B k ~ - l ,  kl 

exist in (I)~-" '-[-(N).  O n  applying Lemma (,) i t  follows then tha t  the func- 

tions Q,. ~I (x), Q2, kl ( x ) , . . .  Qkl-~, kl (x) are proper on and above a curve F in (m). 

Not ing that 

Qij (x) = Q~I (x) -F Ql j (x) (i =< i, j ~< ]~) 

we conclude tha t  the functions Qij(x)(I  ~=i, j~]cl)  are all proper on and above 

F.  I f  ~here are any other Q(x)'s changing order with Q~ (x) let 

be the member, lying nearest  to Qkl(x), which has this property. 

tha t  there is a B'I,t:~ curve in ( I ) + .  

can be no curves 

J~i ,  ~ + j  ( j  = ~, . .  ~': - ~ - i ) .  

Hence necessarily the following curves would exist in ( I ) + . . .  + (m) 

Bpt  ]1 kl. +l, 2, 

By Lemma (I) the functions 

I t  follows 

+ (m), and that ,  in ( I ) + . . .  + (m), there 

B;~-I ,  k~ and B'I, ~.~. 

Qk~ -F1, k~,. Qk~--l. ]1 a n d  Q1, i~ (x) 

are proper on and above a curve F in (m) (F  will now stand for the upper one 

of the two F-curves so far considered; we proceed in this fashion i n  each of 

the consecutive steps). Now 

O.j (x) = Q~, k~ (x)+ Qk~,j (x) 

so tha t  the Q~j (x)(kl~ + I ~ i ,  j ~ ]r are proper on and above F. We note, 

further,  tha t  

Q~j (x) = Qi, ~I +o (x) = Qi, ~I (x) + Q~I,1 (x) + 

Ql.k~(x)+Qk{,k l+.(x)  (I _-<_i~<k',; k',-~-I ~<j'-<]~'._; I ~ a ~ k ' 2 - - # ~ l i ) .  
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Here  the terms of the 

above Q~j(x) have the 

follows tha t  the 

last member  are proper  on and above F so tha t  the 

same property.  In  conjunct ion with the preceding it 

Q,j(x) (x <=i, j g  ~'~) 

are proper  above F.  

Suppose that Qk](X), Qk~(x),... Q~(x)(,ji~-I) 

( 2 = k l  < ~ ;  ... < ~ , )  

are all the Q(x)'s which change order  with Q~(x) in ( I ) ~ - - . . + ( ~ ) .  By the 

reasoning of the kind just  employed we can demonst ra te  tha t  the Q~j(x)(i ~=i, 

jGkj,)  are proper  above a curve F lying in (m). 

Consider (6) with s =  kj',. Let  Qs~ (x)(3_~ > i) be the Q (x) of the first group 

which has the least subscript  and changes order,  in ( I )+  ... + (m), with at  least  

one of the set of Q(x)'s of the second group. Such a subscript  (~s(I<&2G}~,) 

exists. Let  all the  Q(x)'s of the second group,  having this pro- certainly 

perry, be 

Qk~ (x), Q~i (x), . . .  Q~j: (x)(j~ ~ i) 

(kj. + i _-<~', < k ~  < : < k;:). 

By the reasoning already employed and using the proved fact  tha t  the 

Qij(x) (I < i, j <=k),) 

are proper  above F,  we conclude tha t  the funct ions  

Q~j (x) (~ <= i ,  j <= k;~) 

are proper  above a curve /"  in (m). Unless k.7 .0 ~ F, when the desired result  is 

achieved, we consider (6) again, with s ~ k~., and cont inue the process as speci- 

fied above (we have ~.~ ~(~2~(~1 ~ I).  The proof of the lemma can be completed 

by induct ion and is seen to be applicable also when the B'  curves are not 'simple'. 

Another  lemma will be essential for  the purposes at hand. 

Lemm& 3. I f  the set 

(7) QI (x), . . .  Q,~ (x) 

has no po i . t  of divisio,  i .  ( , ) +  + (m+ i) but in ( , ) +  + (m) there is a po i . t  
of division, then this set has a proper cur~'e F in (m). 



Analytic Theory of Singular Difference Equations. 17 

Proof. Suppose tha t  the point of division in (:) + ..- + (m) is between the 

F 4 h  and F + I-St members of the above set. Since the set (7) has no point of 

division in ( I )+  ... + (m + :) it  follows tha t  B m, the r ight  boundary of (m), is 

a fir, e curve with, say, r_--<I" and, necessarily, e > F +  :. In fact, if we had 

r, ~ _--< F or r, Q > F + : the set (7) would have a point of division (between the 

F-th and F + :-st members) in (I) + . - .  + (m + :). Now the set 

(7 a) Q~(x ) , . . .  Qr(x) 

has no point of division in (I) + . . .  + (m), the same being true for the set 

(7 b) Qr+~(x), . . .  Q,(x). 

The t ru th  of this s ta tement  follows from the fact  tha t  B " is B'r, ~ (r < F; 
> F +  I) so tha t  a point of division, in (I) + ..- + (m), of either one of the 

sets (7 a), (7 b) would imply a corresponding point of division for the set (7) in 

(~) + ..- + (m + :); the lat ter  situation, however, had been excluded by hypothesis. 

Hence, by Lemma 2, the sets (7 a) and (7 b) are each proper to the r ight  of a 

curve F lying in (m). In  other words, we have the functions 

(8) QAj(x) (I ~ ~, j ~ /7) 

proper to the r ight  of F (in (m)), and the functions 

(s a) Q~j(x) ( r +  l<=r 

also proper to the r ight  of this curve. 

Consider 

(s b) Q~j(x) = ~2~, ,,+ ~ (x) 

(I =<i=<F; / ' - ] -  I ~ j  ~< 9~; I ~ i f< :  ~ t - -  F). 

Any one of the functions (8 b) could be writ ten in the form 

Q~j(x) = Q~, r+o(X)= q~ r(x) + q~, ~(x) + qe, r+~(x) 

( i , r < F ;  Q, F +  o > I ' +  I). 

Now Q~,r(X) is a funct ion of (8) and Qe, r+~(x) is a funct ion of (8 a); these two 

functions are proper to the r ight  of F ,  in (m). On the other hand Qr, e(x) cor- 

responds to B m, the r ight  boundary of (m). Thus on applying, if necessary, 
3--32511. Acta mathematica. 60. Imprim6 le 1 septembre 1932. 
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Lemma I we conclude t h a t  Qr.e(x) is proper to the r ight  of a curve F lying in 

(m). Consequently the functions given by (8 b) have the same property. 

Consider 

(9) (2~j(x) (I <= i, j ~ ~). 

Any particular Q~j(x) of the set (9) belongs to one of the sets (8), (8 a), (8 b)~; 

hence the functions (9)a re  all proper to the r ight  of a curve F ,  in (m). This 

completes the proof of the lemma. By  a similar, though slightly more complicated 

reasoniug, we show that the Lemma is true also. when B '  curves which are ~wt 

'simple' are admitted. 

Proper curves will be seen to be important  since, as will be shown later, 

along paths lying in proper regions bounded by such curves, certain summations 

are possible. Such curves (and regions) are also essential in demonstrat ing tha t  

the periodic functions connecting certain sets of solutions are proper (Cf. Def. 

5 ; w  i) .  

w 3. Lemmas on Iteration. 

Consider the quadrant  F and the consecutive regions 

( I ) ,  (2 ) ,  . . .  (m) ,  . . .  

which are separated by B '  curves, B 1, B ~, . . .  B " ,  . .. and consti tute 1" (see w 2). 

On the other hand, there is a quadrant  _Q of a similar kind lying below the 

negative axis of reals and having for its upper boundary, (ht), a portion of a 

line v = - c  > o. The consecutive regions of .(2 separated by B'  curves will be 

denoted by 
[ , ] ,  [ 2 ] ,  . . .  I ra]  . . . .  ; 

here [I] will be the region having (h i) for its upper boundary. In  some of the 

following sections we propose to envisage a process of i terat ion from the left  

(or equally from the r ight  of course). Such a process will be first applied to 

region of type (t) or of type (I) + [z]. 

As seen from w 2 the upper boundary of (I) extends indefinitely upwards 

while the lower boundary of [I] will extend indefinitely downwards. The neg- 

ative axis of reals may be a B'  curve or it may not. In  the latter case a region 

of type (I) + It] is suitable for iteration. Regions like (I) or (I) + [2] will be 

Qij(x) and Qji(x) = -  Qij(x) are both considered as belonging to the same set. 
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said to be of type K. More generally, K will denote a region either having the 

negative axis of reals for a part of its boundary or containing this axis; such a 

region will be allowed to extend to the right but always excepting a neighbour- 

hood of the positive axis I bounded, say, by curves of the form v =  +_ hue(h, e>o). 

The following lemma will be proved. 

Lemma 4. Suppose that in a region K (that is, a region of  type K) we have 

(~) ~Q'I(x)>= ~Q~(x) (j 5,  . .n)  

the set Qj(x) (j = I, . . . n) being associated with a difference system (I) 0r (I a); (w I). 

Let the matrix of  formal solutions of  this system be denoted by 

(I a) S ( x ) -  (eQJ(%~j(x)) 

(here the series s~j(x) are s-series (Deft I ; w I)) and let i ( x )  be a matrix, 

(i b) T(~)  = (eQ~ (~) t~(~)), 

in which tcj(x)(i, j I , . . .  n) denotes 8ij(X) with the power series terminated after k 

terms (k being sufficiently great). Form the matrix 

r X (2) y,(x) = (y,j( ) )= A(x  -- ~) A(~ - - r ) T ( z  -- r). 

The following holds true. For x in K the limits 

(5 a) l i r a  y r i ( x  ) = Yil(X) (i = I , . . .  n), 

exist, are independent of k, are analytic and are the elements of  a solution of  the 

syste,n r ( x  + ~) = A(x)r (x ) .  ZZoreover, in K, 

(3) yiX(X) -- eQ,(z)Sil(X) ( i - -  I ,  . . . n). 2 

Proof. The matrix ]Z~(x) can be expressed as follows 

(4) yr(x) = T(x) Y~(x) ( Y~(x) = (~rj(x)), 

r 
Y " ( x )  : H T - I ( x -  i.-~- 1) d ( x - - i )  T ( x - -  i). 

i~1 

1 Tha t  is, when working from the left. 
2 Relations l ike (3) are to be construed as denot ing asymptot ic  relat ionship with  respect to 

the power series factors, 
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Now define a m a t r i x  B ( x ) ~  (bij(x)) by the  re la t ion  

B(x) = T(x + , )~(x) .  

On the  o the r  hand ,  we have  fo rma l ly  

A (x) ~- (a,j(x)) : S (x  -~- ,) S - l (x);  

here  the  aij(x) a r e  in K of  the  fo rm specified in the  beg inn ing  of w I. 

d i rec t  c o m p u t a t i o n  ~ we show t h a t  

I 
(5) A(x)  - -  B(x)  = xy. ' H(x)  (H(x) -= (h,j(x)) 

k 
where  Ih~.i(x) l ~ h, fo r  x in K,  while k~ . . . .  d~ (d I ~ o; k~--~ 

P 

Now IA(x) l ~ o so that IB(x) l ~ o; thus, writ ing 

(5 a) A (x) ~- I t (x )[ I  + N(x)] 

( I  = (cl~j) = iden t i ty  mat r ix ) ,  

we have  

I B-'(x) H(x) (B - l ( x ) : ( b , j  (x)). 
X(z) = x"' 

By a 

as ~ - ~  ~r 

The bij(x), if  no t  b o u n d e d  (for I x l  > p  > o), are  inf ini te  a t  x = ~ to  finite order .  

H e n c e  

(~ b) 

k 2 = p - - d ~ ;  d~-->_o; k 2 

now the  p r o d u c t  

W r i t i n g  

' c(~) N(x) = g~ ( C(x) -(c,j(~))) 

; here ,  fo r  x in K,  I cii(x) I _--< c. Cons ider  

r -~ (x + I)A (x) T(x)  -~ T - '  (x )B -~ (x)A (x) T(x) 

(z ~ ) i 
= T - l ( x )  + - -  C(x)  r ( x )  = 1 -[ ...... ~[,-1 (x) C(x)  T ( x ) .  

Xk~ Xke . 

T-~ (x) = (~-Q, Ix) i,~(x)) 

T -1 (x) C(x) T(x) = (e~ ~ (~) ri~(x)) 

' Compare with the analogous procedure in (II). 
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w h e r e  

i ~ ( ~ )  = y, ~,(x)~,~.~(x) t~j(x). 
2~,, L z : l  

The Fij(x), 
sequent ly  

(6) 

if  n o t  bounded ,  axe inf ini te  aA~ x = or (in K)  to  f inite order.  Con- 

I H(x), T - a ( x  + I ) A ( x ) T ( x )  : I + xb 

H ( x )  - (n~j(x)) = (~ ~ (~) h~j(~)) 

k (Ih~(x) l =< h in K ;  b = - -  d; d ~ o; b - ~  r162 as k--~ w ) .  
P 

(7) 

By (4) and (6) 

?"(z) = ( I  ~ - ( X I  i ) b H (  x I ) )  �9 �9 �9 ( [  @ (X I _ , ~ H ( x  ---~') ) 

r H ( X - - -  kl )H(x  - -  k2) 

+ Y' ( x : k ~ i ~ ( ~ : k ~ )  ~ + 
kl < k~ 

+ 
r H ( X - -  k , ) . . .  H(~ - k~) 

k~ < ... < k s 

+ . .  

so tha t  

(7 a)  

r 
-r ~ Ui l_  (x  ~ . ~ ! )  
y i l (X )  : (~il @ / I (X - -  ]~1) b ~ - "  

k~ 

+ 
r I 

~1 < .~ . .  < k s ( X  - -  Jill) b . . ( X  - - ]cs )b l . .  

n 

Z H i 2 , ( X  - - -  ~ 1 )  " �9 " H ) , , s - - l l ( X  - - k s )  d - ' "  

~8--1 = 1 m 

r 
= dil + ~ e  ~l~(~-k~)hil(x - kl) 

+ 

kl < " '  <k s 

A[_ . . ,  
( x  - k l )  ~ 

(x  - k i ) b . . .  (x  - -  k~) ~ 

kl k s 

e G~ .. . .  2s-l(X)hi~(x" k l ) h 2 1 k 2 ( x  k 2 )  h 2 s  l l ( X  k s )  -t- 

i b 

_ _  _ _  . . . , - -  - -  . . . 

21" ' ' ~ s - - i =  1 
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Take k sufficiently great  so tha t  b > 2; then the series (7 a) will converge 

uniformly to a funct ion analytic in K (for i = I . . . .  n) provided tha t  the func- 

tions ~i '~s �9 ..~s-~(x) have a non-positive or limited positive real part. Now such 

a function is expressible as follows 

c~: i i i~Z(x)  = Q~ ,~(x -  k~) + ~ + , ( x  - k,) + 

§ O~s__ l ' . s __2 (X  - -  ~ s - - i )  § ( ~ i ~ s _ _ l ( X -  ~'s) 

= Qli(/) -t- (Qil(:c) @l ( x  - x-l)) -i- ((2~,1(x - kl) - Q~.,l(X - k~)) 

+ + ( O~s _ ~  (~ - ks-~) - -  O ~ s _ ~  (x - ks)) 

J / T 1 = Qli(X) + (~'~'l(X)dX + Qi, l ( x ) d x  + .-- + Qi~_~,(x)dx.  

x - - k ~  x - - h .  x - - k  s 

I f  ~x~ = ~x,  0lx 1 < 0{x, then with path of integration along the straight  

line goining x I and x we have 

? / 9~ Q'(x)dx= 9l < o  O ' ( x ) ~ l x  = 

3" 1 2t'! 

inasmuch as OlQ'(x) ~ ' =~)t@,~(x)  <= o. The lat ter  inequali ty holds, in K,  for 

s - =  l , . . . n .  Hence, in K, 

k I. .. k~ ~ X (7 b) ~ 6 ~  .... s ~Q,~() .  

Using the fact  tha t  [h~j(x) l <  h (in K) we conclude tha t  the limits 

lim Y~I (x) = Yil (x) 
r ~ a o  

exist. In  fact  

1~i1(:c)_6i11< I e~Qli(x)( ~ nh 
= . I x -  k, I ~ 

= ,,' e'Q"(x' [ ( (  ~ 

(~h)~ ) 
k .... J x - -  - k s ]  ~ + ' 

~h nh  
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Moreover, using formulas (I~), (I3) of (II; p. z48), we have, for x in K, 

and 

#i~(x) = ~1 + 
eQleO') mi(x) 

xb--1 

(Im~(x)l _-<~; ~_-< ~ ; . ,  any fixed number),  

yel(x)~---~i l  -]- 
e Ql e (x) , ~  (x) 

~b--1 

( I .~  (x) l < ~9~1; ~ X  : V; ~ ~ (I; I~" I >= d) 

where c is a sufficiently great  positive number.  Using (4) we ge~, for x in K, 

yil(X) = lim y~(x)  = ~ ,  e Q~(~) (te~(x) (lim ~)~a(x)) 

2=1 

2~=1 

Thus we have for x in K and for i =  I , . . . ~  

(8) vi(x)l 
yea(X) = e Q'(x) ~/l(X) ~- x~--~l 

(Iw(x)l =< v; u__<a), 

yex(x) = eQ,(~/ tel(X) + e - I  ! 

(Iv~(x)l--< 71; u >_- a). 

Not ing  tha t  if the functions ~];(x), V~ (x) are not  bounded they are infinite 

to finite order at  infinity (in the two regions, respectively), we have the two 

formulas, valid in K, 
~i(x// 

(S a) y i l (X )  : e Q'(x) tel(X) "~- XC j 

(I ~,(x) l _-< ~; u _-< a), 

( (8 b) ye~(x) : e Q'(x) tel(x) ~- ~V l XC ] 

(I .~ (~)I --<- ~; u => a). 
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, d 1 In  the above c ~ - - - d  1 ~ 0  and c--* 0r as k - - ~  and fl is the maximum 
P 

order to which the ~(x), V~ (x) may be infinite at  infinity. Now, as specified 

previously, the region K is not  allowed to contain a neighbourhood of the posi- 

rive axis Of reals bounded by curves of the form 

v = +_ hu~(h, e > o). 

Consequently for x in K, in a r ight  half  plane, 

Thus Ix I - v 

Ixl 1/ "V u. = ~ + ~ = <  ~ + h.~u~ 

~ l - - e  
(I + ...). 

may become infinite along a path  to infinity but not  faster than  I xl  ~-~ 

where I - - e  ~ I. I t  follows then tha t  a relation of the form (8a) will hold 

throughout  K with the constant  c possibly smaller near the r ight  boundary of 

K. However, for the whole region K,  the relation (8 a) will hold with c--~ 

as k--~ ~ .  That  is, by taking h sufficiently great  c can be made arbitrarily 

great. 

The y~(x)  are the const i tuent  elements of a solution of the system Y ( x  + I) - -  

A(x )  Y(x).  Moreover, the limits are independent  of k. This can be demonstra ted 

by the reasoning of the kind employed for an analogous purpose in (II). This 

completes the proof of the lemma. 

The above lemma is concerning determinant  limits of first order. We shall 

now consider determinant  limits of higher order. Determinant  limits of various 

orders have been previously used by Birkhoff in the paper (II). In  this connec- 

t ion the following facts, needed for the purposes at hand, will be stated. Wi th  

the system 

2 ,  . . . ~ ) ,  

(9) 
where 

(9 a) 

(I a) (8 I) there  is associated a difference system of order ~ ( k  = 

Y~.(x + i) = A d x )  I~(x)  

= ( a ,  . . . .  j ,  

(i 1 . . . .  ik, J l , - ' ' J ~ ' =  I , . . . n ;  i 1 < i  s < "" <i~.; Jl < j ~  < " <jk).  

The multiple subscripts in the above and in what  follows are to be construed 

in the sense made apparent  by the relationship 
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(Io) h~ .... ~~; J,.. ~k 

while in the matrix (o f  order C~) 

25 

y ~ ( ~ )  = (y;  . . . .  ;~; J . . . .  j~ (~) )  

will const i tute u matrix solution of (9). 

W i t h  the above in view we shall state the following lemma. 

Lemma 5. Suppose that in a region K the coefficients o.f a system (I a) (w ~) 

are known. Assume, moreover, that i~ K,  for all Jl, . . .J~ ~= n With ja < . < jk, 

( i 2 )  ~[Q',(=) + ~ Qi(=)] >= ~[Qi~(x) + + Qi~(x)]. 

The functions Q ~ ( x ) , . . .  Qk(x) are to be coqTsidered as associated with the first, 

second, . . .  and k-th columns of S(x), respectively. Tbrm the determinants 

y,~ ,,~;, ~(x) 

by mea, s of the elements y~'j(x) of the matrix Yr(x), defi,ed by (2). 

The following is true. For x in K the determinant limits 

( i2a )  limy~ i ~ k ( x )=  Yi~ ..ik;1 ~.(X) 
~ a o  " ' "  k; . . . . . . .  

( i l  . . . .  ik = I , . . .  n)  

4 - - 3 2 5 1 1 .  Acta mathematica. 60. Impr img , :  ]e 1 s e p t e m b r e  1932.  

the set of subscripts ( i l . . .  ik) refers to a row and the set of subscripts ( J l . . . j k )  

refers to a column of the matrix. The difference system (9) possesses a formal 

matrix solution 

( I I ) Sic (x)  = (e Qjl ( x )+ . . .  + QJk (x)8 i . . . .  ik; J . . . .  Jk (X)) .  

The formal  series si .... ik; j,...jk(x) are s-series (Def. I ; w 1) and linearly independent.  

If  (yij(x))is a matrix solution of Y(x + I ) =  A ( x ) Y ( x )  then 
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exist, are iudependent of  the number of  terms retai~ed in the power series factors 

of  the t~i(x) and they are the co~stituent elements of  a solution of  the system Yk(x + I ) =  

=A~.(x) ]~.(x)((9), (9 a)). Moreover, i~z K, 

(I2 b) Y~" .... i~.; 1...~-(x) ~ eCa(r +Qh(~)s,,...q.; ,...k(x) 

( i ~ , . . .  i~. = I , . . .  ~). 

Proof. By Lemma 4 this lemma is true for k =  I. When  ]c- -2 ,  as can 

be seen from (II; pp. 253--254), there is the following situation. Wi th  reference 

to the system (9), formed for k ~ 2, consider the product 

(I 3) F~(x) = (y;; i j  (x))  - ~  A s  ( x  - -  l ) . . . A s  ( x  - -  r )  T s  ( x  ~ r )  

= (y~:i.,;j,.i,(x)) ( i , . i - -  I, . . .  Of; i,, . . . J s  - I, . . . .  , )  

where Ts(x ) is Ss(x) with the power series factors terminated after  a sufficiently 

great  number  of terms. Let  the columns be so ordered tha t  the function Q(x) 

of the first column of Ss(x) is Ql(x)+ Qs(x). W i t h  (I2) assumed in K f o r  k =  2, 

by Lemma 4 it would follow tha t  the limits of the elements in the first column 

of (I3) exists in K. Moreover, these limits will satisfy all other properties spe- 

cified, in the lemma, for the determinant  limits (of order two). Now by the 

reasoning precisely of the kind employed in (II;  p. 254 ) it follows tha t  the 

elements in the first column I of I'~(x) (r = I, 2, . . .) are correspondingly identical 

with the determinants  

yr.. s ( x ) -  [Y,~,I(x), 'J,~,2(x)l. 

.... ;i [ y,.1  (x), (x) 

The cases k----3 . . . .  n can be treated in a similar way. 

We shall consider now a region R bounded on the left by a curve with a 

l imit ing direction at  infinity, and extending indefinitely upwards (or downwards) 

while to the r ight  such a region will be allowed to extend at  most up to a 

curve of the form 

v = +_ h u" (h, e > o) 

(In general both boundaries of R will be B'  curves). 

this type will be specified by the following lemma. 

] terat ions for regions of 

1 The column specified by the pair of subscripts  (.Jl,J~)= (~ 2.. 
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L e m m a  6. Let V denote a strip of unit width sitaated immediately to the 

right of the left boundary of R (a region specified above). Suppose that we know 

in V a set of s(n >= s >= i) solutions of the system (I a) (w I), 

y~j (x) 

which sati,~fy in V the asymptotic relations 

and are analytic in V. Moreover, assume that in R 

(I 4) ~ Q,', (x) ~ ~ Qj (:'~) 

. ( i =  I , . . . n ; j =  I , . . . s )  

j ~ 2~ . . 

and. that in the first column of S(x) (and of T(x)) we have Q(x)= Q, (x). 

the 

(~5) 

n) 

Letting Tt(x) denote T(x), with the first s columns correspondingly replaced by 

y~.j(x) (i = , , . . .  n; j = I , . . .  s), and defining the matrix Y"X(x) by the product 

Yr,(x) = (y~i~(~))= A(~, - i ) . . .  A(x -- rx)T'(x --r~) 

( z -  r~ in V; A(x)  known in R) 

the following can be asserted. 

The y'ix(x) ( i =  I , . . .  n; j ~ I , . . .  s) are s solutions in R, and constitute ana- 
z3 

lytie extensions to R of the s solutions originally assumed as known in V. The 

asymptotic form of the elements of the first one of these solutions will be 

(I 5 a) y~] (x) = yil (x) ~ e Q~ (x)8i1 (x) 

( i =  I , . . .  n; x in R). 

Proof.  I t  is observed t ha t  

where 

y'~(x) = T(x) Z'~(x) 

_ [rx-1 ] 
~Trx(x) = [ H T- - I (x  - -  i ~- I ) A ( x  - -  i )  T ( x  - -  i )  �9 

i=l 

�9 ( T - I ( x  --  r~ + ~)A(x - -  r~)T'(x --r~)). 

Here the  expression for  YrS'(x) differs from tha t  given before for Y"(x) in the  

last factor,  and t ha t  jus t  in the  power  series factors, by arbitrari ly great  powers of 
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1 

x ~). This 

lemma, 

is due to the fact  that,  as a consequence of the conditions of the 

T'(x) ~ S(x). 

Moreover, for  every fixed x we have r~ finite, so that  there is no necessity for 

passing to the limit. Making direct use of the matrix equat ion (I a) (w I) it is 

immediately obvious that  the first s columns of Y~(x)  are analytic extensions 

of the solutions whose asymptot ic  forms have been assumed in V. Using (I4) 

and applying the reasoning of the kind employed in proving Lemma 4 we derive 

the relations (I 5 a) thereby establishing the lemma. 

For  determinant  limits we have, by application of Lemma 6, the following 

result. 

Leman& 7. Let R and V have the meani~g indicated in Lemma 6. Suppose 

that we know in V a set ( f  s (C'kY >= s >= I) solutions of the system (9), 

y~ . . . .  ,~; j , . . . j k ( x )  

( i , ,  . . . i~ = , , . . .  , ;  s s e t s  G . . . jk))  

(I6) 

which satisfy in V the asymptotic relations 

y i  . . . .  ~k; .J . . . . .  ik(x)  ~ e %  (~)+ ' ' " + % (~') s,.1 . . . .  k; .J . . . . .  j~.(x) 

and are analytic in V. Assume that in 11 

(~6 a) ~ [ Q ; ( z ) + .  + ~-(x)l _>- ~ [ G ( ~ ' ) +  + G(x)]  

(j~< .-. <j~ = i , . . .  ,2) 

and that in the first column of Sk(x) (I I ) ( a n d  of Tk(x)) we have Q(x) Qi(x) + 

+ Q ~ ( x ) .  

Let  T'  k(x) denote Tk(x), with the first s columns (corresponding to the s sets 

(j', . . .j~.) in. 06)) replaced by the elements of (I6), respectively. Define the matrix 
y r g ;  [ \ 

k ~x) by the product 

(I7) ~ ~rx/ \ Ak(x I) .  Ak(x rx)r~(x ".r) k i x ) =  -- . .  --  - -  

= ( y ;?  �9 ,~ ;~  . . . . .  j ~ ( x ) )  

( ~ -  ,.~ i .  v ;  A ( x )  ~ n o ~ n  i , ,  R ) .  
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The funct ions  y~]~..ik; j ..... ]k(X) ( i , . . .  i~: -- I , . . .  ~; the s sets' (]~ . . .jk) o f  (I6)) 

will  be constituent elements of  s solutions, in  R ,  o f  the system (9) and wil l  represent 

analytic extensions to R of  solutions (I6) originally assumed as known, in  V. The  

elements of  the f irst  one o f  these solutions wil l  have in R the asymptotic f o rm 

(I7 a) Y i  . . . .  i k ;  i . . . k ( X )  - - -  Y i  . . . .  i k ;  1 . . . ~ ( X )  

e Qx (x) + " ' ' T Qk (X) s i  . . . .  i~:; 1...k(X) 

( i ~ <  < ik=I , . . . n ) .  

Theorems entirely analogous to those of this section may be formulated 

when we work from the right instead of from the left. In this case a cut is 

made along the negative axis of reals to fix the determination of S(x) and we 

consider the symbolic product 

Y : ( x )  -~ A - ~ ( x ) A - ~ ( x  + i) . . . A - ~ ( x  + r - -  I ) T ( x  + r) 

instead of Yr(x).  In this case we exclude the neighborhood of the negative 

axis of reals bounded by curves of the form 

v : + h ( - - u )  ~ (h, e > o). 

w 4. A Lemma on Summation.  

We shall now establish a modification of the method of contour summation 

used in (II). 

Let R denote a region the left boundary of which is either h (the lower 

boundary of F (w ~)) or a curve, extending indefnitely upwards, with a limiting 

direction at infinity. Let the right boundary of R be a curve, extending inde- 

finitely upwards, with a limiting direction at infinity. This latter boundary, if 

with the limiting direction of the axis of reals will be assumed to be a curve 

of the form v =  hu t (h, e > o). The left boundary of R, if extending upwards 

and with its limiting direction coincident with that  of the negative axis, will 

be of the form v = h ( - - u )  e +  . . . ( h > o ;  I > e > o ) .  

The following lemma will be proved. 
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Lemma 8. Assume that the function 

(I ) H ( z )  = eQ (~1 h (x) 

1 

is analytic in R while Q(x) = ttx log x + 7 x +  ... +vx  v is proper on and in the 

neighborhood of the right boundary of R and 

(I a) h(x) ~ H(x) (in R) 

where l~(x) ,is a formal s-series (Def. r; w i). Furthermore, suppose that 

(I b) 9~ Q'(x) ~ o (in R). 

The equation 

(2) u (x  + ~) - .u(x) = e~(X~h(x) 

possesses a solution y(x), analytic in a region R'  interior to R by a dista~ce e(>  o), 

for which an asymptotic relation, 

(~ a) u(~) ~ e~I~)s(x), 

where s(x) is a formal s-series, is maintained in the above region. 

Proof. The formal equation 

y(~ + ~) - u(x) = r 

is formally satisfied by !](x)= eq(~)s(x) where s ( x ) i s  an s-series. This follows 

from a Lemma proved by Birkhoff in (I; p. 2~8). Let t(x) denote s(x) wi~h the 

power series factors terminated after m terms (with m sufficiently great). Sub- 

stitute in (2) 

( (3) u(x) = ~ ( ~  t(x) + x~ I ~ = m 

The new variable z(x) will satisfy the equation 

(3 a)  q ( x  @ I ) ,~(x  -l-- I) - -  q(x)z '(x)  . . . .  Xkr~- 

( ~ )  k' ) q ( x ) =  " - - , ~  as k - - ,~r  . 3gk 
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Here 

xk ,  - -  e Q ( X ) h ( x )  - -  A e q ( X ) t ( x )  

and fl~(x) is analytic and bounded I ~) in R. To demonstrate the truth 

of the lemma we need first to show that (3 a) has a solution z(x) analytic in 

R'  and, if not bounded in R', infinite at x =  ~ to a finite order k which is 

such that  k -  k approaches infinity with k. 

The equation (3 a) w i t h t h e  second member replaced by zero is satisfied by 

Hence 

( 3  b )  

(3 c) 

tk  ' 

t ~ x  

- = 

t ~ x + . l  t=zt 

will be a solution of (3 a) provided the operation ~ is suitably specified. 

t - - X  

With x in R' l e t  L denote a contour lying interior to B and defined as 

follows. When ~ Q ( x ) = o  along the negative axis of reals while the lower 

boundary of R is h (the lower boundary of F) then L is to consist of h and of 

a path L* near the right boundary of R. In all other cases L is to consist of 

a path near the right boundary of R. With  x not nes congruent to L (that 

is, if x' represents the point on L for which ~ x ' =  ~x we have ~ ( x - - x ' )  not 

an integer) let x + ks (k~. ~ o) be the last one of the Sequence of points x, x +  I, 

. . .  lying to the left of L. Let l~ denote a loop which contains the points, x, 

x +  I, . . . ,  x + k s  and passes between x - - I  and x and between x +  /Cx and L. 

Now, by hypothesis, Q(x) is proper along L (and also at least within ~ limited 

distance from L). Hence a least integer ~ can be found so that 

(4) ~a(x) = 2 ~ v  + ~ Q ( x )  -* + ~ (~x  = v) 

as I x l - ~  m upwards from the axis of reals along L. If  # ~ o, L is near the 

' ~(x) could be considered to be a func t ion  a s y m p t o t i c  in  /~ to a fo rmal  s-series whose  
1 

power  ser ies  factors  beg in  w i t h  low powers  of x P. 
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imaginary axis of reals) This integer ), will be unchanged if L is shifted a 

finite distance in the direction of the axis of reals. 

Write, for x in B', 

(5) e c~(t) f l ( t )_  f e~_V-~;.i~-t)+~(t)fl(t)d! 
)I) , ]  (I - -  e =~|' : : i ( x - t ) )  t k" " 

t ~ x  L.r 

Here ~ will be supposed to have the value specified above. The path Lx is to 

consist of L, described upwards (if L = h + L*, then h is described from infinity 

to the neighborhood of the origin and L* is described upwards), and of lx, de= 

scribed in the clockwise direction. When x approaches a position of congruency 

to L we shif~ L through a suitable distance. The integral (5) will converge 

since r remains bounded along L; moreover, it will represent a sum formula 

in the sense of (3 e), and the function of x given by the second member of (5) 

will be analytic in R'. I t  remains to show that  this function is such that  z(x), 

as defined by (3 b), has the desired properties. 

Let x' be the point on L for which I / = / : i .  Denote the portion of L up 

to that point by L~ and from that point up by L.~. I f  L = h  + L*, let L* 

denote the part of L* up to x' and let L~ denote the part of L* up from x'. 

For t on L and for x in R' we have 

(S a) ] I - -  e • ~ ~ | - - 1 ( x - - t ) [  > d > o .  

The inequality 

(6) ~ Q (~) > ~, Q (~) 

(,~x = ~ x , ;  ~ x  < ~x~; x, x~ in R) 

will be also needed. I t  is seen to hold, in virtue of (I b), since we have 

Xl 

f ~Q'( ) 95 Q = - x dx. 

With these preliminaries in view consider the integral along lx, 

i This  is due to the  fact tha t  along such a pa th  and, in general,  a long a pa th  ex t end ing  
upwards  wi th  its l imi t ing  direct ion coinciding wi th  tha t  of the  posi t ive axis  of imaginar ies  we 
have t~:,x log x) hehaving as a cons tant  mul t ip le  of Ix[ % e. v). 
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(7) f _ e ~ c ~ ) f l ( x )  e~c~+')fl(x+ I) . . . . .  eec~+~)#(x+k=) 
X k' (X -}- I) k' (X ~- kx) k' 

l x 

In virtue of (6), for x in B', 

(7 a) -<-e~('~)fl + I x + I I  k ' +  + Ix+-k,F; " 
I x 

Now, subst i tut ing z = -  x + I in an inequality of Birkhoff 1, 

we find that  

i < ~ _  

I~ I ~'-~ i=I  

~ 1 ~  + i l  ~ ' <  ~ 1 ~ -  I I ~'-~ 
i=0 

( ~ z < o ) ,  

(}}~X> I) 

so that, if R extends to the right of  the imaginary axis, 

J h 1 
(7 b) Iz l  ~' + ,,. + i x + k = l  ~ ' ~  I~1~'--~ 

(91x = u > o; hl independent  of k'). 

Let x([x]  > Q > o; u ~ o )  and x + k ~  be above curves 

(8) V = h l ( - - u )  el ( h l > O ;  i > e l > o ) ,  

(8 a) v = h ~ u  ~' (h2->o; i > e ~ > o ) ,  

Subst i tut ing z = - - x +  ~ in the inequality (I3) of (II), 

2 I 

Z I <1;:  + 
i=1 

(!Rz>o; ~z=v),  

i t  is found that  

I I h', 
(s b) i x  I w + ' + I x + k~ F ~ ~'  (u _-< o; ,3x = v ) ,  

1 See formul~ 12 in (II). 

5--32511. Acta mathemotica. 60. Imprlm6 le 2 septembre 1932. 



34 George D. Birkhoff and W. J. Trjitzinsky. 

Let  ~ . ( f i <o )  be the value of u for the point  on the curve (8)whose ordinate 

is ~x=v. Then, from (8b), ~t follows that  

h', h','(k') 
~.~,_, < l~-l~;i-~;_,) ' 

Now for a suitable l, independent  of x (u =< o), 

I~1->- t l x l ,  

whenever  x is above the curves (8), (8 a). Whence  

I I h~' (/c') 

I x F  + ' + Ix + kxl ~' ~ IxP(':-'~ 
(u=<o; x above (8)). 

Thus the inequali ty 

I I h '  

(9) iX F + ' + i x  + k~l ~, < ix l~ .  

holds, whenever *(I x I >  e > o ) l i e s  above curves of form (8), (8 a). Here  k 2 can 

be made arbitrarily great  by taking k' sufficiently great  and h' is independent  

of x. Hence  for x in //, above curves of type (8), (8 a), we have 

(Io) Ifl<flh'e'~('~) 
= i;i~.; �9 

Ix 

Whenever  R contains the negat ive axis of reals the inequali ty ( IO)wi l l  continue 

to hold in the whole region R '  provided that  along the negat ive axis of reals, 

for Ix] sufficiently great, 9~Q(x)~o. In  fact, from (7) it follows that  

I 0 a) 

Gemqtx)fl I a" § I x + I I  k' + 
1 x 

§ (x+k~,) k' l '  

on the other  hand, we have 

(IO b) ~ ( q  (x') --Q (~)) 

= ~ x ;  ~ x < ~ x ' ,  x, in R) 



Analytic Theory of Singular Difference Equations. 35 

diminishing very rapidly as x ' - - x  increases. So it is clear that  the sum of 

terms in (Ioa), involving factors of the form (IOb), is negligible to the extent 

that  (Io) would hold throughout R'. 

The only case when the inequality (Io) is not asserted is when R contains 

the negative axis of reals, while x is in R' below a curve of the form (8) and 

e ~Q(~) remains bounded as x moves to the left along a line parallel to the nega- 

tive axis. In the sequel it will be seen that  it is precisely in this case that  it 

is not necessary to consider the integral 

f 
lx 

[In particular, see Case I I  below]. 

There are two cases to be considered. 

Case I. Along the negative axis of reals, forlxlsufficiently great, ~ Q(x)~o. 
In this case along any line in R, parallel to the axis of reals, ~ Q (x)in- 

creases not slower than a positive fractional power of I xl,  as x moves along 

such a line to the left. This is an immediate consequence of the nature of the 

function Q(x) and of the inequality (I b) (which insures (5)). 

Now, taking into consideration (5 a) and the integrand in (5), 

< d J 1 i l  k' " 
L1 L1 

By (4) the integrand in the above increases exponentially along L 1 and attains 

its maximum at x', the upper end point of L~. The integral will be of the order 

of magnitude of the value of this integrand at x'. Thus 

X k3 

L~ 

(k~ = k' - -  d3; d3 > o ;  k 3 - - ,  ~ a s  k '  --~ ~ ; ~ x  = , 3 x ' ) .  

In the case at hand, the function 

I X  ks x x I 
g(x) 

approaches zero very rapidly as x moves to the left from x' along a line through 
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x '  parallel  to the axis of reals. W h e n  x remains in a sufficiently close neigh- 

borhood of x '  and does not  par t  f rom x' too rapidly as v ( :  ~ x  ~ - ~ x ' )  increase, 

the fact  can be used tha t  ~ ( Q ( x ' )  - Q(x)) < o ( ~ x  <= ~x ' ) ;  we shall then have 

g (x) e i ther  bounded or infinite at  infinity to an order  k:~ such tha t  k a -  k3--~ or 

as k s--, oo. More precisely, this will be the case for x in any region bounded 

on the left  by a curve of the form 

v = h ( - - u )  ~ 

where e can be taken arbi t rar i ly  small. 

(h, e > o) 

I f  there  is occasion to consider a region 

below such a curve, for  x in such a region (with e sufficiently small) we shall 

have e ~(q(~')-q(x)) approaching zero exponential ly  (i.e., as e - r l x l y  (F, Z > o ) ) a s  

j x J ~ .  oo along any path to infinity in tha t  r e , o n .  I t  is clear then tha t  

(ix) i f ]  < e q,z) I x P  
L~ 

(k4-~ ~ as k' --,0r x in R'). 

The integral  along L~ will be wri t ten  in the form 

( e ~ V~ i (~.-~)(~-t) + ~ (~)~ (t) d t I ' 

L.., L~ 

For  x in R '  

]f[ fl[e2aV-l(J'-UX] f ee~'-l(t)[dt] 
< - ~ ~ j  -- i~ik~ - 

L2 L,~ 

As t moves along L~ from x'  upwards we have r (t) bounded. Therefore  the maxi- 

mum of the integrand,  last writ ten,  occurs at  x'. The reasoning of the type used 

in deriving (I I) will show tha t  

(~i a) < I ~ b  
L~ 

(k 5 ~  ~ as k ' -~  ~ ;  x in /3') 

so tha t  

(i2) [f[<~, e~Q,x, 
L 

(k" k ' - - ,  �9 ---, oo as oo, x in R'). 
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0ase II .  Along the negative axis of reals ~lt Q ( x ) =  o. 

I f  the left boundary of B is not  h this boundary will be of the form 

37 

v = h ( -  , ) ,  + . . .  (h, e > o) .  

An inequali ty like (I2) will continue to hold in R'. This can be shown by the 

reasoning used to derive (I2). I f  the lower boundary of R is h the contour L 

will consist of 

L = h +  L * - = - h §  + L*. 

The contour Lx, in (5), will then  be deformed into a loop, described in the 

counter clockwise direction and extending to infinity, containing the points x -- I, 

x - - 2  . . . .  and not  containing the points x, x + I, . . .  The formula (5)wil l  

yield the following 

(I3) ~ eq(t)fl(t) eQ(x--1) f l ( x - -  I) eq(Z--2)~(x - -  2) 
t k' = ( x - ~ ) ~ '  + ( x - 2 ) ~ '  + '  

t ~ X  

inasmuch as convergence may be asserted. 

Now 

(I3  a) Q (x) - -  ~, I z I l o g  I ~ I co~ ~ ~ ( / . - / '  v) 

8 

(7 7' § V~-I  •"; [ e]/-Z-i = ~-~-[~ n , . . . ; x = [ x [ e V ~ 1 1 ' ~ ;  p > s ~  I). 

Necessarily /L-~ 7 ' =  0 and, whenever a coefficient V in Q(x) is not  zero, 

(I 3 b) cos + pTc = O. 

Hence Q (x) = ] f - I  7" X § ~ xv + "  (P > s > I) while 

(I 3 C) 
8 

,, s (~  _ 6) + - . .  ~Q(x)= - : ,  v+ I,~llxFsin~, 

(p > 8 >__-- I); 
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here  we 

of (13 b), 

may have [ 7 [ =  o. This relat ion is derived by not ing  that ,  in vir tue 

( * )  cos ~ + p a  = + sin s ( z _ _ a ) .  
P 

I f  9 ~ Q ( x ) = - 7 " v  then  

(I 3 d) 9~ [q (x - i) - Q (.)] ~ o ( i = I ,  2 , . . . ) .  

I f  in (I 3 c) 1 7 [ ~  o, we define a curve FH in I', by an equat ion 

/ 
(I4) , ,  = h ( - -  . )"  (h 

For  x in R below F u  we have 

;) > o ; H - ~ - I - -  . 

and 

so tha t  

V V 
,~ _ a = tg.-1 = - - -  + .  

- - U  . . . .  ~ t  

p = p  + 

(I 4 a) 

Thus, below ~)1, 

( I4b)  

P (~ [ h s (--  u) u sin s - - a )  < p -(-22,;i ~ § . 

1,711xl; sin~(._~,)<=l'~lh*lxl"ixi" I v i h *  
p Ix i  + p 

+ . . . .  

since ] x ] = - - u +  . 

Similarly, if x is in R below Flt, 

(I 4 e) 1 7 1 1 x - i l  i sin ~ (~ - -~ , )_ - -<  1 7 1 h * +  . 
p io 

(x- i = ] x -  ild/---l~i; i =  i, 2 , . . . )  
Not ing  tha t  

[ q ( x  - i) - Q(x)] = [_+ 1711 [ 

we have by (I 4 b) and (x4 c) 

x - i l  . sin ~ (~ - ~ )  + . .  

[ * ] - _ + . [ T l [ x O ' s i n ; ( ~ - ~ ) +  , 
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(I5) ~ [ Q ( x - i ) -  Q(x)]__<2'~'h s l  i q-... < q 
p 

(q independent of x, i; x in R below / ~ ;  i = [, 2 , . . . ) .  

Hence, whether ~ Q (x) = - 7 " v  or I vl in (I 3 e) is not zero, the inequalities 

([5) are seen to hold at least for x in R below F~z. Thus, from (x3) it follows 

that 

t< I < Z I ~ - i l  < 
t=x  i=1 

(x in R', below Fit). 

Further, by formula ([2) of ([I), 

(I 5 a) ~ cQ(t) (t) I ~ e O e ~ ' Q ( x >  

t k' ~ -  2 x ~ ' -1  
i 

t ~ x  

(x in R', below FH). 

If  R extends above F~ the expression (I3) does not appear useful for pur- 

poses of demonstration, whenever x is above FI~. In this case we use the re- 

lation 

 =f§ 
t=x  I x Lx L~ 

The first of the last three integrals satisfies inequality ([o). As to the second 

one, we have the integrand (as displayed in the second member of (5)) bounded 

along h (while x has a fixed value in R'  (on or above Ftl)). We have 

LI Iq 

Here ()~ (t) is bounded along h and increasing exponentially along the remaining 

part of Lj, i.e., along L*. Hence 

LI 
e • ~ (x) I x p 

I 

( . ~ ~ t ) 
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Wi th  x restricted as stated, we have x~ behaving in the most  unfavorable 

way when x is on F~z; we have then 

/ - . /  
(I6) ~ ~ ........ + . . . .  ~ u ) i , ,  v h ( - -  

Thus, for x in B '  on and to the r ight  of F1t, 

< i xl~:; - 
L t  

A similar inequality is obtained for ( ,  valid in the same region. 
. ]  

Le 

this inequality we again make use of (t6). Hence  

{ i7)  

I 

+ . . . .  h ( -  u); + . . ,  < h l x l ~ .  

(k. : ks H ~ oo as k'---~ ~ ) .  

In  proving 

(k'[-> oo as k' 

< j x i , < ;  
L:r 

- ,  0r x in R' on and above FIt). 

But  in virtue of (I 5 a) an inequality like (t7) is seen to hold th roughout  R'. 

This completes the examination of Case II .  

The result  jus t  mentioned, together  with (Io) and (I2), enables us to assert 

tha t  an inequali ty like (I7) holds, for x in R',  in any case. I t  follows therefore 

that  z(x), as given by (3 b), satisfies in R'  an inequali ty 

Iz(x)l  < fl'~ Ix l  z" (k = k --  k:). 

Now k - - k  = k',' and approaches infinity as k approaches infinity (see (3 a)). In  

(3) at tach subscript  to y (x), t(x), z (x). I t  is clear then that  (e) holds for yk(x) 

to m (k) termes (m (Z:)-o or as k--, ~).  

I t  remains to show that  (yo(x)--yk(x))e -Q(z) (-~g~:(x); a > k ) - o  in R' .  I f  h 

is par t  of L, g~k(x)~o;  otherwise, Igok(x)l <= h~ke--()~ (x) (in R'). Application of (4) 

and (6) completes the proof. 

w 5 Construction of Proper Solutions to the Right of a Proper Curve. 

The following theorem will be proved. 



Analytic Theory of Singular Difference Equations. 41 

Theorem I. Assume that the coefficients of an equation L,(y) ~ o  (2; w l) 

are known (eft w :) i~ a subregion of F (w ,), 

( ;  = (:) + (~) + - .  + (m) + + (~). 

Let the corresponding functions Q(x) be 

(I) Q1 (x), . . .  Qn (X). 

Suppose that F, a proper curve (Def. 9; w I ) fo r  the set (I), is the left boundary 

of (m) (2 ~ m ~ ~) or lies to the left of  it. Assun~e that in a strip V, of  un.it width 

and with its left boundary coincident with the left boundary of (m), there exists a 

proper fundamental set of solutions (Def. 4; w I) satisfying the equation Ln(y)-~ o. 

I t  will necessarily follow that L,,(y) is completely proper (Def. 6; w I) in (m)+. . .  + (V). 

I f  F, a proper curve for the set (I), exists in the region (:) then the above 

assumption concerning existence of solutions in V may be omitted and it will ne- 

cessarily follow that L,i(y) is completely proper in (m) + . .  + (~) (m = I). 

Proof. 
curves, 

(2) 

As stated previously the regions (~), (2), . .  

B 1,B 2, . . .B' ,  -1. 

(~) are separated by B' 

In any region (s) of this set of regions the Qj'(x) (j = i, .. n) maintain a certain 

ordering. We shall write 

(3) ,~,QI' (x) > ~,Q~' (x) > > ~ , Q , '  (x). (x in (s)). 

In connection with this ordering the subscript s will be attached, from the left, 

to some other symbols; thus, ~S(x) will denote the formal matrix of a difference 

system corresponding to L n ( y ) : o ,  with sQj(x) entering in the j-th column. 

The set [~Ql(x); ~Q~(x), ...~Q~(x)] is merely a permutation of the set [QI(x), 
Q~ (x), Q~ (x)]. 

I t  is sufficient to prove the theorem for the system Y ( x  + I ) : D ( x ) Y ( x ) ,  

related to the given equation (2; w I) and given by (6; w I). This follows from 

the relationship (6 a; w 1) between solutions of the system and the single equa- 

tion. I t  is clear that  the dij(x) are known and of the same character as the 

aj(x) (j : 1, . . .  n), the coefficients of L~,(y). The process of construction of solu- 
6--32511, Acta mathematica. 60. Imprim~ le 2 septembre 1932. 
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tions, about to be given, is of course equally applicable to any system Y ( x +  I ) =  

Z ( x )  Y ( x ) ( I  a;  w 1). 

By i terat ion (3) we construct,  in (m), determinant  limits of orders I, 2 , . . .  n 

corresponding to the ~Q(x)'s 

~Q, (x), ~Q1 (x) + ~Q, (x), . . . ,  mQl (x) + - + ,~Q,,(x), 

respectively. W h e n  m = i this process will be carried on by ,>iteration from the 

infinite lef t ,  (Lemmas 4 and 5; w 3) When m > I the process wiII be carried 

on by i terat ion from the strip V, specified in the theorem. In  the lat ter  case 

use will be made of the existence of solutions in V, as stated in the theorem; 

in this connection Lemmas 6 and 7 (w 3) are to be used. Generally speaking, 

application of Lemmas 4, 5, 6 and 7 is possible in virtue of the inequalities (3) 

being valid in (m) (for s - - m ) .  

In  agreement  with the notation of w 3 let these determinant  limits be 

denoted, for k =  i , . . .  n, by 

(4) my, . . . .  , k ; 1 . . . k ( X )  (i  1 < < ik; i , ,  . . .  i k =  I,  . . .  n) .  

These functions are analytic  in (m) and satisfy the asymptotic relations 

(4a) ,~y, . . . .  i k ; , . . . k ( x ) ~ e ~ q ' ( ' ) + ' ~ Q ' - ( ' ) +  +~Qa'(~),,~Si . . . .  ik;, ... k(X) 

(ix < < i~.; i, . . . .  i k =  I, . . .  n; x in (m)). 

For  k - -  I the functions (4) are elements of a solution of the system Y ( x +  I ) =  

D (x) Y (x); write 

(4 b) ,n&, (x) = myi;1 (X) (i = I, . . .  •). 

This solution is proper in (m). Assume that ,  for k - -  I ~ I, there exist k - -  I 

solutions, 

(4C) ,nZ, j ( x )  ( / = I , . . . n ;  j = I , . . . k - - I ) .  

which are analytic in (rn), satisfy the relations 

(4d) ~ . . . .  ,~;~ . ~ ( x ) - - ~ w  . . . .  ,,~;~ .~ (~ )  

( i ,  < < i s =  I,  . . . n;  s =  T, . . .  k - -  *; x in (m)) 

and are such that ,  in (m) 



(4 e) 
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mzij (x)  ~ e mQj(x) m8ij(x) ( i =  I , . . .  ~q; j =  I , . . ,  k - -  I). 

Existence of a matrix of solutions, proper in (m), will  be demonstrated by 

induction if we show that there exists a solution ,,z~k(x) (i--= I , . . .  n) analytic 

in (m) and such that  (4 d), (4 e) will hold for s = k, j = k. Analogous  to a similar 

construction,  in II,  such  a solution can be found in terms of certain determinant 

limits and the solutions (4 c). For this purpose use will  be made of the fol lowing 

formulas, found in (ii). 

of (II)). 

We have 

(5) 

(The notation used in this paper is different from that 

k--1 

j=l 
t~x 

.~ v~j (t), 

(5 a) 
mo(~) (t),,~j, k-~ (t) 

m vkj ( t ) =  too(k-l)(t)m O(k-1) (t "Jr" I)' 

(5 b) m~41j, k--1 (t) = (--  I) k-l+j  

, ~ z i l ( t + k - - 2 )  . . . . . .  

In ] I (5c) m O ( ~ ) ( t ) :  d l i , ( t )  Z d l i ~ ( t +  i ) d i l i , ( t )  + . . . . .  my l i , ,  i k _ l ; 1 . . k ( t ) .  
il ... ik__l=l i1=1 

Moreover, for x in (m), 

(5 d) ~0(k) (x) - 

while 

(5 e) 

l emQ1 (x) ms1 (x), 

emQl(x+])m,91.(~, i'~- I), 

I e m~l(~+~-~) mSl (X + k- -  I), 

.~0(k) ( x ) =  
.,Zll (x + k -  I), 

mQ'-" (z) I 
e m82 ( X ) ,  . . e "~k (~) rusk (x) 
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The symbol ~ stands for summation and is to be suitably determined. I t  is 
M . J  

t ~ x  

seen tha t  the ,~mj, k--~(t) ( j  = I, . .  . k - - I )  and mO(k)(t) are known and analytic 

in (m): 

Using (5 b) and the known asymptotic forms (4 e) the asymptotic form of 

mini, k-1 (x) will be seen to be 

(6) mm , k--x (X) e + ' " +  + . - - +  mt j. (x) 

(,,,!tj, k--1 (X), an s-series; x in (m)). 

On the other h~nd, making use of (5 d) and taking account of the way several 

formal  series with logari thms in the s-series factors are related (See ([); in 

particular, (6") on p. 213), we conclude tha t  

(6 a) ,~0 (k) (X) ~ e mch (x) + " +  mQk(x} mq9 (k) (X) (X in (m)) 

where mT (k)(x) is an s-series without  logarithms. ~ The series ,,~{~') (x) (k=  i, . . .  n) 

cannot be identically zero since the formal series are assumed to be linearly 

independent.  Consequently, by (5 a), (6) and (6 a), 

(6 b) m Vk j (x} ~ e mQk j (~) ,,vk j (x) 

( j = I  . . . .  k - - I ;  x in (m)). 

Here the series ,~v~j(x) are all s-series; moreover, by ((3); s m), 

3t P 

{~, mQkj (X) <_~ 0 ( j  ~- I, . . .  k -- I ; x in (n~)). 

I t  is easily seen tha t  Lemma 8 (w 4) is applicable for evaluation of any of the 

expressions 

(6 c) ~ m V k j  ( t)  ( j  = I ,  . . .  ]C - -  I )  

t ~ x  

occurring in (5). In  tha t  lemma we only need to take R = (m), Q (x ) - - - , , ,Q k j ( x )  

h ( x ) = ~ v k j ( x ) .  Thus, by the methods of w 4 we evaluate (6c) as a function 

analytic in a region (m)', slightly interior to (m), and satisfying in (m)' an asymp- 

totic relation 

1 We can show this by a reasoning, applied to the second member of (5 d), similar to that 
in (I; p. 215). 
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t=x 

where ,~ukj (x) is an s-series. Since the boundaries of (m) can be translated,  it 

may be considered that  (6 d) holds in (m). Subst i tu t ing (4 e) and (4 d) in (5) it 

is seen that  .mz~ k(x) is analytic in (m) and 

( 7 )  mz~k (x) ~ e m~k(~) ,~al~ (x) (x in (m)), 

where ,~al k (x) is a formal s-series. 

The remaining elements ,~zik(x) (i = 2 , . . .  n) of the ' solution may be de- 

termined as follows. W e  have 

mZlk (X -t- q) = ~ ~I ).~ (30 -~ q - - I )  d).~ 2~ (x ~- q --  2 ) . . .  d).q_ 1 Zq (x)  mZZqk (X) 
),i . , .  ).q=l 

(q = ~,  . .  . , ) .  

By the reasoning of (II; p. 259 ) these equations have a non-vanishing determinant  

so tha t  

(8) , ~  (x) = ~ l(X)m~,~ (~ + i) + + ~,~(x)~1~ (~ + .) 

( i =  I , . . . , ) .  

Here  the (l~j(x) ( i , j  = I , . . .  n) are known in (m) and are of the same nature as 

the d~j(x). Thus, by (7) and (8), the elements ~zik(x) ( i =  ] , . . .  n) are analytic 

in (m) and satisfy, in (m), the asymptot ic  relations 

(9) ,~zik (x )  ~ e mQk(x) mqik  (x)  (~ = I ,  . . .  n )  

where the series ma~k(x) are s-series. Necessarily the relations (4 d) will be satis- 

fied for s = I , . . .  /c. The function ~zlk(x) is such that  (5 e) holds; thus, using 

tha asymptot ic  relationships (hd), (4e) and (9), we conclude tha t  the ,~a~k(x) 

(i-= I; . . .  n) in (9) can be replaced by the ~sik(x) (i = I, . . .  ~), respectively. Thus 

a solution ~zik(x)  (i ~ x , . . .  n), possessing all t h e  desired properties, has been 

constructed,  This proves existence of a matr ix  solution proper in (m). The above 

indicates also the actual  process of construction in any given case which satisfies 

the specified hypotheses.  I t  is essential to note tha t  in applying Leinma 8 we 

have, according to the hypotheses of the Theorem and as required by the Lemma, 
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the function Q(x)=  mQkj(x) proper along the portion of the path of integration 

near the right boundary of (m). If  in the various summations involved in (5) 

additive periodic functions are admitted the kth solution, ~z~k(x ) ( i - - - I , . . .  k), 

will be modified by addition of linear expressions (with periodic coefficients) in 

the elements of the preceding k - - I  solutions. Unless stated otherwise such 

periodic functions will not be introduced, the summations in (5) being specified 

by w 4. The n solutions constituting the n columns of the matrix 

(Io) ,,Z(x) = (,,z,j(x)) ( i , j  = I , . . .  ,)  

may be spoken of as 'associated with determinant limits'. 

The regions (I), (2), . . .  (7) may be considered as having strips V~,j+I (between 

(j) and ( j +  I); j - ~  I, . . .  ~ - -  I), of unit width, in common. In the case at hand, 

there exists a proper matrix solution in Vm, ,,+1 (if m + I ~ ~7). By the process 

indicated for the construction of ,~Z (x) we now obtain a matrix solution, 

a) m+,Z  (x) = (x)), 

proper in (m + I), the constituent solutions (columns) being associated with the 

determinant limits, known in terms of the ,,zij(x) in ( m +  I). By a finite 

number of steps proper matrix solutions, r Z ( X ) :  ( , . z i j ( x ) ) ( r :m ,  . . .  n), are 

constructed in (m), (m + I), . . .  (7); these solutions will be associated with deter- 

minant limits. 

I t  remains to demonstrate that the periodic functions connecting these 

solutions are proper (Def. 5; w I). Let Z r(x) : (z[j(x)) denote ~Z(x) with the 

columns so rearranged that 

(I I) Zr(x)-S(x)=(eQJ(X)sij(x)) (x in (r); r ~  m). 

Write 

( I I  a) Zr (x )  = Zr+l (x )  l)r 'r+l(x) ,  -pr ' r+i(x)  ~-- (Pijr'r+l(x))" 

Let ~ x r =  ~x,  x- -xr  ~-integer and restrict xr to lie in the strip V,,~+I (when 

~ x  >= 0 > o). We have then for the Inatrix Pr, r+l(x) of periodic functions the 

relation 

( I I  b) .pr, r+l(x  ) = .pr, r+l(Xr) = Z r + l - l ( x r ) Z r ( x r ) "  

For x(=x , )  in V,.,r+~ the following asymptotic relation will hold in virtue of (I I) 



(12) 
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1 D r ' r + l ( x )  -- S - - i ( x ) S ( x ) =  (eQJ i(x) ~0) 

((60) = I ) .  

In other words, for .~x > ~ > o, 
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in the above k can be made arbitrarily great and the ]b;j(x,.)], for a fixed k, 

are bounded. The strips V~,~+~ (r=rn, . . .  V--I) extend indefinitely upwards (i.e., 

when Ix[ approaches infinity in Vr,~+~, v = ~ x - - * + ~ ) .  These strips are to the 

right of a proper curve F and they are in a proper region R~ (Def. 9; w I). 

The term 'proper' refers, in this connection, to the set 

Q,(~),. . .  Q,(~). 

B y  ( I I  b) the t'ij~'~'~+l(x) are analytic for v => Q > o. By (12 a) and in virtue of 

the fac~ ~h~t ~he @j(x,.) are proper in V~,,~+~ (Def. 3; w I) it follows that  

(I3) 

(i, j = I ,  . . . . . .  n; r = m ,  V - I ' ,  H"'r+i'ij an integer); 

here the power series converge within a sufficiently small circle with z = o  for 
r , r + l  center and, unless Pij  (x)==o, it may be supposed that p~,~+l # o .  Now ij; o 

I ~ 1 = 1 ~ - ~ , 1 = ~ - ~ + ;  thus, it is clear that 

(I3 a) 
~z -- rlr, r+ l  

=T,~+~(x ) ~ . ~ . r + ~ ' - l m j  = ## ri); o ~" 

( i , j = I , . . . n ;  r = m ,  . . .  V - - I )  

in every region of the kind indicated in (Def. 5; w I). Hence, in accordance 

with this definition, these periodic functions are proper. In view of the rela- 

tionship between solutions of the single equation L,~(y)=o, and those of the 

system, L~(y)  is seen to be completely proper in (m)+. . .  +(V). 
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w 6. A Lemma on Faetorization. 

The following lemma will be indispensible as a preliminary to establishing 

the fundamental result. 

Lemma 9. Let coefficients of  

(,) Ln(y) = y(x  + n) + al(x)y(x + n -- I) § . .  + a,(x) y(x) = o 

be known (and be of the kind specified in the beginning of  w x) i~ (I)+ "''-{-(7~), 
a subregion of  F. I f  the equation is Q-factorable in ( I )+- . ,  +(m) (Def. 8; w I), 

a point of  division being between the I'-th and F +  I-st terms (not belonging to the 

same logarithmic group t of  the sequence 

Q,(x),... Q.(z) (i < I ' <  ~), 

it necessarily follows that the equation is factorable, 

(~ a) Ln(y) ==- L , - r  Lr(y) = o, 

so that the eoefficie~#s i~ the operators L,-r(z) ,  Lr(y) are of  the same kind as in (l). 

With the eQJ(~)s~(x) ( j= I , . . .~2)  denoting a Ill, early independent set of  formal 

solutions of (~), the ,factorization (~ a) ea~ be so eI]~cted that the series 

(I b) e ~'l~/Sl(X), . . .  e qr(x) Sr(X) 

are formal solutions of L r ( y ) =  o. 

Proof. In connection with the system IV(x+ I ) - ~ D ( x ) Y ( x ) ( 6 ;  w I), usso- 

ciated with (I), functions yri(x ) are defined by the product 

(2) Y (x) = 

: D ( x -  D ( x - - , - ) T ( x - - , ' )  

where T(x) denotes S(x) [-- (eQJ(x)so(x)) = (eQi (x+i-1) sj(x + i - I ) ) ]  with the s-series 

factors in the involved elements terminated after, say, k terms (k being suffici- 

ently great). In accordance with the notation of ~ 3 we write 

Cf. 0" (p. 213; I .  



(2 a) 

where 
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I Yi l l  (X), . , . Y i tF (X)  

yr ~(x) . . . . . . . . .  h , . . iF;1,  ] r r 
y i r l ( X ) ,  . . .  y @ r ( X )  

i 1 < i 2 <  �9 < i t  and il, i 2 , . . . i r =  ] , . . . n .  

Since, by hypothesis, 

~[Q'~(x)+ + Q'~(x)] >-_ ~[Q'~.,(~)+. 

( j l  < " < j I ' - - -  I , . . . ~ t ;  X in ( I ) +  

in virtue of Lemma 5 (w 3) ~he limits 

(2 b) lilIl yr  1" (X) = yil iF. 1 r ~  h . . . ip ;  1. . . . . . .  , 

(i 1 <  "'" < i / ' =  I , . . .  n) 

�9 + Q ~ r ( x ) ]  

�9 +(m)) 

F(x) 
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will exist in (I)+ ... § and will be analytic in this region; moreover, the 

asymptotic relations 

(2~ )  v~ . . . .  i F ; l ~  F ( x ) ~ e ~ l ( ~ ) §  �9 § ~ : , , ~ 1  r (x)  

( i 1 <  < i F =  I , . . . n )  

will hold in ( I )+ . . .  4-(m). Form the operator 

, (x )  

(]) LtrF(I]) ~ (__ i ) F ] y ( X - [ - I )  : yr l (x )  . , . . Y 2 / '  (.X) 

r), 
t r  = b"o (x )y(x  + F ) + . . .  + b r ~(x) y ( x  + s) + ... + b'~,(x) y(x); 

here 

(3 a) b'r ' ' r--~t~ ---- (-- ')~--~ V" &)"  1.. .s ,s+2,  .F-kl;1.. .  

From the way asymptotic relations (2 c) were derived in w 3 it follows that 

(3 b) yr . .  1 . . .  S, S'I-2... F-~-I; 1.. .  F(x) ~ eQt(:v)+'"-~-QF(x) 81 . . . s ,  sT2 . .  F+I;1 F(X) 

( s = o , . . .  F; x in ( I ) §  ' '"- t-(ff i) ;  r = I ,  2 . . . .  ). 

Hence an equation L'~r(y)-=o will possess in ( I )+ . . .  +(m), formM solutions 

7--32511. Acta mathematica. 60. Imprim6 ]e 2 septembre 1932. 
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In virtue 

equation 

(4) 

of 
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e Ql-<x) Sl(X),  e Q~(x) s 2 ( x  ) . . . .  e QF(x) ST'(X). 

(2 c) and of the fact  just  stated, if L'r(y) denotes lim L r(Y), the 

L'r(y)  b'o(x)y(x+I + --+b' l , (x)y(x)=o 

will possess the same formal solutions. 

(4a) 

In  particular, 

zero for s = o  

formal  series. 

Here 

b'l,--.r (x)  -- e Q1 ('v} + ' ' "  + (~F(X) S l . . .  8,.~ + 2 . . .  I '+ 1;1 ,, I'(X) 

( s=o ,  I , . . .  F;  x in ( I )+  "''-~(,,)). 

the s-series in the second member of (4 a) cannot  be identically 

and s = F ;  this is a consequence of linear independence of the 

Hence 

b'o(X) o, b'r(x) o. 

Thus the equation (4) is actually of order F. Dividing out the coefficient b'o(X) 

we write (4) in the form 

(~) nl.(y) ~ y ( x +  F ) +  "" + bz~s(x) y ( x + 3 ) +  "" + br(x) y(x)  = o 

(bF--s(X) = btl~R(x)/bto(X); s = o ,  . . . / ~ - - I ) .  

The coefficients in (5) are analytic in (I)+ .-. +(m); moreover, 

(5 a) bT__s(X ) -- (__ i ) i , _  8 S l . . .  8, 8 + 2 . . .  1 '+1 ;1 . . .  F(X) 
3 t . , .  F;1. , . z'(X) = # I ~ s ( X )  

( S : O , . . .  r - - i ;  x i n  ( i ) +  . . .  + ( ~ t ) ) .  

Now, the formal series Sl. . . , ,~+2.. .r+l;1.. .r(x) (s=o,  I, . . 

logari thms since the columns in the formal de terminants  

F) will contain no 

can be so combined as to get rid of these logari thms (Cf. I ;  in particular, 

pp. 213, 215). I t  is clear, moreover, tha t  there will be only rat ional  powers of 

x present in the formal series flr--~(x) since the constants r occurring in (7 a; w I) 

differ by rational fractions in the consecutive formal series (7 a; w ~) in any 
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group (I; p. 213) of such series (containing logarithms). Thus the operator 

Lr(y) has all the properties required by the lemm~. The factorization (I ~) follows 

immediately. The coefficients in the operator Ln-~.(z), 

(6) L , , - r ( z ) = z ( x + n - - I ' ) + e , ( x ) z ( x + n - - F - - I ) +  ... +c,,-r(x)z(x), 

will be  analytic in ( I ) +  ... + (m) and will be of the required character in 

( I )+ . - .  +(m). The lemma is therefore proved. 

The equation 

the series 

(6 u) 

L ~ - z , ( z ) : o  will be formally satisfied, in (I)+ ... +(m), by 

(~: ~, ... n- r). 

On taking account of the established nature of the br--~(x) 

it is seen that  the series ar+~(x) are s-series. 

8 = 0 ,  I ,  . . . F - - I ) ,  

(i) 

belonging to an equation 

w 7. On Products of Completely Proper Operators. 

The following theorem will be now proved. 

Theorem II.  Suppose that the set 

Q I ( ~ ) , - . .  Q,~(x), 

n ~  (y) - -  o,  

has a point of division in ( I ) + . . .  +(m). Here, as before, (0 ~ - .  +(m) is a sub- 

region of F the constituent regions (I), . . .  (m) being separated by B'  curves. Assume 

that corresponding to this point of division we have 

Q'~(x) > ~ Q'r+.(~) 

( z = ~ , . . . r ; , = ~ , . . . n - r ; ~ i n ( O + .  +(m)), 

where an equality sign is admitted on the boundary of  (~)+ ... +(m). With ~he 

coefficients in (I a) of the right kind (Cf  w I) in ( I ) + . .  +(m), let 

1 Whenever  a formal  series is formed by wr i t ing  Lr(eQ(x) s(x)) (s(x) an s.series) the coeffi- 

cients in L r ,  if not  representable by convergent  series, are replaced by the formal series to which  

these coefficients are asymptotic .  
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(I b) Ln(y) ~ Ln-rLr (y )  (I < I" < n) 

be the correspondi~g factorization, as specified in Lemma 9 (w 6). Suppose, more- 

over, that i~, (m) (or ft~rther to the left) there is a curve F which is proper with 

respect to the set (I). 

I t  will necessarily follow that, i f  the operators Ln-r(z), Lr(y) are completely 

proper (Def. 6; w I) in ( I )+- . .  +(m), the product L,,(y) will be completely proper in 
.+(m). 

Proof. As an immediate consequence of the hypotheses of the theorem 
the following is true. 

The equation 

(2) LF(y) -- y(x  + I') + bl (x) y (x + I ' - -  I ) + . - .  + b,.(x) y(x) = o 

possesses, in (I)+ ..- +(m), F linearly independent formal series solutions 

(2 a) eQ:(~)ss(x) ( j = I ,  .. 1~). 

The related system of order 1" 

(2 b) Y r ( x +  I) = Dr(x) Y,.(x), 

/ o , i ,  . . .  o 

o 

possesses, in (I)+ �9 +(m), a formal matrix solution 

(2 C) SF(X) = (eQJ (x} si j (x))  ~-- (eQJ (x +i--1)sj(X Jr- i - -  I)) 

( i , j =  I , . . .  F) 

(the s~j(x), s-series). This system is satisfied by a matrix solution 

(z d) Y"(x) = (y~(x)) = (yy(x + i--  ,)) (i, j-= , , . .  F) 

consisting of elements analytic in (a) and of the asymptotic form 

(2 e) Y~ ~ St(x) (x in (a); a - ~ I , . ,  m). 
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Of course, the elements in the first row of Ya(x)  form a fundamenta l  set of 

solutions of (2), and conversely. By hypothesis,  such matrices Y~(x) ( s ~ - I , . . .  m) 

exist so tha t  the matrices R~(x), of periodic functions,  defined by the relat ions 

(3) Y~(x) = r~ +~(~) ~,.(x) 

are asymptotical ly representable as follows 

(3 a) R~(x) ~,~('~" ~ : ~  ~,~ 'ij~~ ~ 

(the ~r integers;  s =  I, . . . m - -  I', ~ x  => Q > o) 

�9 .s* is not  zero unless for  x in any region as in (Def. 5, w I). Here  a constant  ~.j 

the  corresponding funct ion r~j(x) is. 

Le t t ing  V~,,+I have the same meaning as in w S and reasoning as at  the 

end of t ha t  section we conclude that ,  for  ~ x  >_--Q > o, 

( (3 b) (rSj(x)) = (eQji(xs) 0~j(xs)), (0;~(xs)) = (~0 ~- x k f 

s-~ I, . . . m - -  I ; ~ x ~ - ~ x s ;  ~{(x--x~), integer;  x~ in V~,~+i). 

Here  k can be made arbi t rar i ly  great  and the a~j(x)are  bounded in V~,~+I. ~ 

B ~, the r ight  boundary  of (s), while a B '  curve for the set (I), may be not  a B '  

curve for the set Qi(x) ( j :  I , . . . / 1 ) .  In  such a case (r~j(x)) can be taken  as 

x(  = (~j)). 
Analogous facts can be s ta ted concerning the equatiQn 

(4) L , - r ( Z )  ~ z ( x . + n - - I ' ) + e l ( x ) z ( x + n +  F - - I ) +  ... +C~-r(X)Z(X) = o. 

In  ( I ) + . . .  +(m) i t  possesses n - - F  formal  solutions 

(4 ~) e~+~ (~) ~ §  = L~(e~§247 

(re-=i, . . .  n - - F ;  the  ar+~(x), formal  s-series), 

the eqJ (~)sj(x) ( j - = I , . . .  n) const i tu t ing a l inearly independent  set of formal  solu- 

tions of (I a). The related system of order  n - - F  

i Relations (3 b) would continue to hold if the operator Li,(y) were merely proper (Def. 4', w I). 
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(4 b) Z,~-r(x + l) - -  D~-r(x) Z,~-~.(x), 

O, I ... ) | o,o,, : 

will possess, in ( I ) + - .  +(m), a formal  matr ix  solution 

(4 C) 8n--F(X) = eqr+J (x) Or+,, F+j(X)) ~ (eqr+J (x+i-l) (lf4-j(x -~- i - -  I)) 
(i, j = i , . . . . - r )  

(the ar+i,r+j(x), s-series). There exists a matr ix  solution of (4 b) 

(4 d) Z~ = (z~+ i, r+ i(x)) = (z],+j (x + i -  I)) 

(i, j -  ~ . . . .  n - r )  

with elements analytic in (a) and of the asymptotic form 

(4e) Z ~  (x in (a); a = I ,  . . . m ) .  

Matrix solutions, like these, exist with the additional property tha t  the matrices 

P~(x), of periodic functions defined by the relations 

(5) Z,(x) = z~§ P~(x) 

are of the asymptotic form 

(P'~(x)=(pr+~, :+~ (x))) 

~e 1% i, F+j xl)s~ p+i, l,+j) 

(the ~* ~ --. / r+ / , r+ j ,  integers; s = I , . . ,  m - - l ;  ~x--> o > o) 

~x for x in any region as in (Def. 5; w I). Unless a function p;:i(. ) is identically 

zero the corresponding constant  p~j* is not  zero. Moreover, for ~ x  ~ 0 > o, 

(5 b) (p~,+,:, r+j(x)) --~ (eqr+j, r+ ;~.~) ni,+i ' r+y(x,,)), 

xk l 

( s = I , . . . m - - I ;  ~ x - ~ y x s ;  {R(x--xs), integer;  x~ in V,~,s+~). 

In  the above k can be made arbitrarily great  and the l~i~.(x)are bounded in V~,,s+l 
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A process of group summation will be now applied for the purpose of solv- 

ing the equation 

(6) Lr(y) = zSr+~(x) (I <= tt <= n-- I ' ;  I <= s <= m). 

Let  8. Z~,+~ denote the matrix of order F 

l O ... O 1 
(6 a) Z~+,~(x) = o . . .  o 

,5+,(x)... z;.+,(,) 

In  each of the several rows the elements of the matrix 

(6 b) Y" (x) ~ Y s-1 (t + i) Zr+~(t) 
M J  

t ~ x  

l ~ x + l  t~9~ 

are the same. An element of the first row will be a solution of (6); denote it 

by y~,+~(x). This funct ion will be also a solution of (~ a). Wri t ing  Y~- l (x) -~  

= (9~j(~)) (i, j =  ~ . . . .  r )  w e  h a v e  

r 

8 8 (7) Yr+u(x) = ~ Yl~(x) ~)~r(t + I)zSr+,(t). 
~=1 t = x  

Here  the summations are to be suitably determined. Consider a summand 

9]r(t+ 1)z~r+~,(t). By (3) 

(7 a) Y~(x) = Ye(x)R(x)  (s < e < m) 

where 

R (x) = (r;j(z)) = R ~ - , ( . )  R ~-2(~) . . .  R e(x) 
and 

(7 b) r 0 (x) ~ e ~'~'~ ~ij~ r~ 

(i, j =  I, . . .  F; the ro, integers; ,~x > q > o). 

Thus, not ing tha t  
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(7 e) 0Z~ ( x ) ) :  R-~( . )  Y~-~ (~) 

( n _ , ( ~ )  = (~;j(~)) _ ( ~ , = ~ , j ~ , ) ,  y ~ - , ( ~ )  = (uS) ,  
we have 

(7 d) 

On the other  hand, by (5), 

(s) 

where 

and 

(8 a) 

] ,  

~ r ( t +  I) = ~ Cao(t):oeF(t+ I) 

Z '  (x) : Z ~ (x) P(x )  

P(x) = (pr+;,,.+j(x))= p*-,(x)P*-~(x).., p,(x) 

pr+i, r+j(x) ~ e 2~' - 1  pr+~, r+j~p~+i ' r+j 

(i, j =  I , . . .  n - -  F; the pr+i, r+j, integers) 

(s < e ~ m) 

in any region extending indefinitely upwards, as in (Def. 5; w 1). Hence 

n - - T '  

(8 b) z"r+ , (t) = ~ zer ,~(t)pr+,,, r+,(t). 
r" + ' 

With  the periodic functions in (7 a) and (8 ) fo rmed  for e = m  and using 

relations (2 e), (4 e) we conclude that,  for x in (m), 

(9) 
I '  n - - F  

2]  2]  ~.+,~(~)9;r(x+ ~1 r~(xlp,.+,,,, i.+,d~) 
0 = 1  W = ,  

I '  n - - / '  

a ~ l  W = I  

( z =  , , . . .  r ) .  

In  the above the ~r(x) are s-series defined by the relation 

sT1 (x) = (eQ~ (~) s~j(x))-' - (e-Q, c~) ,~;j(x)) 

(i, j = x . . . .  F). 

This is a consequence of the fact, pointed out before that  I(sij(x))l ( i , j ~ - I , . . .  F)  
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has no logarithms present. In  a strip Vm,,~+] of, say, uni t  width and s i tuated 

in (m) near the r ight  boundary of (m) the real par t  of some exponent,  

(9 a) 

corresponding to 

real parts of all 

Let  a : ~ ' ,  w : w '  

non zero constants rz~,-* pr+~,* r+~ is equal or greater  than the 

other  exponents (corresponding to non zero constants  ~=*, p*). 

be subscripts for which this occurs. Then, for x in l~,~, ,~+1, 

(IO) y~./~(X-~- I)Z~,_F~(X ) -- 

Now, by hypothesis ,  to the left  of V~. ~+1 there is a curve F which is proper 

with respect  t o  the set (I). Consequently along every path, extending to infinity 

and lying in V,,,,~+~ the function l eer+~',~(~) I has a definite order with respect  

to le2~r---i~[; in fact, the exponential facto," in the second membe,'of ( IO)wil l  

have the same property. The expression g~.t~(x) stands for a sum of a finite 

number  of products  of the form 

(io a) p(x) 4x) 

where [ p ( x ) [ =  I and s(x) is a formal s-series. Such terms may be present only 

if there  are more than one exponent  (9 a) with the same real part  (which is 

greater  than the real parts  of all other  exponents 5. 

Suppose again that  s < e ~ m. Consider (7 a), but  in place of (7 b) use 

(3 b). We  have 

(~ ~) (r~(x)) -1 = (~(x)) = (eQJ,(~r ~ (x~)), 

(~(x)) = (~,j 

the 5q(x) are bounded in Vq, q§ and k~ can be made arbitrarily great. where 

Thus 

I I a) 

8--32511. 

(~(x  + i ) )=  (~(x))(~(x + ,)) 

Acta mathematica. 60. Imprlm~ le 3 septembre 1932. 
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F 

= (2, . .~. 2e__ae?2 i (:r~)+Q2~)'1(Xs+ l)+ " " +Q2e--s)'e--.~--I (:~r " 

�9 0~21(Xs) 021 2~ (XS+ 1) �9 �9 �9 02e__s__ 1 ) . e_ s [xc -1 )  Yze . . . .  i( x -~- I " 

Now,  by (2 e), for x in (e) 

(~(~))  ~ ~7.'(~) = (~-~,l-).~o(~)) (i,j=~,... r) 

where the gij(x) are s-series. I f  we write 

(II  b) (~)~(x+ I)) ~ (e-Oil,) ,~).(x)) (x in (e)), 

it is apparent  tha t  the ~j(x) are s-series. The relations ( I I  a) ,  ( I I  b )  give the 

asymptot ic  form of the #~.(x+ I), for x in (e), in such a way that  the exponential  

factors are explicitly given in terms of the Qj(x) ( j - ~ I , . . .  F). 
Similarly, by (8) and (5 b), 

(i2) (r F+/x)) = (~+,, F§ ~§ 
X e--1 s = ('~'el~+i, I '+ j ( ) )  (~)P+/. , ,+ j (X) ) . . o  (~Pq-i. , ,+j(X))  

75 --/" 

-~- { Z eqr+r r+a'(~c--1)+qr+~' r+a'-'(~e--2)+'"+Qr+J" r+~e--~(xs) " 
t 

a I . . f f ~ ? _ _  8 ~ 1 

r+~,, r+..~v ~-lj ~+~.~, r+~(x~-2) �9 �9 

(r = ~ , . . . . - r ) .  

For  x in (e) the z~,+i,r+j(x ) satisfy the asymptot ic  relations (4 e) (wi th  a=e). Thus 

we have an expression for  the asymptot ic  form, in (e), of the z~.+i,r+r ) in which 

the exponential  factors are in terms of the Qv+j(x) ( j : I , . . .  n- -F) .  
(s < e), the following asymptot ic  relationship Consequently,  for x in (e) 

will hold, with I ~ F ,  

(i3) 

r ~ - r  B- ~ ....  ~-~-~; t.'(x~ 

).l...),e__s~l a t . . . a e _ s ~ l  



Here  

(I 3 a) 

where 

(I3 b) 

and 

(~3c) 
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H;i~:"a-e-s ;  l~(x) =" QF+o.,, ),e s (x)  -~- [Q~,, )~(xs) ~-- Q;~,~, ).,(xs 41) -Jr... Ze__S;  ) . \  

* X * * X + Q~_~, ~.~_~_~( ~_~)] + [Q,~+~ Q'~+,.~,~.+Ax~-~)+ ... + Q,~+~,,,,+o~_~( ~)] 

qj~(x~) = QAX) + log ~(x) 

( i , j  = I , . . .  F ;  s ~ q) 

Qt+j, r+i(xq) ~- Qr+j, r+i(xq)+ log z~q F+i(xq) l'+i, , 

( / , j =  I , . . .  n -  F). 

The expressions Q* involved in (I 3 b), (I 3 c) are logari thms of corresponding periodic 

functions. W e  take suitable determinat ions of the logarithms. Whenever  a periodic 

funct ion is identically zero the corresponding term in (I3) , or in any similar 

sum, will be zero. The summation signs in (I3) will be considered as extended 

only over those terms for which the periodic functions are not  zero. Only 

superscripts and subscripts corresponding to terms actually present  will be con- 

sidered. 

In  the sum 

superscripts 

(I 3 d) (Z~.. 

such tha t  

(I 3 e) 

Accordingly, for x in (e) 

(i4) 

w h e r e . . ,  stands 

which 

13), for any given x in (e), there is a set of subscripts and 

ze_~) = (z '~. . .  z'~_s), ( , , . . .  ~ _ ~ ) -  (o'~.. .  ~'~_,) 

(/Pl . . . . . .  H~,, ~176 ~ ~ (x) > ~H~: ~e-s; ~ Ix) 

[(Z~... Z~_~; o~....~_~) ~ (Z'x... Z%_~; ~'~... o%_~); Z~... L - ~ =  ~ . . .  r ;  

a l . . . a e - s - ~  1 . . . n - - F ] .  

(8 < e), 

~Ir(x + i)z~+~(x) ~ 

0 " 1  " " " a ' g - -  S ; 

p �9 

(I G Le--s<Z F;  I __--~ a l  ~ n - - r  ) 

for a sum of finite number  of products  of the form (Ioa) ,  

may be present only if there are more ghan one se~ of subscripts-super- 
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scripts (I 3 d) for which (t3e) holds. In the sequel the inequalities satisfied by 

)/e-s and a' 1 will be found essential. 

In  (s) the asymptotic form of ~.r(x+ ~)z~,+,(x) will be (Cf. (2e), (4e)) 

(~s) 
;( ( ;r'l ! 

91 ~(x + 1)z~+~ (x) - e ~+'~, �9 ~ ~ ~(x) ,~-+,~(x) 
(~>= ~;- ~. < r ) .  

Since by hypothesis, for x in ( I ) + - - .  + (m), 

Q'~(x) > 9l Q'~+,,(x) 

(except possibly along the boundary) so that 

~i (d'~+., ~(x) < o, 

q~+,. ~(x) > ~ qr+~,. ~.(x') 

(3x = 3x ' ;  ~ x  < O~x') 

whenever x and x' are in (I) + - - - +  (m). 

it follows that 

(I5 a) 

Define the function Lr+l~,~.(x) as follows 

(~6) 

By (I 5 a) 

(~6a) ~L~+~,, ;.(x) > ~Lr+,, ).(x') 

(,~x = ,~x'; 9~x < ~ x ' ;  x, x' in (~')). 

provided that  x is in (s) while x' is in ( s ) + . .  + (m), say, in (e) ( s < e ~ m ) ;  

while ~ is a real magnitude negligible in a sense to be specified below, which 

for x' in (s) can be taken as zero. Assume for a momen~ that (I7) holds. In 

virtue of (I6), (I3a), (13b) and (I3 c) the inequali ty (I7) can be written in 

the form 

(I ~/.=< 1"; I ~ ! t ~ n - - F )  

(x in (.~)), 

(x in (e); ~ < e < ~) .  

I t  will be proved now that, more generally, 

(,~x - , ~ x ' ;  ~tx < ~x ' )  



( '7~)  

where 

(,7b) 
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~)~ Q~,+~,, ~(x) > ~ { q~+~,,, ~,~_~.(x') + [Q~, ~. (x~) + Q~,_,~,~ (x~+~) + . . .  

-~- e~'c__s_l~'e__8__2(Xe--2) ~- e)Je_s.~'g_8_l(Xe--1)] ~- [Q[,+o,$,y.+a,(Xe__l) 

+ ~+.,~, ~+.,~(~_~) + + Q~+.,~_~+~,_~_~(x~+~) 

7 ~ - - 1  . . . s+l -~" l o g ]  i,+a,,F+a,(Xe--i) T~ii,+a,e_s_l,F+a,e_s(Xs-]-l)]. 
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Ib(~ 
' ) ]  

(I 7 c) ~1 ~ x,k 

where [b(x')l is bounded  and ]r can be made arbitrarily great. Let ~ = - - ~ .  

I f  (I 7 a) is demonstrated, with ~ - - ~ ,  the inequality (i7) will have been de- 

monstrated (with ~ - ~ -  ~1). Regrouping terms in (I 7 a), with the inequality sign 

displayed tentatively, 

(I 7 d) ,~ QF+I~ ' ).(x) > ~ { QF+a',, ).'e_s(x') + [ QI.+a,2, ~'e_s_l(Xe--1) --  QF+a',, ).'e_s(Xe--1)] 

+ [Q~+~,~,~,~_~_~(x~_~)- Q~+.,~,~,~_~_~(x0_~)] + 

+ [Q~+~ Q~+~,~_~_~,~,~(x~+~)] + [Q~+.,~(xs)- Q~+.,~_~,~,.(x~)]} 

or  

(I7e) 

Now 

+ [QF-ka'~, ~.'e__s_l(.Xe--1)- QI'+a'2, ).'e_s_l(Xe--2)] + [qF+o'3, )Je--s--2(Xe--2) 

- -  QF+a'3, ~.'e_s.___2(Xe--3)] -~ . . . .  ~- [QI'+a'e_8, .~.',(Xs+i) - -  QT'+a'e_s, ~',(Xs)]}. 

( '7 f) ~x ~ ~x~ ~3xz+1 ~ ~xe--1 ~ ' 

~ x  < !}tx~ < ~x~+~ < . . .  < ~xe-~ < !}Ix'. 

Since (I6 a) holds it is necessary to consider only the case I < e. The points 

x s . . . x e - 1 ,  while correspondingly in the strips Vs,~+l, . . .  Ve-l,e, depend on 

x' ( x ' - - x~ , . . .  x'--xe-1 are integers). By (If) and (sb) the real function ~lmay 

approach - - ~  as Ix']--~r162 but, in any case, 
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The functions Q(~), with double subscripts, occurring in ( i7e)  have increasing 

real parts as ~ moves to the left parallelly to the axis of reals and within the 

region (I) + - -  + (m). This follows from the fact  tha t  the firs~ subscript, in such 

a function, i s  greater  than F and the second subscript  is equal or less than F 

(see I5a).  Taking account  of ( I7f)  we conclude that  the left  member  in ( i7e)  

is positive while the real parts  of the differences occurring in the square brackets  

in the second member  of (I 7 e) are negative. Hence  (I 7 e) holds. The steps by 

means of which (I 7 e) was derived are reversible. Thus ( i7 ) i s  demonstra ted with 

= --  ~l (~ = o in (s); (I 7 b), (I 7 e)). 

In  view of  the preceding we are led to consider a summand 

(I8) H(x) ( =  ~*~r(X + I)z*r+,(x)) = eL(~)h{x) 

where L(x) (-~ Lp+p.2.(x)) ,atisl~e, (i6) and (I7)while 

(IS a) h ( . ) -  H(x) (x i,, (,) + - . .  + (m)). 

Here the formal expression H(x) is a formal s-series (Ho(x)=a'~.r(X)ar+~(x); (I5)) 
for  x in (s); in (e) (s < e _--< m) H(x) is a sum of  a finite number of  formal expres- 

sions of  the form ( m a ) ( H ( x ) = J ~ . ,  e_ r(x)ar+o',(x)+ " ;  see (I4)). Furthermore, 

H(.) i. ~,~ZVti~ i,, ( , )+ . . .  + (,~). 
In  this connection, as well as throughout ,  when we say tha t  a funct ion is 

asymptot ic  to a formal expression it is meant  that  the funct ion is representable 

by this expression with the power series factors terminated af ter  a sufficiently 

great  number  of terms, while in place of the discarded terms expressions are 

b (x) 
introduced of the form -xk- (Ib(x)l, for k fixed, bounded;  k arbitrari ly great). 

In  order to obtain an evaluation of 

y(x) = ~ eZ'(t)h(t), 
t ~ x  

that  is, a solution of 

(~9) y(x  + l) --  y(x) = eLI*lh(x) 

consider first the formal equat ion 

(I9a)  y(x  q- I) --  y(x) ~- eq(X)Ho(x) (=  eQv+t*,a(x)a'ar(x)av+l,(x)). 
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By a Lemma 

possess a formal solution 

(I9b) 

where s(x) is an s-series. 

minuted after m' terms, m' being sufficiently great. 

~(~)~ 
(~o) v(~) = ~Q(~) t(~) + - ~ I  

of Birkhoff, previously quoted, such an equation certainly will 

Let t(x) denote s(x) wi~h the power series factors ter- 

Substitute 

(k=m'/p) 

in (I9). The new variable z(x) will satisfy the equation 

(:o a) 

where H'o(X) is 

number of terms. 

(20 b) 

hence 

q(x + I)z(x + I) --  q(x)z(x) = F(x) (q(x) = eq(~)x-k), 

F ( x )  = e L (~) h(~) - -  ~Q(~)  t(x) = ~'~ (~) + F~(x) ,  

F~(x)  = e ~ (~) h(x)  - -  e~ (~) ~ o ( X ) ,  ~'~(x) = e~ (~') H'o(X) - -  ~ ~Q(~') t (x )  

Ho(x ) with the power series factors terminated after a suitable 

The function /-/'0(x) is analytic in (,J + . . - +  (m) and 

U ' o ( X ) -  Uo(~) (= ~'~(~)~+,~(x)) 
(x in (s) + . . .  + (m)); 

(20 c) F2(X ) --  eQ(~) fl~(x) 
X k" 

where fl~(x) is analytic and bounded in (s)+ . . - +  (m), and k" can be made 

arbitrarily great. On the other hand, for x in (s), 

(2od) F I ( X  ) - -  eQ(~)~I(X) (] ~ I (X)  ] < ~1) 1 
xk'  

where k' is arbitrarily great. 

Writing 

(2I) ~F(t)-- ~F~(t) + ~F2(t) 
t~93 t~X t~x 

we evaluate ~F~( t ) ,  precisely as in ~ 4 by means of a contour integral with 
t~w 

1 T h e  s a m e  r e m a r k  c a n  b e  m a d e  t o  h o l d  f o r  fl~(x), fl~(x) a s  p r e v i o u s l y  m a d e  r e g a r d i n g  fl(x) 
of (3a; w 4). 
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path of integration in (m) near the right boundary of (m). Thus ~ F 2 ( t  ) 

be considered to be a known function, analytic in (s) + ... + (m) such that 

m a y  

(~I a) 
x~;,; 

t ~ x  

(1~'~001 < fl'~ in (~ )+ . . .  + (,,,); ~ " , - ~  as ~ - - ~ ) . '  

Let x be in (s). Write, in accordance with w 4 (Cf. (5)), 

f e 2"F=D-(~-t) F~(t)dt 
(22) FI(t) = I -- e 2"! ~-l(~-t) 

t. -x L x 

where Lx is a contour, formed as in w 4, with the constituent part L situated 

in (m) near the right boundary of (m). The integer ). is determined depending 

on the order (with respect to ]e 2€ along L, of the exponential factor of 

Fl(t  ). Existence of such an order may be ascertained as follows. We have 

F~(t)-~ eL(t)h(t)- eq(t)H'o(t). A strip V of limited width can certainly be found, 

in (m), near t h e  right boundary of (m) so that throughout V either ~L(t)  ~ ~ Q(t) 
or ~Q(t)>=~L(t) .  Confine L to V. Taking account of the statement in italics, 

following (IO), and noting that by hypothesis Q(t) ( =  Qr+,,;.(t)) is proper in V 

(since the proper curve F may be supposed to be to the left of V) it is con- 

cluded that in V the exponential factor of Fl(t) has a definite order with respect 
t O  [ e 2 a l F ~ t ] .  

By (~7) 
~L(x')  -- ~ Q(x) < -- ~ : ~, 

( , ~ x : ~ x ' ;  ~ x < ~ x ' ;  x in (s); x' in (s)+ +(m)) 

where ~1 is small (see 17c). Also, by (I5 a), 

Q(x') - ~ Q(x) < o 

( ~ x  = ~ ' ~x  ; , ~ x  ~. O~x', x in (s); x' in (s)+ + ( - 0 ) .  

As ~ ( x ' - - x )  increases, these differences diminish sufficiently rapidly to secure, 

in virtue of (20 d), the following relation 

Here  /q'.~(x) is of t h e  s a m e  n a t u r e  as  ,2l(x) a n d  fl2(x}. 
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(22 a) 

Thus ~ F(t) 
t ~  

(23) 

9@'1 

t = x  

may be considered us known and anMytic in (s)~nd such that  

Xk 
t = x  

A solution z (x )  of (2o a) may be given as follows 

(24) Z(x) == X k e -Q(x) ~ s 
t~9~ 

where • F(t) 
t~2c 

is given by (23). Thus, this solution may be considered to be a 

known function, 

(24 a) Z(X)---~ X~--~'//(X) (] fl(X) l ~ fl in (8)), 

analytic in (s). 

tion of ~ e L(t) h(t) 

t~X 

(2 5) ~ e L c~l h (t) - eQ/=t s (x) 
t ~ x  

where s(x)  is the proper series of (I9b) and m(k)--- ,  ~ as k-~  ~r 

Using this determination of z ( x )  and (20) we obtain an evalua- 

as a function analytic in (s) such that, to re(k) terms 

(x in (s)) 

The integer Z in (22) we define as follows. Let e v(t) be the exponential 

factor of F~(t)  (for t in V). If  s < m let Z be the greatest integer such that, as 

I t ] ~  in F, 

(2~ a) 2 ~ ( z -  ~)v + ~ v ( t ) ~  - ~ (v=  ~t). 

If s = m let Z be the least integer such that  

(25 b) 2zZv + ~V(t)-* + ~ ,  

9 - - 3 2 5 1 1 .  Acta mathemat@a.  60. I m p r i m 6  Io 3 s e p t e m b r e  1932. 
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By (25 a), (z5 b) it follows that,  for  k fixed, (z5) holds to infinity of terms 

(Cf. w 4). 

As a consequence of this method of summation and of the asymptot ic  

forms of the y ~ ( x )  ( ) . :  I ,  . . .  F) ,  known in (8), by (7) it follows that,  for x in (s), 

(26) ySr+:,(x ) ~ e Qr+.lz). s-series. 

The second member  of (26) is apparent ly a formal series solution; it has 

the same exponential  factor  and, on that  account, necessarily essentially 

the same s-series factor  as in the, originally known, formal series solution 

eqF+#(z)tr§162 ). This construct ion can be effected for !t = I, . . .  n -  F and for 

s = I, . . .  m.  Thus ,  the operator Ln(y) is proper. 

w 8. Completion of the Proof of the Theorem of ~ 7- 

I t  remains to prove that  L~(y) is completely proper; i .e. ,  tha t  the periodic 

functions, connecting the m proper matrix solutions of the system ((5); w I), 

related to (I a ;  ~ 7), 

(i) 

ure proper. 

(i a) 

(I b) 

Y~'(x) = (y~(x))  = (?1~(x + i -  i)) 

( i , j  = I,  . . . ~ ;  8 = I, . . . ~ . ) ,  

W e  have 

Y~(x) ~ S(x )  - -  (~ QJ~) 8,j(x)) = (eQJ(~'+~-%~(x + r  i)) 

(x in (s); s = I, . . .  m; i , j  = I, . . .  ~); 

~g~S(X ) : ~Ts-t-I(x ) es(x), es(x) -~- (~sj(x)) 

(8 = I, . . . 19~-  I ;  es(x-J- I)~--- es(x)). 

Accordingly, for s < m, 

(2) 
~ (x) = r m  (x) G (x) (G (x) - -  (gij (x))), 

G(x)  = G m - l ( x )  . .  GS(x).  

I t  will be proved first tha t  the ffij(x) are proper periodic functions. 

Consider o~F~(t),  as given by (2z; w 7). This is a function analytic in 
t = x  

(8) + . . . +  (m); in (s) it is given by (22a; ~ 7). Let  x be in the strip V (8 7) 

to the left of L and, of course, not nearly congruent  to L (when a position of 
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congruency is approached L is suitably shifted). Taking account of the fact 

that  Q(x) and L(x) [see statement in italics following (m; w 7)] are proper 

(Def. 3; w ~), in V, and that  F~(t) is given by (2on; w 7), it is concluded that,  

for x in V, the exponential factor of 

f 
Lx  

~.v-~(x- t )  ~; (t) dt 
I - -  e 2 ~ V ~ 1 1  (x--t) 

is comparable with le~'Y~x I. Taking account of this fact, of (2~ a; w 7) and 

of (2I; w 7) it is observed that  the exponential factor of z(x) (see (24; w 7)) has 

the same property for x in V. 

Hence the function y(x), as given by (2o; w 7), that  is, 

t = x  

(i _<). ~< I'; i<~tt<=n--F) 

has its exponential factor comparable with [e2~V~[ for x in V. This func- 

tion is analytic in (8) + . - .  + (m) (to the left of L). 

Consideration of (Ta; w 7; e : r n ) ,  (7c; w 7; e : m )  and the fact that  the 

@ij(x) (i, j = I, . . .  n) are proper in V make it clear that  each of the functions 

()'. ~ I ,  . . .  / 1 ;  s e e  (7; w 7)) 

has its exponential factor comparable with [e2nV--la" I for x in V. Consequently, 

an element 

will have the same property. 

Therefore 

y~+,(x) (i~tt~=n--F; (7; w 7)) 

(3) YS(x)- S*(x) (x in V) 

where the elements of the matrix S*(x) are formal series with exponential factors 

comparable with l e~'~V-~xl for x in V. On the other hand, 

y~,(x) ~ s(x) 

for x in (m) and, in particular, in V. Hence, by (2), 

G(x) - s - l ( ~ )  s*(~) : i"(x) (x in V). 
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The exponential factors of the elements of the mat r ix  S- l (x )  are the e qji(xl and 

hence are comparable, in V, with [e2aY'-T~x[. Consequently the same will be 

true of the exponential factors in the formal matrix F(x). 

The elements of G(x) are analytic in an upper half plane and, by what 

precedes, they are of the asymptotic form 

(4) G(x) = ( g ; / x ) )  - 

(the gij, integers; gij*, constants; ~x  ~ 0 ~ o) 

as in (Def. 5; ~ I). Thus the gij(x) are proper periodic functions. 
Write for this matrix G(x) 

G(x) = em~(x) -~ (gS~(x)). 

The matrices G'~(x) (s ~ I , . . .  m - -  I) all consist of proper periodic functions. 

A matrix GS(x) (I <=s<= m - -  I), occurring in (1 a) is representable as 

(4 a) GS(x) _= (g~, ,+1 (x))-' (gimj~(x)) (s = I . . . .  m --  2). 

The determinant [(gi~.,~+X(x)[ could not vanish since otherwise at least one of 

the set of determinants 

[Gm--l(;~)l, [G~tn-2(x)[,... [Gs+l(x)[ 

would vanish.  This, in virtue of (t b), would imply that not all the matrices 

Y~(x) ( a=  I , . . .  m) are fundamental matrix solutions. Thus, the elements of the 

matrix (f',~+l(x))--i o" , are proper periodic functions. The same will be true for the 

elements of the product (4a). The matrix G"-~(x) is really G",r"-~(x), and its 

elements are also proper periodic functions. I t  is seen, then, that the elements 

of each of the matrices GS(x) ( s ~  I ,  . . .  n ~ - - I )  are of this type. Hence Ln(y) is 

completely proper, and the Theorem is proved. 

An application of Theorem I (w 5) and of the methods of w 5 will yield 

the following Lemma. 

Lemma 10. Suppose that the conditions of  Theorem I I  (w 7) hold. Assume, 

moreover, that the coefficients in Ln(y) are known and of the right kind (see w I) 

not only in (I) + ... + (m) but also in a more extensive subregion of  F, 

( , ) +  + (m) + + > m). 

I t  will necessarily follow that L,~(y) is completely proper in (1) + . . .  + (~). 
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w 9. The Fundamental Existence Theorem. 

The results of the preceding sections have prepared  the way for  the proof  

of the main resul t  of this paper. This resul t  is embodied in the Theorem. 

F u n d a m e n t a l  Theorem.  Every  equation L~(y)~  o (or system), with 

coeff icients of  the kind specif ied in w I and known in the complete neigh- 

borhood of i n f i n i t y ,  is completely proper in each of  the several quadrants 

associated with the equation (or system). ~ 

Proof.  I t  is sufficient to give the proof for  some quadrant .  Le t  F be 

this quadrant .  W e  may assume the implication of the s ta tement  in italics pre- 

ceding Lemma I (w 2). The methods so far  developed indicate how to meet  the 

s i tuat ion when the condit ion of tha t  s ta tement  does not  hold. I n  fact,  i t  is 

sufficient, whenever  necessary, to replace a 'multiple '  B' curve by several cor- 

responding 'simple' B '  curves, 'parallel '  to each other.  This is always possible 

since, as s tated before, B '  curves are to be considered to be determined except 

for  a translat ion.  

Certain terms, embodied in the fol lowing definition, will be found con- 

venient.  

Definit ion 10. A set 
. . .  

which has a point of division in a region G between the F-th a~d F + I-st eler~ents 

of the set, will be said to have a point of separation, in G, i f  

Qi(x) > ~ Q'~+,(x) 

( Z : I ,  . . . F ;  ~ - I ,  . . . n - F ;  x in G). 

The Q-factorization corresponding to a point of separation will be called Q*-fac- 

torization. 

W e  note  also the following simple fact.  I f  ~ Q~(x)~ ~ Qj(x), while inter ior  

to e (along some curve) ~Q~(x) :  ~Q~(x), then  in some por t ion of G 

Q;(x) > m Qj(x), 

A similar result will hold, for more restricted regions, when the coefficients of Ln(y) (or 
those involved in a system) are of the right kind (w I) in certain portions of the plane only. 
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while in another  par t  of G 

< 

I f  the theorem is not  true, there are equations L,~(y)-~ 0 (~ > 2) of least 

order n for which the theorem fails in F.  Let  

(I) L,,(y) ~- o 

be an equation of this kind. I f  the set of Q(x)'s 

( I  a)  (~1(37), . . .  Qn (X) ,  

belonging to this equation, is such that  !}~Q~(x)= ~{Q'~(x )=~ . . -=-9~Q' , , ( x ) the  

equation will be seen to be completely proper in I" (see Theorem I;  w 5)- Hence 

not  all the 9~ Qj(x) (j-~- I, . . .  n) are identical. 

Suppose now that  in F the set (I a) has a point of division. Necessarily 

there will be a point  of separation in F.  By Lemma 9 (w 6) there will be a 

factorization 

( I  b )  L,,(y) ~ L, , -~ .Lr (y )  = o 

(I < / ' <  ~; x in F) 

corresponding to the point  of separation. In 1", near  enough to the positive 

axis of imaginaries, there is a curve F which is proper (Def. 9; w I) for  the 

set (I @1 Now, the operators L , - r (z ) ,  Lr(y)  are completely proper in F ,  since 

n - - F < ~  and F < ~ .  Theorem I I  (w 7) is applicable and, consequently,  L,~(y) 

is completely proper in F .  Hence there can be no point  of division in F .  

Accordingly, assume that  the set (i a) has a point of division in (t) + ... + (m) 

(a subregion of F) and has no point  of division in ( I )+  . .  + (m + I). ~ Necessarily 

there can be only one point  of division in (I) + . . .  + (m). Since the O~Q~(x) 

(j = i, . . .  ~) are not  all identical this point of division is necessarily a point  of 

separation in (I) + . . .  + (m). L,~(y) is correspondingly Q*-factorable. Let  

(2) Ln(ff) =-- L , - r  Lr (y )  = o 

( I ~ F < n ;  x in ( I ) + . .  +(m)) 

be the corresponding factorization according to Lemma 9 (~ 6). By Lemma 3 

t Th i s  wi l l  be  t rue ,  of course ,  for  a n y  se t  of Q(x) ' s .  

I n c i d e n t a l l y ,  t h i s  w o u l d  m e a n  t h a t  ~7~ . . . . .  ~ ; ' n  a n d  tt~ ~ t t 2  . . . . .  ,u n. 
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(8 2) there exists a curve F ,  in (m), which is proper for the set (I a). Suppose 

that L~,-r(z), Lr(y) are both completely proper in (I) + . - .  + (m). By Theorem II  

(8 7) it would then follow that L n ( y ) i s  completely proper in ( I ) +  ... + (m). 

Furthermore, by Lemma ~o (8 9), L,.(y)  would be completely proper in F. Hence 

at least one of the above two factors is not completely proper in (I) + ..- + (m). 

Let  it be denoted by L ~. 

Consider the equation 

L l ( y )  - -  o .  

Its coefficients are known in (I)-~-''"-~ (m). NOW, L l ( y )  is not Q-factorable 

in (I) + . . .  + (m). There exists an integer "h, 2 ~ m  l < m ,  such that L~(y)  is 

Q-factorable (and, of course, correspondingly factorable) in ( I ) + - - .  + (ml) and 

is not Q-factorable in ( I ) +  .-. + (m~+ I). ~ This Q-factorization of L~(y)  is 

necessarily unique in ( I ) + - . - +  (m~). The ~ Q ' ( x )  belonging to Ll(y) cannot, of 

course, be all identical. Hence this Q-factorization is a Q*-factorization. By 

Lemma 3 (8 2) the set of Q(x)'s belonging to Ll(y) will be proper (Def. 3; w I) 

to the right of a curve F~, lying in (m~). If  both factors of L ~ ( y ) = o ,  known 

in ( I ) +  ... + (m~) and corresponding to the Q*-factorization, were completely 

proper in (~ )+ . . .  ~-(m~) it would follow by Theorem I I  (8 7) that L ' ( y ) i s  

completely proper in (~  + -.. + (m~). By Lemma Io (8 8) L~(y)  will be completely 

proper in (I) ~ . . . .  + (m). Hence at least one of the two factors of Ll(y) is not 

completely proper in ( I ) + - - .  + (m~). Denote it by L 2. 

The equation 

L e ( y )  = o ,  

with coefficients known in ( I ) + . . .  + (nh) is not Q-factorable in ( I ) + . . .  + (m~). 

The re  exists an integer me, 2 ~ m~ ~ ml, such that L e ( y )  ~ o is Q-factorable in 

(I) + . . .  + (me) and is not Q-factorable in (I) + - . .  + (m 2 + I). By the reasoning 

applied to L ~ ( y ) =  o ,  previously, it is shown that of the two factors of Le(y ) ,  

which correspond to the Q-factorization (necessarily Q*-factorization), at least 

one is not completely proper in ( I ) + - - .  + (me). Denote this factor by L 3. 

Continuing the indicated process, we obtain a sequence of integers mi 

2 <= . . . < mi  < . .. .< m l  < m 

and a sequence of equations L i ( y ) ~ - o  such that the following conditions hold. 

1 An equation which is not Q-factorable might be factorable (in the usual sense}. 
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,% L~(y)is not completely proper in (I)+...-4-(~[/i-1) (m0 ~-~v/$). 
2 ~ . L*(y) is Q*-factorable in ( I ) + , - .  + (mi) and is not Q-factorable in 

(i) + . . .  + (m, + i). 
For a certain i (~-~ i') we have me--~ 2. Correspondingly there will exist an 

equation Lr = o with coefficients of the right kind (Cf. w I) in (t) + . . -  + (~,~,-~) 

(2 < mi'-~), Q*-factorable in (I) + (2) and not Q-factorable in (I) + (2) + (3). By 

Lemnla 9 (8 6) there will be a corresponding factorization 

L~'(y) ~ Lk - r  Lr(y) = o 

(I < I ' <  k; x in (I) + (2)). 

Necessarily the factors will be of order one and two. The B'  curve, separating 

(I) from (2), will correspond to the two Q(x)'s belonging to the factor of order 

two; that is, the subscripts associated with this curve will be those of the two 

mentioned Q(x)'s. Hence, in view of Lemma I (w 2), Theorem I (w 5)wil l  

certainly be applicable to the factor of order two. Thus tbe two factors are 

completely proper in ( I )+  (2). Now L~'(y) is Q*-factorable in ( I )+  (2) and is not 

Q-factorable in ( I )+ (2 )+ (3 ) .  Hence, by Lemma 3 (8 2), the set of Q(x)'s 

belonging to L*'(y) is proper to the right of a curve F ,  lying in (2). By 

Theorem I[  (8 7) the operator L~'(y) will be completely proper in (I)+(2) .  

Moreover, in virtue of" Lemma to (8 8), Lr will be seen to be completely 

proper in ( I ) + - . - +  (m~,-1). We have thus arrived at a contradiction. Thus, 

the Theorem has been proved for I'. 

For the several other quadrants (below the axis of reals, to the right of 

the axis of imaginaries, and for various ranges of arg x ) the  demonstration would 

be entirely analogous and structurally identical with the one just  given. Thus 

the Theorem is seen to be true. 

I t  is essential to note that given any particular equation the preceding 

sections give actual methods for construction of those solutions and of those 

periodic functions whose existence has been established in the Fundamental 

Theorem. 

If  we consider two adjacent quadrants with a common strip V along, say, 

the positive axis of imaginaries it is noted that the two proper sets of solutions 

corresponding to the two overlapping sub-regions of the quadrants are connected 

by proper periodic functions. This is seen to hold because every set of Q(x)'s 

is proper in such a strip. In this sense, every equation L , ( y ) =  o (or system), 
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with coefficients of the right kind in the complete neighborhood of infinity, is completely 

proper in each of the several upper and lower half-planes associated with the equation. 

w io. Connection between 'upper' and 'lower' Solutions. 

Consider two adjacent quadrants F and g2 above and below the negative 

axis of reals, respectively. We shall write 

r = ( ~ ) + ( ~ ) + .  , . q = { H + [ 2 ] +  

(see w 3). Let K denote the combined region ( I ) +  [I]; this region extends in- 

definitely upwards and downwards from the negative axis of reals. I t  may 

happen that the negative axis of reals is a B' curve. In any case, (I) and [I] 

may be considered as overlapping along a strip H: 

- Q _ - < ~ x = < e ( e > o ) ,  Ixl>_-~>o. 

~r Q', (x) _>_. ~ ~ Q;,,(x) 

will be maintained in K, if the negative axis of reals is not a B' curve. In the 

contrary case assume this ordering in  the region (I) down including the nega- 

tive axis. The lower boundary of (I), h, will consist of a portion ot the line 

~ x ~ - - Q .  The upper boundary of [I], h*, will consist of a portion of the line 

Let P~(x) be a matrix solution, consisting of elements analytic in (I), such 

that 

(i a) r ~  (x) - (Y5 (x)) - s (x) = (eQ~ <~) sij(~)) 

(i,j~-- I, . . . n ;  x in (I)). 

Let Yt(x) be a matrix solution, with elements analytic in [I], such that  

(I b) Y~ (x) : (YI'j (x)) ~ S (x). (x in [I ]) 

The matrix P ( x ) ( ~  (p~j (x))) of periodic functions, defined by the relation 

N) Y~ (~) = Y~ (x) p (~), 

consists of elements analytic in H. By (I a) and (I b) it follows that 
10--32511. Acta mathematica. 60. lmprim6 Iv 3 septembre 1932. 

An ordering 

(i) 
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(2a) (pi.i(x)) = (eQJi(~) ((~ij + ~ ) ) ) ,  

where k can be made arbi t rar i ly  great  while the Qij(x) are bounded in H.  

Along the negat ive axis of reals the order ing (1) holds, tha t  is 

Qj, (x) => o. (j  < i) 

Hence  ~Qji(x) (? < i) is non increasing as [x l - -+m along the negative axis. 

vir tue of (2 a) and the periodicity of the po(x) we shall have 

Po" (x) = lim p ; j  (x') = o 
I~ ' i~= 

(,~ x = ,~ x '  = o; 9{ x > ]{ x ' ;  x - -  x' ,  integer) 

for  i > j ;  on the other  hand, 

.pii(x) = l i m p / / ( x ' ) - -  I ( i  = I ,  . . .  9~). 
I z ' l  

Since the pij(X) a r e  analytic  it  would follow tha t  

(~ b) p i j  ( x )  ~ o ( i  > j ) ,  

p , , ( x )  =- I ( i  = , ,  . .  , ) .  

Definition 11. 

(i > j), while h,i(x) ~ x ( i =  I, . . .  n). 
Use the t ransformat ion  

A matrix (hij(x)) will be termed a half matrix i f  h~y (x)=--o 

p (x) -= G (~) = (g,j (,)). 

The g~j (z) are analytic  for  e -~ < [z I < e2", ~ Le t t ing  e, denote  the circle [z I = 

= e-2~, ~ and ca denote the circle I z [ =  e2"~ the following will hold for  any func- 

tion g(z) analyt ic  for  e-2"e < l z ]  < e 2~'~ 

(3) v (*) = a (-~) + b (,) ,  

( , (~) ,  fv~g)d~, b ( z ) _  I f g(~)d~ 
2 ~ | 7  1 2 ~ l / 7 i  j ~ - 7 7  

C~ C 1 

In  

Wr i t e  

(2 c) 

z = e 2~V--~ x. 
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where c~ is described in the counter  clockwise direction and c~ is described in 

the clockwise direction. The function a (z) will be analytic interior to c~, while 

b (z) will be analytic exterior to Cl. 

W e  seek to de~ermine half  matrices B (z) ( ~  (bij (z))) and A (z ) (=  ((a,j (z))), 

with the bij(z) analytic exterior to c* and the aij (Z) analytic interior to c*, so 

tha t  
(4) P (x) = G (z) = B (z) A (z); 

here the radius of the circle c~ is to be slightly greater  than e-2S~ while the 

radius of the circle c~ is to be slightly less than e 2~Q. 

From (4) we have 

(4 a) g,:~ (~) = F ,  b .  (~) ~.5(~)- 
~ 1  

Let  i > j .  In  the second member  b i i ( z ) = o  for i > ) ,  so that  Z = Z .  In  the 
).21 2 = i  

lat ter  sum the subscripts of the aij(z) satisfy the inequalities 

Z > i > j ;  

thus  these a),j(z) a r e  

should have 

zero. Hence  (4a) is satisfied for i > j .  For  i ~ - j  we 

(4 b) I = Z bjz(z) azj (z) (i = I, . . .  n). 
t = 1  

The equations (4b) are obviously 

( i  > i) whi l e  b, ,(~) = ai , (~)  = i. I t  
equations take the form 

satisfied since bii (z) - -  o (i > i), ai i  (z) = o 

remains to consider (4 a) for i < j .  These 

J 
(4 c) gij(z) = ~ b,z (z) azj (z) (i < j ;  i , j - =  I, . . .  n). 

They will be grouped, for a = I, 2 , . . . ,  as follows 

i+o 

(5) g,, f+a (z) = Z 5i~ (z) ai, z'+~ (z) 

An equat ion 

gi,  i+ l  (Z) = ai, f+ l  (Z) "47 hi, i+1 (~) 

( i  - - -  I ,  . . .  n - 0 ) .  
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of the set (5; a =  I) will be solved by let t ing 

2 z V : 2 1  ~ - - z  ' 
c~ 

These are functions of the desired type. The function 

(5 b) 2 
gi, i ~- 2 (~) ~-  gi, /+2 ( Z ) -  hi, i+1 (.~)ai+l. i+2 (~) 

is consequently known and analytic in a closed Laurent  ring (c~, c~) slightly in- 

terior to the ring (c~, c~). The set (5; a =  2) can be wri t ten in the form 

(5 c) a,~,,+~ ( , ) =  ~,,,+~ (3) + b~,,+~ (~) 

( i =  i, n - 2 ) .  

Solutions of this set, of the des i r ed  kind, are obtained by writing 

(5 d) 
2 

Suppose that  desired solutions of (5) have been obtained for a =  I, 2 , . . .  m--  i, 

with reference to a Laurent  r ing (c': ~-1 , c~-1), slightly interior to the ring 

(c~, c~). As a consequence, the function 

(6) g~.,ti+ m (Z) ~-  g,, i+m (3) ~- [bi, i+1 (~) ai+l ,  ,+m (Z) 

"~ hi, i+2 (z) ai+2, i+m (z) ~- " " ~- hi, i+m-1 (~) ai+m-.1,  i+m (Z)] 

will be known and analytic in a closed ring (c~, c'~), interior to (c~ m-l, c~-1). 

The set (5; a =  m) can then be wri t ten in the form 

(6 a) g'~ (z) - a; ,+.~ (3) + b~ . . . ,  (z) i, i4-m 

( i =  I , . . .  n -  l )  
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and can be solved by writ ing 

(6 b) ~,, ~+~ (~) - -  
2 ~ V - ~  J ~ - z  ' 

77 

I f g~  

Thus the matr ix equation (4) may be considered solved as required. The 

elements of A(e)  will be analytic  for ]zl < e 2"~c and those of B(e)  will be ana- 

lytic for [ z [ > e  - ~ ~  ( e > c > o ) .  In  virtue of (6b) the a i i ( x ) ( ~ a i i ( z ) )  are of 

period uni~y, analytic for .~x > - - c  and of the form 

(~) ~ .  (x)  = e ~'~r ~ J  ~ ~,.*j + , .  

(a~j, integer, > o; .~ x > --  c) 

where the second member is a convergent series in positive powers of e ~ V - ~ ' .  

Similarly, 

(7a) fl,j (x) = e - 2 ~ g : i  ~,J ~ + . .  

(Oh j, integer, >= i ; ~ x ~ c) 

where the second member is a series in positive powers of e - 2 ~ g - i ~ .  Conse- 

quently, the aij (x) are proper in an upper half  plane, and the fl~j(x) are 'proper 

in a lower half  plane'. ~ Tha t  is, in suitable regions 

(s) ~ (x) ~ e ~ v - ~  ~ �9 ~b  

({~ij, integer, >o;= ~ x > _  -- c; a ~ i =  o; a*-=,~ I," i , j  = I, . . . n), 

(8a) ~i~ (x) - e - ~ r  ~,j �9 ~ 

(fl~j, integer, ~ I; ~ x ~ ' c ;  f l ~ i = o ;  8 T , : = I ;  i , j - ~ I ,  . . . n ) .  

Besides, (aij(x)), (flij (x)) are half  matrices. I t  can be easily shown tha t  (aij (x))- '  

( ~  ((~ii (x))) also is a half  matrix,  with elements analytic for ~ x ~ -  c and pro- 

per in an upper half  plane; 

The meaning of the latter term is made obvious by analogy to (Def. 5: w I), which was 
given for an upper half plane. 
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(8 b) 

(9) 

In  this case, 

identically, 

(9  a)  

George D. Birkhoff and W. J. Trjitzinsky. 

-~j  (x) ~ e " ~ V - ~ o  '~ ~5  

-- - *  ~ I ) .  (aij, integer; ~ x ~ - - c ;  a i i - ~ o ;  ai i  

Examine the situation when 

Q~ (x )  . . . . .  9~ qj (x) 
(a < j ;  x on negative axis of reals). 

by (2 a), it would follow that  along the negative axis, and hence 

p , , ,  (x) = o (i < m;  ~ _-< i, m =< j) .  

I t  will follow that  gj_,,j (z) ( =  g'j-,..i (z)) -= o so that, by (5 a), 

~j_, , j  (~) = bj_, . j  (z) = o. 

If  a = < j -  2, by (9 a), gj-2,j(Z)--~" O. The relations 

gj_., j (~) - -  a j_ , , j  (~) = o 

would imply that  g] -2 . j ( z )  (see 5 b) is zero. This, in turn, would mean that  

aj--2,j (Z) = bj--2,j ( z )  : o (see (5 d)). 

By induction, it could be shown without difficulty that  (9) implies the relations 

( m )  ~ , ~  ( x ) =  ~ + , , j ( x )  . . . . .  ~ - , j  ( x ) = -  o, 

,~, , ,~(x) = ~ o + , , ~ ( x )  . . . . .  ~ j - , , j  ( x )  - -  o .  

These relations would necessarily follow if in place of (9)it  were merely assumed 

that  

(IOa) ~)~ Qj,j-l(X), ~ Qj, j - 2 ( x ) ,  . .  . ~ (t~j,o(x) ~ 

along the negative axis of reals. 

Now, for 3 =  I, z, . . . ,  

j+s--1 
( I I )  Z ~i, 2 (X)~2, i+s(X) ~- (~i,i+s(X) ~ gi, i+s(X) = o 

~ . = i +  I 

( i  = i . . . .  n -  s) .  

Suppose (Io) holds. By (t I; s =  I) 
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(II a) ~/,i+l(X) = - -  tti,/+l (x) ( i =  I . . . .  n -  I) 

so that ,  since qi-l , j(x)=o, we have ~j_l,j(x)~-o. By (1I; 8=2),  f o r  i ~-  

fXi, i+2 (X) ~- ~f, i+2 (X) "~- ~,, i+1 (X) {Xi+I, i+2 (X) = O. 

~_~,~ (x) + ~j_~,j (~) + ~j,j_~ (~) ~ _ , , j  (~) = o 

in (IO) a_--<j- -2 ,  necessarily ad -2 . j ( x )=o .  

Thus  

so that ,  if By induct ion  it  follows 

easily t ha t  the  first line in (IO) implies t h a t  

(i 2) ~o, j(x) = ~ + l , j ( x )  . . . .  = ~;-1 , j (x)  -= o 

Thus, (IOn) implies (Io) and (I2). 

Consider  the matr ix  Z(x) (= z~j(x)) defined by the relat ions 

(I 3) yu  (x)(6ij (x)) = Y~ (x)(~i~ (x)) = Z (x). 

This  is apparent ly  a mat r ix  solution. I t s  e lements  are analyt ic  in K ( =  (I)+[I]) .  

This follows by (2) and in vir tue of the  re la t ion (4), 

p (~) = (~,j (~)) ((~,j (x)) 

For  x in K and ~ x  ~ - -  e, on account  of (I a) and  (8b), 

r 5  (~) " t~3 a) z,5(x) = e~<~I t . ( x )  + ~ + r/~(x) , 

y--~ ( u 
(I3 b) rij(X) = Z eQ2J(X)+2g]fl-----la2jz ti2(X) + I-~'z(~ (~,i + "" ") 

2~1 Xk I " 

Here hi(x) denotes  sij(x) with the power  series factors t e rmina ted  af ter  k te rms 

(k sufficiently large); for  a fixed k the  /'~j (x) are bounded  in K for ~ x ~ -  c, 

while k~ can be made  arbitrari ly grea t  by tak ing  k sufficiently great .  The ~Q)4 (x) 

(Z = i ,  . . .  j - -  i )  are non-increasing,  in vir tue of (I), as x-- ,  0r a long the  nega- 

tive axis of reals. In  fact, at  least for Ix l  sufficiently large, the  inequali t ies (i) 

would  imply that ,  for x in K in a strip 

(~4) o _-< .q z _--< d (o < d), 

wa have 
(I4 a) ~R Q1 (x) ~ 9~ Qe (x) _-<.-. =< ~ q,, (x); 
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moreover, (14) will hold, in K, in a wider strip 

(14b) -- d ~ ~ x  ~ d 

if (I) is maintained th roughout  K. 

I f  ~ Qj--Lj(x) approaches - - ~  along the negative axis, the same will be 

true of the ~ Q).j (x) ().-~ I, . . . j -- 2), and, more generally, this would be the 

si tuation in a strip (I4) or (I4b),  as the case may be. Thus, if ~Qj . j -~(x)  is 

not  bounded along the negative axis of reals, all the exponential  factors in (I 3 b) 

will diminish rapidly enough, as x - ~  in K in the strip (14), to insure the 

asymptot ic  form 

in this strip. I f  ~ Qj, j_~ (x) is not  bounded along the negative axis of reals and 

(1) is maintained in K, (t5) will hold in the strip (14b). 

Suppose thai, the functions 

:)i Q~,;-1 (x), .~]l q~.,j-2 (x), . . .  ,~ Qj, ~ (x) 

are bounded along the negative axis of reals. In view of the  s ta tement  in ita- 

lics, following (I2) it is clear tha t  (I2) will hold. Thus, if a -  J, 

,-,~ (x)  -= o. 

On the other  hand, if a > i 

a- -1  

(~6) r , s (x)  = ~ . .  
) .~1  

The exponential  factors in the lat ter  sum may be supposed to approach zero in 

the strip (I4 a) (or in the strip (I4 b)). Consequently the asymptot ic  relation (15) 

will certainly hold in the strip (I4), in K. I t  will be maintained in a strip (I4 b) 

if (I) holds throughout  K. 

Consider all those curves which lie in F and satisfy equations 

(I7) ~ [Qij (x) + 2 7oF --  i ctij95.1 = o ( i  < j )  

formed for all 

axis of reals. 

curves (I7) in 

such i and j tha t  ~ Qii(x) approaches - - ~  along the negative 

Let  B': denote the lowest  of these curves. In  the case of no 

1" we let B '  denote the r ight  boundary of 11 . I f  the  l imiting 
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direction of B~ ~ is that  of the negative axis of reals, this curve will be neces- 

sarily of the form 

(I7a) v = h ( - - u ) e ' +  ' '  ( x = u + V - - i v ;  h > o ;  i > e l > o ) .  

Let B u denote some curve in F, to the left of BI ~, with a limiting direction 

slightly different from that  of B~ if Be is not of the form (x 7 a). In the con- 

trary case let B u satisfy an equation 

(17 b) v = h ( - -  u)e, (el > e > o). 

In any case B u is to be in F. 

We shall have 

(i 8) z (x) - s (x) 

in the closed region /~u consisting of the part of K bounded below by the ne- 

gative axis of reals and bounded above by the lower one of the two curves B' 

(upper boundary of K), /~ .  

If  the ordering (I) is maintained in K the relation 

z (x) = Y~ (x) (#,j (x)) 

may be used t,o show that  (18) holds also in a closed region K * consisting of 

the part of K bounded above by the negative axis and bounded below by a 

curve B t, lying in ~2, or by the lower boundary of K. The curve B z is to be 

considered as determined With reference to the set of equations 

[Qij (x) - 2 ~r l f ~ i  ~,j x] -~- o (i < j) 

just as B u has been specified on the basis of the equations (I7). 

Consequently the following has been made evident. Given matrix solu- 

tions Y'(x), Y~(x): proper in (I) and [I], respectively, there exists a matrix solution 

Z(x) ,  with elements analytic in K (-- ( I )  + [I]), such that Z(x)----- Y~(x)pU(x)-~ 

~- Yt(x) U(x). Here P"(x),  t~(x) are half matrices consisting of periodic functions 

proper in an upper and lower half plane, respectively. Moreover, Z(x)  may be so 

constructed that Z(x)  ~ S(x) in a sub-region of K, extendin 9 from the negative axis 

upwards (or downwards) at least to a curve of form v ~-h  ( - -u)  ~. In the latter 

equation h is positive (or negative) while 1 > e > o. In  particular, i f  the negative 

axis is not B'  curve, Z (x) ~ S (x) in a sub-region of K (or in K itself), extending 

from the negative axis upwards and downwards at least to curves of the form 
11--32511. Acta mathematica.  60. Imprim6 le 3 septembre 1932. 
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v ~ h ( - - u )  ~ (h real, ~ o ;  I > e > o ) .  

I t  is clear that  analogous facts will hold wi~h reference to quadrants, above 

and below, the positive axis, to the right of the axis of imagin~ries. 

I I .  The Converse Theorem.  

In this section the problem, inverse to the one solved in the Fundamental 

Theorem, will be considered. The result, in this connection, will be embodied 

in the theorem. 

Theorem III. Let 

(I) eQ, (" s~ (x), e~: (~) s~ (x), . . e% (" s~ (~) 

be a linearly independent set of formal se~4es where the Qj(x) and the formal 

s-series sj (x) (] : l, . . .  n) are of the same general description as might occur in con- 

nection with a d(fference equation of order n. Let  R 1, R 2 . . . .  R , ,  R,+l,  . . .  be 

the set of consecutive regions, formed with reference to the set of  Qj (x) (j : l, . . .  n) 

as on the preceding pages. Let  two such consecutive regions have at least a strip 

of, say, unit width i~ common. 

Let  there be associated with each region R~ (s : i, 2, . . .) a set of  n functions 

(2) y~ (x), y~ ( x ) , . . .  y~(x)  

analytic in R , ,  and such that 

(~ a) v~ (x) - ,Q~ C~) sj (x) (j = I ,  . . .  ~ ;  x i?~ R s ) .  

Assume that, for s = I, 2, . . . ,  

7~ 

(2 b) ?(f (x) = ~ y~+l (x) r~)s"s+lt.3 (X) (j  = I, . . .  n) 
)~-1 

8.,+1 of period one. where the pij  (x) are 

I t  will  necessarily follow that there exists a d(tference equation of order n 

(3) L,~ (y) ~. y (x + n) + al (x) y (x + n - -  i )  +' '"  + a n  (X) y (X) = O, 

with coefficients of the same kind in the complete J~eighborhood of infini 0 as postu- 
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lated in w I, possessing the following properties. 

of formal solutions of (3). Each set (2) will 

of (3). 

Proof. Form the determinant 

The series (x) will constitute a set 

be a fundamental set of solutions 

(4) D~ (y) 

y (~ + n) ,  y'~ (x + . ) ,  . . .  y,~ (z + , )  

y (x + n - -  ~), y'; (x + ,~ - -  ~), . . .  y~ (x  + n - -  ~) 

y (x), ~ (x) . . .  y~ (x) 

--d~o (x )y  (~ + n) + d: (x )y  (x + n -  ~) + . . . .  ~ d,~ (x )y  (x). 

On account of (2 a) and o f  the linear independence of the series (I), 

d'~o (x) ~ o ,  d~ (x) ~ o .  

The coefficients d2(x) (j = o, i , . . .  n) are analytic in R~. They will be asymp- 

totic, for x in Rs, to the formal series obtained by replacing the elements in 

expressing these coefficients, by corresponding formal series. the determinants, 

Thus write 

(4 a) d; (x) ~ e~, l~/§  §  (x) 

( j = o ,  I , . . .  n; x in B,) 

where dj(x) is an s-series. Now the logarithms in the s-series of factors in 

(I) and the Qj(x) enter in such a way that it is possible to combine the co- 

lumns in the  mentioned determinants so that  the logarithms will not enter in 

the djIx) (j = o ,  I , . . .  n). On the other hand, if we write 

(5) ~ (x) - d~ (x) 
�9 di  (~) (s = , ,  

we shall have @(x) analytic in IR~ (for I xl sufficiently great) and 

(5 b) a~ (x) N aj (x) 

( j  = -  I,  . . .  n ;  x i n  R , ;  a ~ ( x )  ~ o ;  s = I,  . . .  n) 

1 

where the formal series aj(x) are in negative powers of x~ (p, 

with, possibly, a few positive powers present. 

positive 

�9 . , n ) ~  

integer) 
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Noting that 
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( - ~)~ d; (x) =- 
y~ (x + n - - j  + I) 

(x + n - - j  -- I) 

v~ (x) 

and combining columns, having (2 b) (with s replaced by s -- I) in view, we con- 

clude that 

- -  s--lt #" s--1 (6) d~ (x) --  p (x) dJ (x) 

( j = o ,  z , . . .  n; s = 2 ,  3 , . . . ;  pS-l'S(x) periodic, ~ o . )  

If  Rs and Rs-1 have a strip along the negative axis of reals in common, neces- 

sarily pS-~,'(x) is analytic near the real axis. Otherwise, R, and R,-1 will have 

a strip in common extending indefinitely upwards (or downwards) from the axis 

of reals. In  this case 

p~,, s(x), 

in virtue of periodicity, is analytic in an upper (or lower 

By (5) and (6) 

(7) a~(x) = ~ - - l ( x )  ( j =  I, 

half plane. 

.n;  s = 2 ,  3 , . . . ) .  

A function a.j(x), defined as the analytic extension of, say, q~(x), will be analytic 

in virtue of (7) in each of the regions 

R1, R~, . . . .  

Moreover, the asymptotic relations 

(8) aj(X) -- ,](X) ( j =  I,  . . . . )  

will be maintained in these regions. 

The equation 

(9) L~(V) =-- v(~ + n) + a , ( x )v (x  + , , - -  ~) + . - .  + ~,~(x)v(~) = o 

will be actually of order n and with coefficients of the required type. Each of 
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the sets (2) will be a fundamental set of solutions of (9). This follows from the 

form of the determinant expression for the operator L~,(y). [n view of (2 a )and  

the definition of the ak(x)(k= I , . . .  n) in terms of the y~(x) the series (I) will 

formally satisfy (9) in R1, R~,... The proof of the Theorem is thus completed. 

w 12. The Related Riemann Problem. 

Let T(x) (~-(eQJ(~)bj(x))) denote a matrix whose elements are those of a 

formal matrix S(x) (~- (eqJ(~)sij(x))) with the power series factors terminated after 

a number of terms. Suppose that  S(x) has the general character of a matrix 

of formal solutions which might occur in connection with a difference system of 

order n, of the type indicated in w I. The set of Q(x)'s, 

(I)  21(x) . . . .  Qn(x) 

defines a sequence of consecutive regions 

(2) R1, R2, .. �9162 (Ixl > e > o), 

us indicated on the preceding pages. For definiteness suppose that  R 1 is the 

lower one of the regions constituting the quadrant 

~rg 
- - ~ a r g x ~ - +  e. 

2 

The regions (2) will cover (outside the circle Ix I = Q) the extended complex plane 

over the range 

(2 a) - - e G a r g x = < 2 z p +  ~, 

where p is u suitable integer depending on the Qj(x). When a particular region 

/t,  is considered it is essential to keep in view the corresponding range of arg x. 

As we proceed in the counter clockwise direction, let B ~ denote the last one of 

the boundaries of Rs encountered. In R~ a fixed determination of T(x) will be 

supposed as given. As a consequence, T(x) will be known uniquely in each of 

the regions (2). For x in Rm, in the neighborhood of B m (a portion of a line 

,~x = c > o), the Q/x) ( j =  I , . . .  n) will correspondingly be the same as in /~ .  

On the other hand, the rid(x) may be different. The latter situation will take 
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place if a factor x rij has rij not equal to an integral multiple of I/p o r  if there 

are logarithms present in some of the tij(x). 

Assume that  associated with B ~ we have a matrix 

i3) /~ '$+I(x)  = (p~.'js-cl(x)) i s =  I, 2 , . . . ) ,  

consisting of elements of period one. Suppose that  P~,'+*(x) has the general 

eharaeter of a matrix of periodic functions which might occur, as indicated on 

the preceding pages, in connection with a different system of order n, formally 

satisfied by S(x). More specifically, the following is assumed. 

The p~jS, s+, (x) (i, j = I . . . .  n) are proper, unless B ~ is a portion of a lineparaUel 

to lhe axis of reals. In the latter case they are analyffc in a strip along the axis 

of reals. Along B ~ (and within a limited distance of B'), in the vicinity of x -~  ~ ,  

(3 a~) A s, s+ l (x ) .~_ (a~j.#+l (x)) = r ( *  ).Pf, s+! (x) T -1  (x) - X, 

while the deri~'atives of all orders of the matrix A~,~+'(x) are asymptotic, along B ~, 

to ~e~'o. 

The following theorem will be proved. 

Let T(x), the corresponding regions (2) and the matrices (3) of 

/~,~+~(x) ( s -  i, : , . . . ) ,  

be given. Co,cerni~g these periodic fanctiop~s asstnne the stateme~d in italics pre- 

ceding this theorem. 

There exist then matrices 

(4) 

such that 

(5) 

Furthern~ore, for x in Rs, 

and [ Y~(x)[ ~ o, while 

(5 a) 

Y~(x), Y~(x), . . .  L ( x ) ,  . .  

~s (X) - -  ~s+l(X)~ 's+l(x)  ( S =  I, 2 , . . . ) .  

the elements of Y~(x) will be analytic isave at x =  ~) 

Y.(x)- 8(x) ix i~ R,~). 

The exponential factors e q(~), occurri~g in the elements of the formal matrix S(x), 

are correspondingly the same as in the matrix T(x). 
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Proof. For the purpose ~t hand the following theorem established by 

Birkhoff ~ will be used. 

'Let C1 , . . .  Cr be r simple closed curves in the extended complex plane. 

Let A~(x) , . . .  At(x) be matrices of functions defined and indefinitely differentiable 

along C~, . . .  C,. respectively, analytic save at a finite number of points of these 

curves and of determinant not zero. I f  furthermore at any point of intersection 

of 6~, C~ the matrices A,~(x), Aft(x) are such that. the formal derivatives of all 

orders of the matrix 

{6) A,~(x)A#(x) -- A#(x)A,~(x) 

vanish, there exists a matrix @(x) with the following properties: 

(I) each element of O(x) is analytic except along C~ . . . .  C, and at an 

arbitrary point x ~ a where the elements may become infinite to finite order; 

]@(x)] nowhere vanishes save possibly at x =  a; 

(2) the elements of @(x) are continuous and indefinitely differentiable along 

each curve C~ from either side, analytic from either Side save at points of inter- 

section of the curves, or at those points where an element of Ai(x) fails to be 
analytic, or at x:a; if a lies on a curve Ci, the matrix (x--a)ZAi(x)[orx-~J~(x) 
if a~ oQ] is indefinitely differentiable along Ci for a suitable l; 

(3) if a + and -- side of each curve Ci are chosen, then, 

(7) lim O(x) = [lim @(x)] Ai(xi) ( i =  I , . . .  r) 

where the approach to the arbitrary point x~ of C~ is along the + and -- side 

respectively.' 

The curves C~ may be subjected to weaker restrictions and may extend to 

infinity. Thus, for instance C~ ( s = I ,  2, . . .),  may be defined as consisting of 

B ~ up to a point on the circle ] x l = # ;  inside of this circle a portion of Cs will 

consist of a curve P ,  through x = o, joining the mentioned point on the rim 

of the circle with ano ther  suitable point on the rim of the circle; from the latter 

point on, C~ will consist of a curve B ~ extending to infinity (and analytic in 

every finite part of the plane); moreover, the component parts B s, P ,  B~ of Ca 

will be supposed so joined t h a t  Cs is a simple curve with a continuously turning 

t Cf. III. Methods developed with a view of application to the classical Riemann problem, 
can be found in papers by Hilbert (G5tt. Nachr., I9O 5, pp. 3o7--338) and Plemelj (Mom~tsch. f. 

Math. u. Phys., I9o8, pp. 205--246). 
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tangent ;  fur thermore ,  if the l imit ing direct ion of B s is as t ha t  of j~s is to be 

considered as a, + z ;  finally, the several curves C8 are to have points in common 

only at x ~ o  and at x ~  ~ .  

The matrices As(x) may be defined as follows. Along B '~ 

(s) As(x) = AS,~+~(.); 

along j~s 

(8 a) A.(x) = I .  

We take e sufficiently great.  On the other  hand,  along P the elements of As(x) 
are defined so tha t  the condit ions of the above theorem of Birkhoff  hold with 

respect to As(x). Thus, except  at  infinity, the elements of As(x) are analytic  

along 6'. for  ] x ] >  O; for  x on (~ 

I A s( . ) l  # o .  

The condit ion stated with respect  to (6) will certainly hold at  x = ~ .  In  the 

ne ighborhood of x - ~ o  the elements of the matrices As(x) may be so determined 

tha t  this condit ion will hold at  x = o  as well. 1 The point  x = a will be sup- 

posed to lie inter ior  the circle I x [ - - r  

There will exist a matr ix  a)(x), with elements analytic  for  I x l  > Q except 

along B 1 , B  ~ . . . .  and except  at  x = ~ ,  such tha t  [ @ ( x ) [ # o  ( [x [>o) .  Along 

each curve B s the elements of O(x) will be analytic  f rom ei ther  side (for Ix[ > ~ ,  

and except ing x-----~). Moreover,  for  xs on B s, 

(9) lira a~(z) = [ l im ~O(x)] As,,+~(.,). 

Here  As, s+l(x) is given by (3 a). The  + side of B s will be taken corresponding 

to an approach f rom the inter ior  of Rs. The asymptot ic  form, at x = ~ ,  of 

q)(x) will be the same along both sides of B ~ since As, s+l(xs)~ I. Thus, there  

exist matrices 

(9 a) v~ (x), v.4*) . . . .  

t Determination of As(x) as stated, involves an approximation problem a solution of which 
had been given by A. Besikowitsch (Mathematische Zeitschrift, Band 2I, Heft I/2, 1924). Another 
solution had been given by Trjitzinsky. (Cf. forthcoming paper 'Approximation by analytic func- 
tions with prescribed derivatives' to apper in the Am. Jour. of Math.). 
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such that the elements of U,(x) ( s ~  I, 2 , . . . )  are analytic (save at x -~  0r in B, 

and such that lU~(x) [ r  o ([xl>Q) in R,. Moreover, 

(9b) U,(x) = U,+l(X)A~,~+~(x) ( s =  i, 2 , . . . ) .  

I t  is evident, in the light of the papers referred to above and treating Riemann 

problems, that the elements of Us(x) ( s ~  I, 2 , . . . )  behave at infinity essentially 

as rational functions. For x in Rs 

(9C) Us(x) ~ V (x )  -~- (uij(x)) (8~-- I, 2 , . . . ) ,  

Whether the elements of the formal matrix 

s-series is left, for the present, undecided. 

Write 

U(x) can be made to be formal 

(io) = us(x) T(x). 

Then (5) will hold. Moreover, for x in Rs, 

= = (e J 

I t  follows immediately that the theorem is true. 

In a future paper one of the present authors (Trjitzinsky)proposes to 

develop the analytic theory of linear difference equations with rational coef- 

ficients which is a case of particular interest in which more special results can 

be obtained. Itere it would be desirable to find those 'principal solutions' which 

stand out because of their peculiar analytic simplicity and to formulate the 

corresponding Riemann problem. The same author proposes also to develop in 

an analogous manner the analytic theory of q-difference equations and of the 

ordinary linear differential equations. 

| 2 - -3251I .  Acta mathematica. 60. Irnprimd le I9 novembre 1932. 


