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In the present paper we study a linear difference system of order % in
v (@), .y,

(1) pelot )= aiy ) gy (o)

Jj=1

(Hasj(@)]=20; 2=1, 2, ... %),
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in which the coefficients a;;(x) will be taken either as known rational functions

of x or, more generally, as series convergent for |xz| > r which, except for a
1
finite number of ascending powers, are in descending powers of z or of x?

(p, a positive integer). Still more generally it may be supposed that the coeffi-
cients are merely represented asymptotically by such series in certain regions of
the complex plane.

The equations (1) will be written in the matrix form as follows
(1a) Ye+1)=A(x) Y{x),
(Y(x)=(yi; (2); 4 (@)= (a:; @);
here, for j=1,2,...n, the elements y:;(x), ... ¥aj(x) in the jth column of
Y (x) form a solution
Yooy =y}, - (@) = yusl)
of the equations (1). Such a solution Y (z) of the matrix equation (1 a) will be
called a matrix solution in case | Y{x)| = o.
In a preceding paper by Birkhoff' the well known fact was pointed out,

that such a system (1) may be related to a single difference equation of the
n-th order

(2) Li(y) = ay(@)y [ +n)+a, (@) y(@+n—1)+  +au(a)y(x) =o,

(@ (x) 2 0; a.{x) = 0)

by means of a linear transformation

(3 y ()= S @),

=1

in such a wise that whenever y, (z), ... y»(x) is a solution of (1), the correspond-
ing y(x) obtained from (3) is a solution of (2), and, cdnversely, whenever y ()
is a solution of (2), then the » functions y, (z), ... yn{z) determined by the n
equations

! Formal Theory of Irregular Linear Difference Equations, these Acta, vol. 54, 1930, pp.
205—246 {cited hereafter as (I)).
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vl = 3 1),

N Y+ 1) = S ke + 1)l @),

J, =1

n

ylotn—1)=Fklw+n—1)ag;@+n—2). .. a,_ g, @y, @

s dnet
form a solution of (1). Here ay(x), ... a,(z) are known functions of the same
type as the a;j(x) while 4,(x), ... Ax(z) are known rational functions of x, ar-

bitrary except that certain special conditions are not to be satisfied. Conversely
of course an equation (2) can be related to a system (1), for instance by writing

(5) Yy (X +1) =95 (2), yol@+1) =ys(@), .. ., Yor (@ + 1) = g (),
a9 (@) yu (2 + 1) = — a, (x) Yn (@) — ay (@) Yo (@) — - — an(2)y, (x)

in which case y = y, {x) will satisfy (2). Since in {2) we have q,(x)=0, without
any loss of geheraliby it may be supposed that a,(x) = 1. In much of the text,
alorig with an equation of type (2) there will be occasion to consider the
related system

(6) Y@+ 1)=D(x) Y (z),
0,1,0,...0
D@)=| oo 1 .0 = (di3(@).

If Y (x) = (y:;(x)) is a matrix solution of (6) then
(6a) (15 (@) = (g (@ + —1))

and the functions y, (x), . . . yn(x) will constitute a fundamental set of solutions
of (2). The converse is also true.

The fundamental result of the paper referred to above is that every system
of type (1), or single equation (z), admits precisely » linearly independent formal
solutions with elements of the general type
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p1 1
(7) R s(x), Qey=pxrlogx+yxr +6x? + - + va?

1 1

s(x)=x’[(a +bxr P+ )+ (@ +ble P+ )loga +
-2
+ (@™ + bz P+ --)log m:c],

p is a positive integer, up is an integer and m is a positive integer or 0. Here
p does not need to be the same as the integer, denoted by the same letter,
occurring in connection with the coefficients of a system, or single equation.
The following definition will be introduced.

Definition 1. A formal series s(x) which is of the form (7 a) will be termed
an s-serzes.

An element ¢¢®s(x) may be thought of as representative of y(z) for in-
stance, in which case the corresponding y,(x),...¥y.(x) are given by such
s-series with the same exponential factor ¢?™®. Two series (7) which differ merely
by a periodic factor ¢227V—1z (1 an integer) are comsidered to be linearly
dependent. The series involved may converge but in general will diverge.
With an equation of order », of type (2), there will be associated » functions
Qilx)(j=1,...m).

For purposes of classification the following terminology is found to be
convenient. The difference system (1) or single equation (2) will be called nor-
mal if p=1 in all of the formal series, so that each @;(x) reduces merely to
wjz log x+y;2; otherwise it will be called anormal, since then there enter anor-
mal series with p > 1. This agreement is in accordance with that used for
linear differential equations. Moreover the system (1) or equation (2) will be
called regular or <rregular, according as there is only a single value of u; or
more than one such value. Finally any difference system (1) or equation (2) is
called singular when it is not both normal and regular.

The earlier methods of Norlund, Galbrun, Carmichael and Birkhoff were
applied primarily to the reguiar normal case’; for a system (1}, this case may

be looked upon as the 'general’ case from a certain point of view.

! Cf. N. E. Norlund, Differenzen Rechnung, Berlin (1924). See also Birkhoff’'s papers Ge-
neral Theory of Linear Difference Equations, Trans. Am. Math. Soc., vol. 12 (1911) pp. 243—284
(hereafter cited as (IT)); The Generalized Riemann Problem for Linear Differential Equations and
the Allied Problems for Linear Difference and q-Difference Equations, Proc. Am. Acad. Arts and
Sciences, vol. 49 (1913), pp. 521—568 (hereafter cited as (III)).
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Furthermore Galbrun® has treated a single difference equation of order »
with rational coefficients in the special case of the special anormal regular type

in which a pair of anormal series enter with p = 2, so that the two correspond-

ing polynomials @ (z) in V z have the respective forms
yw) + oV, yx—dVa.

In a recent important paper Adams® has shown that to some extent Birkhoff’s
methods continue to apply in the irregular normal case.

In the present paper the analytic theory of linear difference system (or
single equation) is developed so as to apply without restriction upon the form
of the formal series. The methods consist, on one hand, of suitable modifica-
tions of those of paper II; on the other hand, an important role is played by
certain new methods involving factorization and group summations. The main
result of the paper is embodied in the Fundamental Existence Theorem of sec-
tion 9. In most of the text preceding section 8 we restrict ourselves to a
quadrant I,

Sargr=m+e (lz]=e>0)

the lower boundary of which, k, is a portion of a line parallel to the axis of
reals and lying below this axis. In quadrants other than I’ results will hold
precisely analogous to those obtained with reference to I

As a matter of notation we shall write

Qij(x) = Qilx) — Q;lx).

Moreover, in addition to definition (1), it will be found convenient to set
forth the following definitions.

Definiton. 2. A branch extending to infinety and satisfying the equation
NQ':j(x)=0 will be called a B curve. If RQ';;(x) =0 there is no B’ curve.

Definition 3. Let G denote a part of I’ with the right boundary coincident
with that of T. Let the left boundary of G have a limiting direction at infinity;

! H. Galbrun, Sur cerfaines solutions exceptionnelles d'une équation linéaire aux différences
finies, Bull. Soc. Math. de France, vol. 49 (1921), pp. 206—241.

* C. R. Adams, On the Irregular Cases of the Linear Ordinary Difference Equations, Trans.
Am. Math. Soec., vol. 30 (1928), pp. 507—54.
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of this direction is coincident with that of the negative axis of reals assume this
boundary to be of the form v—=h(—uf(h>0; 1 >e>0; x=u-+V —1v). Let C
denote a cwrve in G, with a limiting dirvection at infinity. V (x) will be said to

possess an order ky along C if, as |x|— o along C,

—0 [k<k
oo | k> k.

|eV (2) —27 kV"—T:rI

A function V(x) will be said to be proper in G, or |e"®| will be said to be com-
parable with |2V =12| in @, if along every curve C, lying in G and of the above
description, V(x) has an order k, (¢n general, dependent on C). A set Q;(x)
(j=1,...%) will be said to be proper in G if all the Q;;(x) (&, 7=1, ... n) are
proper an G. The region G may reduce to a single curve C.

Definition 4. An operator L.(y) (or equation L, (y)=0), with coefficients
known in a region G and of the type, in G, which has been assumed with reference
to (1) and (2), will be termed proper in G if the equation L,(y)= o has a funda-
mental set of solutions with the asympiotic form of the formal series in each of the
several regions, separated by B’ curves, which form G. Solutions of this kind will
be sard to be proper.

Definition 5. A function p(x), of period wunity and analytic in an upper
half plane, will be called proper if

P (x) ~ pe? aV>1ux

(v, a constant; H, an integer)
tn a region whose left boundary is of the form v="h(—w)® and whose right boundary
s of the form v = hut (h >0, e > o).

Definition 6. An operator L, (y) (or equation Ln(y)=0) which is proper in
G will be called completely proper in G if, in G, proper fundamental sets of solu-

tions exist which are connected by proper periodic functions.
Definition 7. A set
Qi (@), .. Qulx)

has a point of division in G if this set can be separated into two groups
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@), ... Q@) Q@) ... Qule)
(1=Ir<n
so that for x in G
RO (x) = NRQreu(2)
A=r,... T u=1,... n—1TI).

Definition 8. Let G denote a subregion of I', the lower boundaries of G and
I' being coincident. An operator Ly(y) (or equation Ly(y) = o) with coefficients of
the same kind, in @, as in (1) and (2) will be said to be Q-factorable in G if the
set of @'s,
Q (@), ... Qulw),

belonging to Ln(y), has a point of division in G.

Definition 9. Let F be a curve extending to infinity and lying wn I. Let
By be the portion of T between F and the right boundary of I The curve I and
the region Ry will be termed proper for the set

@), ... Gnla)

of this set is proper along F and also in Rp.

§ 2. Some Properties of B’ and Proper Curves.

Let us write

(1) Qi (x) = wx log x + P;(x) =1,...72).

With a system (or equation) of order » we have associated » polynomials,
1.
Pi(z)(j=1,...n), in a7, of degree not greater than p and without constant

terms. These -polynomials occur in the exponential parts of the formal series
(7, (7a); § 1). In this connection subscripts 1 to n are attached to p, m, r, 7,
d,...v so as to differentiate between the » expomnential factors which accompany
the » formal power series (when we consider a single equation) or so as to
differentiate between the % columns of the formal matrix (when a system is
considered). Unless stated otherwise, we shall take for each of these elements a

common value of p and m; this can always be effected by taking these integers
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1
sufficiently great. It is obvious of course that if one determination of x?

and of log x is made in such a formal solution, all of other determinations of
1

¥ , namely
Ll L 1
ox?i, o®xP, ... o xl
where @ is a primitive p;th root of unity, and certain of the other determina-
tions of log x, namely

logz+2xV —1, loga+4nV —1,... logzt2m—1)zV —1,

yield other related formal solutions. Thus with one such formal solution is
associated a group of m;p; solutions which are linearly independent.

For the present we suppose a cut made along the positive axis of reals
' 1
and take the principal determination of z? and log x on the upper side of the

cut. In muech of the text we deal with ’solutions the left’ in such a cut plane.
When we 'work from the right' there is a similar procedure, with a cut made
along the negative axis of reals.

The B’ curves will be seen to be of outstanding importance (Def. 2; § 1).
Along such a curve R Q';;(x) = 0; conversely, any curve for which RQ';;(x)=o0
(¢#4j) is a B’ curve, except when u; = u; while P’;;(x) is a pure imaginary con-
stant. In fact, the equation

(2) RQuj(@)=o0
can be written more explicitly in the form

wijlog |zl + 1)+ R P i{x)=o0

1
—I [—
(P'ij (@) =7i5 + }—)‘};‘ s Py = —ty, i =i~ ¥, S5 =0 — 5j)¥

this justifies the last statement. There is no B';; curve®! when u;yu;, since for
|z] large the first member of the above equation would be arbitrarily large
while the second term would remain finite in fact approaching Ry.;. Conse-
quently it follows that for the existence of a B';; curve it is hecessary that

' The B’ curve along which RQ';.{x) = o is denoted hy B;;.

g
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wij=Ryij=o.

Obviously the B’ curves are algebraic. Thus when a B';; curve exists it is

given by the equation
Rijlx) = R[Pyj(x) — yil = o

_ _1 _ (!
(2&) 9?[—])16”90 p+"'+i’ﬂi]’x (p)]"—:O.

If there exists an anormal series (with p; > 1), the p; determinations of
1
xPi yield p; associated series solutions with the same value of u and the same

real part of y; in this case the necessary conditions for the existence of a B';;
curve are satisfied.

If p;==p;=1, there exists no B';; curve since then P’;;(z) is a pure im-
aginary constant. It is clear then that if a B’;; curve exists it satisfies an
equation

oy a5 (]

V_{nr .
(mij=Imigle "% mijo; 1=s=p—1).

The leading term in (2 b) is

s —(= _ —s
Sallol™ U5 eos (1= (27) o) (e=arg

p

consequently there will be several B';; curves with limiting directions « defined
by the equation

(2¢) cos (ﬁfj—(pgs)a)=o.

It is of interest to determine in what cases there are no B curves. From

the preceding it is clear that whe must then have for all 7 and 7 either
wij# 0 or puij=0, Ry;; %0, or else u;; =0, RNy;;=o0, P;;—y;;=o0. Suppose
then that we consider those formal series for which u; has a given value and
at the same time Ny, has a given value. For the corresponding formal solu-
tions we shall have

2—32511. Acta mathematica. 60. Imprimé le 1 septembre 1932.
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Pij(a) — yij= Pla).

Now if P;(x) has various determinations, then u; and Ny; are the same for all
‘of these, so that these determinations fall into the same group, and P';;—y;;20
in all cases. Consequently P’;(x)—;; must be identically zero, so that P;{x)=y;z.

The case in which there are no B’ curves is accordingly the general mormal
case, regular or irregular.

The B’ curves are important for the analytic theory since they limit the
scope of validity of iterations and summations.

In the cases hitherto treated with success there have been no B’ curves.

Generally speaking the B’ curves, or any other curves depending on the
Q(x)s are not to be regarded as fixed up to a translation. The region I
consists of several consecutive regions separated by B’ curves. These regions
will be denoted as

(1), (2),...0m), ...

where (1) is the region having for its lower boundary that of I" TUnless there
is only one such region, so that (1) is I', the upper boundary of (1) will be
denoted by B’; in general, the right boundary of (m) will be denoted by B™.
The number of these regions is finite, the right boundary of the last one of
them being coincident with that of I' (i.e., with the positive half of the axis of
imaginaries or a line parallel to that axis). Moreover, these regions may be
considered overlapping in the sense that any such two consecutive regions may
be considered as having a strip of, say, unit width in common. In the sections
leading up to § o it will be assumed that B curves are simple in the sense that
as we pass across such a curve precisely two of the functions N Q' (x) are inter-
changed ¢n order. How to meet the situation when the above is not the case
will be apparent from the text.
The following lemma will be now proved.

Lemma 1. Let B™ be a B';; curve with the limiting direction of the negative
axis of reals. Asswme that 4t is mot coincident with the negative axis of reals.
Then

(3) szj(x)=V:7(oijx + a;j(—x)? + )+ (bij(— x)%+ )

(6,a,...b,..., real; a, b%0; p>s;;>13;=1)

»
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and the equation of B™ will be of the form

(3 a) vzc(—u)%-{—m

(x=u+V —10; dij=p—si;+ Iij; ¢>o0).

Moreover, in the regron between a curve F) Tii>

Tij

(3 b) v=y(—w)" (y > o)

(lying, of course, below B™) and the positive axis of imaginaries (as well as further
to the right) the function Q:;{(x) is proper.
Fl7
Proof. Writing @:;j(x) in the form (3) we note that a term in z? with
p>TI;=1 actually enters, since otherwise the negative axis of reals is evidently
the only possible corresponding B’ curve; this possibility is excluded by hypo-
thesis. Hence b;j5*0. The equation of the curve will be of the form

RQyw) =% [V (=22 )

If s, < I't; the dominant term in the parenthesis is clearly the second one
of those displayed. The expression in the parenthesis would be nearly real for
|z| large. Hence there could be no B’ curve of the specified type in this case.
If s;;=I';; the parenthesis has a dominant term

_ (I/—IS”' aij , I bc’j) (—x)
r 4

and this is also impossible since b;;7 0.
There remains the case s;;>1I%; with a;; o, when the dominant term
is the first explicitly written. Here there is actually a B curve with horizontal

direction to the left. Now we may write the above equation in the form
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Along the curve, for |x| large, h(x) will be arbitrarily near to a small real
value. Furthermore by suitably ordering ¢ and j we may make a;; negative so

that A (x) will approach a positive value. Introducing a new variable Zz,

I _ 1 __Sjja[j_’_n' ,
PTG Pt P

h(x) becomes

;11)_%[1 Vo (dl(—i') DR )] (d, # o).

In the last parenthesis the power series has real cofficients. By inversion it
follows that

TP o i Tij
— izh(x)p—s”'[l +V—1d,h(x)? i + ] (d, # o).

Hence, writing & =14 +V —1¢, we have

— _PTsijth
=h(@f (1 +--), —e=dsh{x) P+

-

— 4
so that the B’ curve in the & plane will have the form

%4
52613(—1/_&)17 + "'(d3750; p>di_7‘=p——8ij+1‘ij§1).

Consequently the equation in the 2 plane will be of the form (3 a).

We shall prove now that the function @:j(x) is proper in a region RFT”
between a curve Fr,;, given by (3b), and the positive axis of imaginaries (as
well as further to the right until a line, in the first quadrant, is reached making
an arbitrarily small angle with the positive axis of reals). In other words, we

wish to show that along any particular curve, lying in RFP” ‘and having a

limiting direction at infinity, a definite finite order %, (depending on the curve)
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for e%;® as compared with 2"V —1% exists in the sense that, as |z| becomes in-
finite along this curve, we have
o (& > &)

) lim ¢/ o (k<hy).

(If we work below the real axis, 2™V —1% ig replaced by ¢ 27/ —12) It can
be easily verified that, since in ;{x) the constant w;; is zero, @:;(x) will be
proper in the whole plane excepting possibly in two arbitrarily small sectors
containing the positive and negative axes of reals, respectively. In other words,
Q:j(x) will certainly be proper in any region in which there can be no curves
having limiting direction at infinity, coinciding with that of the real axis. For
simplicity of demonstration the subscripts ¢, j in the following will be omitted.
It is sufficient to consider curves Fy lying in Rr, and given by equations of

the form
J
(5) v=h(—ul? (h>o0; p>d=1T);

here d is not necessarily an integer.
For x on Fs we shall have

(—u) 7

so that, along Fy,

§
shlx|?
. shlxr

and
E r r
p

(5 b) R (— 2)7 =|a}? cos %(7,_a):|x|;+

Using (5), (5 a), (3b) and the fact that, along Fy, |z| = —w+ --- we have
for x on Fjy

d d+s—p
RQ@) —2nkV —1a2)=(2kx—o)h(—uP + [%l(_u)T T ]

(5 ¢) +[b(wu);+--];
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here the terms displayed in the parentheses are correspondingly the leading

ones. When J =TI the leading term in the second member of (5¢) will be
r

[(2k7 — o) h+ b](— «)?; on the other hand, when ¢>1I" the leading term will be

(__
d
»

(2k7w—0)h(—u)?. In the first case the order k, will satisfy the equation

(2kyt—o)h +b=0
and in the second case it will satisfv the equation
2k, —o=o0.

This completes the proof of the lemma.!

The following lemma will be proved.

Lemma 2. [f in the region (1) + - + (m) the set

Q:{x), ... Qrix)

has no point of division then this set has a proper curve F in (m) or further to

the left (Cf. Def. 7; § 1).

Proof. This is obviously true, in any case when the limiting direction of
the upper boundary of (1) + --- -+ (m) is not that of the negative axis of reals.
Accordingly we assume that the upper boundaries of the regions (1), ... (m),

B', B, ... B™,

each have limiting directions coinciding with that of the negative axis of reals.
By hypothesis, if the set of functions @ (x) is separated into two groups

(6) Q-l (.’L'), B Qs(x), Q8+1(x)) B Qf(x)

there exists at least one member of the first group and at least one member
of the second group which interchange order in (1)+---+(m). This statement
will hold true for s=1,2,... '—1. Consider (6) with s=1. Let Qs (z) be
the member with the least subscript which interchanges order with @,(x). This
would necessitate existence, in (1)+ - + (m), of a B ! curve. Obviously there

! It is sufficiently obvious that existence of an order k, along F, insures the desired resul,
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could be no B;;(j=2,... %k — 1) curves in (1)+ - - + (m), but necessarily curves
By, By ity .o Bilov !

exist in (1)+---+(m). On applying Lemma (1) it follows then that the func-
tions Q1,21 (@), Qx4
Noting that

(), ... Qu1—1 x!{x) are proper on and above a curve F in (m).

Qij () = Qi1 (@) + Q1 (x) (1=iJ=k)

we conclude that the functions @;;(x)(1 =7, j=£k}) are all proper on and above
F. 1If there are any other @(x)s changing order with @, (x) let

Qi (@) (R, > k;)

be the member, lying nearest to €!(x), which has this property. It follows
that there is a B curve in (1)+ -+ (m), and that, in (1)+ - + (m), there
can be no curves

Biriv; =1, ... k —k —1).
Hence necessarily the following curves would exist in (1)+ - + (m)

Bitiya, ... Bii1,k and By i},
By Lemma (1) the functions

Qctsr, 1l . Qeb—1.1t and @y 1l (x)

are proper on and above a curve F in (m) (F will now stand for the upper one
of the two F-curves so far considered; we proceed in this fashion in each of
the consecutive steps). Now

Qi (x) = Qi1 (@) + Qul, s ()
(Bl +1=4, j=k})

so that the @Q:;{x)(ki + 1 =14, j=#%,) are proper on and above F. We note,
further, that

Qi (@) = Qirl+o(@®) = Qi al (@) + Qut1(x) +

Quiy @)+ Qe liol®) (Zi<k); Bl+1=)=ki; 1=0=k,— k).
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Here the terms of the last member are proper on and above F so that the
above @;j(z) have the same property. In conjunction with the preceding it
follows that the
Qijlz) (1=7, j=#,)
are proper above I
Suppose that @ri(z), Qi(x), ... @ {x)(ii=1)

2=k <k, - <k})

are all the @(x)s which change order with @, (z) in (1)+ - +(m). By the
reasoning of the kind just employed we can demonstrate that the @;;{x)(1 =1,
J=Fk,) are proper above a curve F lying in (m).

Consider (6) with s=4%}. Let Qs (x)(d,> 1) be the @(x) of the first group
which has the least subscript and changes order, in (1)+ - - + (m), with at least
one of the set of @(z)'s of the second group. Such a subscript d,(1<d,=<4%})
certainly exists. Let all the @(x)s of the second group, having this pro-
perty, be

By the reasoning already employed and using the proved fact that the

Q:5 (@) (1=14,j=k)

are proper above I, we conclude that the functions

Qi () (1=4,j=k)

are proper above a curve I’ in (m). Unless ki = I', when the desired result is
achieved, we consider (6) again, with s =k, and continue the process as speci-
fied above (we have d,>d,>d, = 1). The proof of the lemma can be completed
by induction and is seen to be applicable also when the B’ curves are not 'simple’.

Another lemma will be essential for the purposes at hand.
Lemma 3. If the set
(7) Qi (@), ... Qulx)

has no point of division in (1)+ -+ (m+1) but en (1)+ -+ + (m) there ¢s a point
of division, then this set has a proper curve F in (m).
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Proof. Suppose that the point of division in (1) + --- + (m) is between the
I'th and I' + 1-st members of the above set. Since the set {7) has no point of
division in (1)+---+ (m + 1) it follows that B™ the right boundary of (m), is
a B, curve with, say, » = I" and, necessarily, ¢ = I' + 1. In fact, if we had
r,e=1I orr, ¢= 1T+ 1 the set (7) would have a point of division (between the
I'th and I' + 1-st members) in (1) + -+ (m + 1). Now the set

(7 a) Qilx), ... Qrla)
has no point of division in (1) + - - + (m), the same being true for the set

(7 b) Qre1(z), ... Qulx).

The truth of this statement follows from the fact that B™ is B;,, (r = I';
0=T+ 1) so that a point of division, in (1) + --- + (m), of either one of the
sets (7a), (7b) would imply a corresponding point of division for the set (7) in
(1) 4+ --- + (m + 1); the latter situation, however, had been excluded by hypothesis.
Hence, by Lemma 2, the sets (7a) and (7 b) are each proper to the right of a
curve F lying in (m). In other words, we have the functions

(8) Qig(x) (1=4,j=1T)

proper to the right of F (in (m)), and the functions

(8 &) Ql,(x) (F +1=2, )= n)

also proper to the right of this curve.
Consider
(8 b) Qij(2) = @i, r+0(2)
<

IZi=In' I'+1=j=n;, 1=Z¢=n—1).

Any one of the functions (8 b) could be written in the form

Qii(@) = Qi rrol@) = @i, +() + @, o(x) + Qp, r+o()
(lr=I;o I'tex=TI+1).

Now @;.(x) is a function of (8) and @, r+.(%) is a function of (8 a); these two
functions are proper to the right of F, in (m). On the other hand @, ,(x) cor-

responds to B™, the right boundary of (m). Thus on applying, if necessary,
3—32511. Acta mathematica. 60. Imprimé le 1 septembre 1932.
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Lemma 1 we conclude that @, ,(z) is proper to the right of a curve F lying in
(m). Consequently the functions given by (8 b) have the same property.
Consider

(9) Q:i(x) (1=4, j=n).

Any particular Q;;(x) of the set (g) belongs to one of the sets (8), (8a), (8 b)';
hence the functions (g) are all proper to the right of a curve F, in (m). This
completes the proof of the lemma. By a similar, though siightly more complicated
reasoning, we show that the Lemma is true also-when B’ curves which are not
‘simple’ are admitted.

Proper curves will be seen to be important since, as will be shown later,
along paths lying in proper regions bounded by such curves, certain summations
are possible. Such curves (and regions) are also essential in demonstrating that

the periodic functions connecting certain sets of solutions are proper (Cf. Def.

5; § 1)
§ 3. Lemmas on Iteration.

Consider the quadrant I" and the consecutive regions

(1), (2),... (m), ...

which are separated by B’ curves, B!, B%, ... B™, ... and constitute I" (see § 2).
On the other hand, there is a quadrant 2 of a similar kind lying below the
negative axis of reals and baving for its upper boundary, (k'), a portion of a
line v=1c¢>o0. The consecutive regions of Q separated by B’ curves will be
denoted by

here [1] will be the region having (h') for its upper boundary. In some of the
following sections we propose to envisage a process of iteration from the left
(or equally from the right of course). Such a process will be first applied to
region of type (1) or of type (1) + [2].

As seen from § 2 the upper boundary of (1) extends indefinitely upwards
while the lower boundary of [1] will extend indefinitely downwards. The neg-
ative axis of reals may be a B’ curve or it may not. In the latter case a region
of type (1) + [1] is suitable for iteration. Regions like (1) or (1) + [2] will be

' @y(x) and jS(w) = — @;;{x) are both considered as belonging to the same set.
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said to be of type K. More generally, K will denote a region either having the

negative axis of reals for a part of its boundary or containing this axis; such a

region will be allowed to extend to the right but always excepting a neighbour-

hood of the positive axis' bounded, say, by curves of the form v= * hu‘(h, e>0).
The following lemma will be proved.

Lemma 4. Suppose that tn a region K (that s, a region of type K) we have
(1) R () = Rej) U=2,...n)
the set Q;(x) (j=1,...%) being associated with a difference system (1) or (1 a); (§ 1).
Let the matriz of formal solutions of this system be denoted by
(ra) S() = (€% 515()

(here the series sij(x) are s-series (Def. 1; § 1)) and let T{(x) be a matriz,
(1b) T(a) = (%" ty(a)),

in which t;(x)(d, j=1,...n) denotes s;j(x) with the power series terminated after k
terms (k being sufficiently great). Form the matrix

(2) Yr(x) = (yj; (@) = Alx — 1) . .. Az — ) T(x — 7).
The “following holds true. For x in K the limits

(2 a) lim y7,(z) = y,, (%) G=r1,...0),
exist, are wndependent of k, are analytic and are the elements of a solution of the
system Y(x + 1)= A(x) Y(x). Moreover, in K,

(3) yi1(x) ~ e9@s; () (e=1,...n)2

Proof. The matrix Y”(x) can be expressed as follows

W ¥rla) = T) Yrla) (¥7(a) = (7o),
Yr(x) = ﬁ T e—i+ 1) Alx —2) T(x— 7).

=1

! That is, when working from the left.
* Relations like (3) are to be construed as denoting asymptotic relationship with respect to
the power series factors,
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Now define a matrix B(x) = (b;;(x)) by the relation
B(z)=T(x + 1)T'(x).
On the other hand, we have formally
Aw) = (aila)) = Sl -+ 1)57(x);

here the a;(x) are in K of the form specified in the beginning of § 1. By a

direct computation' we show that

(s) A(x) — Bla) = —- H(z) (H(x) = (hij{x))

where |hi;(x)| =< h, for z in K, while klzﬁ —d, (d,=0; k> » as k— o).
Now | A(z)]| = o so that | B(z)]| = o; thus, writing

(5 a) Afz) = B)[I + N(z)]
(I = (d;;) = identity matrix),
I

Na)=_5 B~'(z)H(x) (B~ ()= (bi; ().

The b;j(x), if not bounded (for || > p > o), are infinite at = = to finite order.
Hence

(5 b) N@) =, Clz) (Clx) = (cij(@))

(k2 :g —dy; dy=0; by < as k— 00); here, for x in K, | ¢;j{x)] = ¢. Consider
now the product

T Y + NA()T(x) = T (x) B (x) A (x) ()

— 71y (’1 T (J(x)) Tle) = I+ L, 13(0) Ce) 7(a).

Writing
T-1 (.%) = ((5_Qi(x) Z{j (1))
(@) Ola) T(w) = (%" Iy5(w))

! Compare with the analogous procedure in (II).
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where

Z tzll 0/112 t/.g_]()

Ay, A =1

The I3j(x), if not bounded, are infinite at x = c (in K) to finite order. Con-
sequently

(6) T + AW T@) =1+ H@),
Hiz) = (Hyy(o)) = (697 i)

(|hij@)| =k in K; b=%~d; d=o0; b— » as k— o)},

By (4) and (6)

(7) Yr(a) = (I + (?iiﬁ H{z — 1)) . (I + @77_"—'7‘)7 Hx — 7‘))

_ kl)H(x_kQ)
”Z 2 s

Hlx—Fk)... Hx — k)

+k<2<k (@ — k). . (2 — kP +
so that
k)
(7a)  pialw)=din + 249;,; o
r . .
+ ) <Z(k(x - kl)b .. (x —/cs)bl 121 lei)‘,(x — ,7('1) L. HZ,,-._II(Z' —ke) 4
' o 1-Ag 17
=8 + 2 (Qite—m P (w — k) .
* (90‘— )
D R —
kl<...<ks(x—k1) ...(x—-ks)
n le k
Z [ e s—-l hlh(x — k )hhlz( kz) e h}‘s—ll(x — ks) 4

Nodg =1
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Take k sufficiently great so that b > 2; then the series (7 a) will converge
uniformly to a function analytic in K (for 7= 1,...#) provided that the func-

LR ¢ g . . oy
tions G, 1:_1 () have a non-positive or limited positive real part. Now such

a function is expressible as follows

k.. .k

G, @) = Quilz — &) + @il — &) + -
+ Qi i@ — k1) + Qi (x— k)
= Quila) + (Qulz) — Qulz — k) + (Qualz — &) — Quilz — &)
(@, 1(e — ksmr) — @iy, 1z — &)

a—k,

_le szl dx +fQ/ 1( d%‘ + - fQ)s 11

xr—k r—ky x—kg

If Ji, = Jz, R, < Rz, then with path of integration along the straight
line goining x, and z we have

S?IQ'(x)dxzfﬂiQ'(x)(lxéo

inasmuch as R (x) =N 1(x) =0. The latter inequality holds, in K, for
=1,...n Hence, in K,

(71) RG, Y (1) = Rul).

Using the fact that |h;(x)| =<k (in K) we conclude that the limits

lim j7, (z) = 7,,(%)

r—x

exist. In fact

_ . \* ERQll 72}11 (nh)s
B P R T e

R QTS _nh ~nh N N ]
[<(’+Iw~ll”)(l+lw—zl") ) ]
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Moreover, using formulas (12), (13) of (IT; p. 248), we have, for z in K,

Q“()
_ m;\x
gir(x) = din +7xb_ i)

(|mi{x)] = m; w =< a; a, any fixed number),
and
Q) 1
_ e 1t m;
Firlx) = 6ix + T_f(—)

(|mi(@)| =m'; Jx=v; u=a; |v|=d)

where ¢ is a sufficiently great positive number. Using (4) we get, for z in K,

?/1'1( ) = lim yzl Z eQA ].lIIl J/l( ))
i=1
n Q7 (@)
== Z 2 t“(x) (6,11 + e_xb__”f’-(ﬁ)) , (v = a);
i=1
Qu(x) 1
Q! e mj (x)
yi1lx Ze e t; (6;,14— s ‘): (= a).
Thus we have for z in K and for i=1,...n
(8) Yir{x) = el (tzl( ) + ’73,@)
[niz) | =95 « =< a)
i (¢
yilx) = ez (tzl( ) + TZj_b(_l))

Noting that if the functions #:(z), %/ (x) are not bounded they are infinite
to finite order at infinity (in the two regions, respectively), we have the two

formulas, valid in K,
(8 a) yir(x) = ¢4 (til(x) + Gicx))

(o) =0; u=a),

(8 b) i1 () = e@@ (t” ( Boi{x )
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In the above cz% —d', =0 and ¢- % as k— % and § is the maximum

order to which the (), 7i(z) may be infinite at infinity. Now, as specified
previously, the region K is not allowed to contain a neighbourhood of the posi-

tive axis of reals bounded by curves of the form
v= 1 hu{h, e > 0).

Consequently for x in K, in a right half plane,

T W e

?i may become infinite along a path to infinity but not faster than |x|—*

Thus

where 1 —e<<1. It follows then that a relation of the form (8a) will hold
throughout K with the constant ¢ possibly smaller near the right boundary of
K. However, for the whole region K, the relation (8 a) will hold with ¢ — «
as k— . That is, by taking h sufficiently great ¢ can be made arbitrarily
great.

The y;1(x) are the constituent elements of a solution of the system Y (x + 1) =
= A(z) Y(x). Moreover, the limits are independent of k. This can be demonstrated
by the reasoning of the kind employed for an analogous purpose in (II). This
completes the proof of the lemma.

The above lemma is concerning determinant limits of first order. We shall
now consider determinant limits of higher order. Determinant limits of various
orders have been previously used by Birkhoff in the paper (II). In this connec-
tion the following facts, needed for the purposes at hand, will be stated. With
the system (1a) (§ 1) there is associated a difference system of order C"(k=
2,...0),

(o) Yilz + 1) = dilz) Yil)
where
(9a) Aplx) = (a5 5.5 ()

(’il,...ix~, jl,.‘.jz\-zl,...ﬁ; 1 <ty < - < 1 j1<j2< <]L)

The maultiple subscripts in the above and in what follows are to be construed

in the sense made apparent by the relationship
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hiljl hiljz R hi;.f};
" hi‘.’.jl hfz]'z BRI hizj];
(IO) hil--'ik;jl"'jk: ’

while in the matrix (of order (%)
(10a) (hiy. iy 4o )

the set of subscripts (¢; ...%) refers to a row and the set of subscripts (j,...Ji)

refers to a column of the matrix. The difference system (g) possesses a formal

matrix solution

(11) Si(x) = (eQJ‘JTH- : -+ij(’)sil,_,z~,k; PAC)E

The formal series si,...s;;,...5, (@) are s-series (Def. 1; § 1) and linearly independent.
If (yi(x)) is a matrix solution of ¥Y{(x + 1)= A(x)Y(z) then

Yile) = (Ws,.. 505 5.5 (@)

will constitute a matrix solution of (g).

With the above in view we shall state the following lemma.

Lemma 5. Suppose that in a region K the coefficients of a system (1 a) (§ 1)
are known. Assume, moreover, that in K, for all j,, ...5r =n with j; < - <7,

(12) RQ@+ -+ Gl = RO + - + ¢l

The functions Q(z), ... hix) are to be considered as associated with the first,
second, ... and k-th columns of S(z), respectively. Form the determinants

Y. o 1)

by means of the elements y,(x) of the matrix Y"(x), defined by (2).

The following is true. For x in K the determinant limits

(12 a) limy;‘,.i.z‘k;1...:;(95):?/7',“2'

oo £ 1
(¢, ... k=1,...7)

4—32511. Acta mathematica. 60. Imprimé/ le 1 septembre 1932.
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exist, are independent of the number of terms retained in the power series factors
of the t;;(x) and they are the constituent elements of a solution of the system Yi(x + 1)=
= Ar(x) Yi(x) ((9), (9a)). Moreover, in K,

(12 b} Yii i L @) ~ et -+Q/\-(.'r)81‘,>m{k; )
(,,...0=1,...0).

Proof. By Lemma 4 this lemma is true for = 1. When £ =2, as can
be seen from (II; pp. 253 —254), there is the following situation. With reference
to the system (9), formed for % = 2, consider the product

(13) Yila) = (y5,,; (@) = dy(x — 1) ... dslx — 1) Tyl — 1)
= (¥} 1. ;..(®) (G, 7=1,...C54, . . . Je=1,~..7)

where T,(x) is S;(x) with the power series factors terminated after a sufficiently
great number of terms. Let the columns be so ordered that the function @(x)
of the first column of S,(z) is @,(x) + Qy(x). With (12) assumed in K for k& = 2,
by Lemma 4 it would follow that the limits of the elements in the first column
of (13) exists in K. Moreover, these limits will satisfy all other properties spe-
cified, in the lemma, for the determinant limits (of order two). Now by the
reasoning precisely of the kind employed in (II; p. 254) it follows that the
elements in the first column! of Y’(x)(r =1, 2, ...) are correspondingly identical
with the determinants

) 7 (@), g5, (@)
Yi i1 o) = _ :
7.(@), ¥y, (@)
The cases k=3, ...7n can be treated in a similar way.

We shall consider now a region R bounded on the left by a curve with a
limiting direction at infinity, and extending indefinitely upwards (or downwards)
while to the right such a region will be allowed to extend at most up to a

curve of the form

v= t hut (h,€>0)

(In general both boundaries of R will be B’ curves). Iterations for regions of

this type will be specified by the following lemma.

! The column specitied by the pair of subseripts (7,j,) = I 2..
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Lemma 6. Let V denote a strip of wnit width situated immediately to the
right of the left boundary of R {a region specified above). Suppose that we know
in V a set of s(n=s=1) solutions of the system (1a) (§ 1),

yij (@) (F=1,...m; j=1,...8)
which satisfy in V the asymptotic relations

Q)

9‘:‘3‘(%‘) ~ e é‘:::«'(x)

and are analytic tn V. Moreover, assume that in R
(14) R (x) = N () (j=2...n

and- that in the first column of S(x) (and of T(x)) we have Q(xr)= @,(z).

Letting T'(x) denote T(x), with the first s columns correspondingly replaced by
the yij(x) t=1,...n; j=1,...5), and defineng the matriz Y *(x) by the product
(15) Yia) =) = Alw —1). . Adlw —r) T'(w - 1)

(x—1ry in V; Alx) known in R)
the following can be asserted.

The y’l;:(:r) (t=1,...m, j=1,...8) are s solutions in R, and constitute ana-
lytic extensions to R of the s solutions originally assumed as known en V. The
asymptotic form of the elements of the first one of these solutions well be

(152) (@) = ya (@) ~ €4 P s (@)
(z=1,...m; x in R).

Proof. It is observed that

Y% (x) = T'(x) Y"*(x)
where

Y () = [i—[ T Yo —i+ 1)A(x —~ ) Tlx — z)J :
(T —re + 1) A — 1) THw — 72)).

Here the expression for Y'*(z) differs from that given before for Y'(x) in the
last factor, and that just in the power series factors, by arbitrarily great powers of
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1
« P, This is due to the fact that, as a consequence of the conditions of the
lemma,

T'x) ~ S(x).

Moreover, for every fixed x we have 7, finite, so that there is no necessity for
passing to the limit. Making direct use of the matrix equation (1a) (§ 1) it is
immediately obvious that the first s columns of Y '*(x) are analytic extensions
of the solutions whose asymptotic forms have been assumed in V. Using (14)
and applying the reasoning of the kind emploved in proving Lemma 4 we derive
the relations (15 a) thereby establishing the lemma.

For determinant limits we have, by application of Lemma 6, the following
result.

Lemma 7. Let R and V have the meaning indicated tn Lemma 6. Suppose
that we know in V a set of s (C7 = s = 1) solutions of the system (9),
(16) Y. igs g5 (®)
(. cte=1,...m; s sets (jy...J)
which satisfy in V the asymplotic relations

) - erl(l:)+ cee +ij(‘l')

Yio...igs .. ~jk(x Sy g ».i1\~(x)

and are analytic in V. Assume that in R
(16 a) RIQ (@) + - + @i(z)] = R (0)+ - + Qy()]
o< <je=1,...7)
and that in the first column of Si(x) (11) (and of Ti(x)) we have Q(x)= @ (x) +
Q)
Let Ti(x) denote Ti(x), with the first s columns (corresponding to the s sets

(g1 ...g8) in (16)) replaced by the elements of (16), respectively. Define the matrix
Y. “(x) by the product

(17) Yia) = Aple — 1) ... Aule — ) Tz — 1)
- (yif,L ie (=)

(x—1y am V; A{x) known in R).
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The functions ’/ZIsz jlmjk(x) (2, .. .ix==1,...m; the s sets (j, ... 1) of (16))

well be constituent elements of s solutions, in R, of the system (9) and will represent
analytic extensions to R of solutions (16) originally assumed as known in V. The

elements of the first one of these solutions will have in R the asymptotic form

(17 ) ’J;fzk 1..4!c(x):?/il...ik; y @)

)+ +Qnix
- te(x) L(l)si,...z'k; 11‘@)

(<< <d=1,...n).

Theorems entirely analogous to those of this section may be formulated
when we work from the right instead of from the left. In this case a cut is
made along the negative axis of reals to fix the determination of S(x) and we
consider the symbolic product

V(@)= A (@A e + 1) ... A= + r— 1) Tla + 1)

instead of Y'(x). In this case we exclude the neighborhood of the negative

axis of reals bounded by curves of the form

v= 1t h{—u) (h, e > 0).

8§ 4. A Lemma on Summation.

We shall now establish a modification of the method of contour summation
used in (TI).

Let R denote a region the left boundary of which is either & (the lower
boundary of I" (§ 1)) or a curve, extending indefinitely upwards, with a limiting
direction at infinity. Let the right boundary of R be a curve, extending inde-
finitely upwards, with a limiting direction at infinity. This latter boundary, if
with the limiting direction of the axis of reals will be assumed to be a curve
of the form v=hu® (h, e >o0). The left boundary of R, if extending upwards
and with its limiting direction coincident with that of the negative axis, will
be of the form v=~h(—wu)’+ - (h>0; 1 >e>0).

The following lemma will be proved.
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Lemma 8. Assume that the function

{1) H{x) = e }h(x)

1
is analytic tn R while Q(x) =pxlog x + yx+ - +va? 4s proper on and in the
nerghborhood of the right boundary of R and

(1 a) h(x) ~ H(x) (¢n R)
where H(x) is a formal s-series (Def. 1; § 1). Furthermore, suppose that

(1b) RQY'x)<o (zn R).
The equation
(2) y(z + 1) — yla) = 2 Wh(x)

possesses a solution y(x), analytic in a region R’ interior to R by a distance (> o),
Jor which an asymptotic relation,

(2a) yla) ~ e¢Ps(),
where s{x) is a formal s-series, vs maintained in the above region.
Proof. The formal equation
Y@ + 1) — y(z) = e Hz)

is formally satisfied by y(x)=e?™@s(x) where s(z) is an s-series. This follows
from a Lemma proved by Birkhoff in (I; p. 218). Let ¢(z) denote s(z) with the
power series factors terminated after m terms (with m sufficiently great). Sub-
stitute in (2)

(3) y(x) = eQ("’(t(x) + %(ic—)) (k = %)

The new variable z(z} will satisfy the equation
(3 a) qlx + I)Z(aﬁ + I) — q(x)g(x) = L

, eQ(Q) ,
(q(x):xk; KF—x as k—>°°)-
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Here

—9—65( ) QW h(x) — 462 t(x)

and B(x) is analytic and bounded' (]A(z)| < 8) in B. To demonstrate the truth

of the lemma we need first to show that (3a) has a solution z(z) analytic in
R’ and, if not bounded in R’, infinite at z =  to a finite order % which is

such that %k — & approaches infinity with .
The equation (3a) with the second member replaced by zero is satisfied by

20(x) = ake—QW),

Hence
(3b) 2(@) = atein) S % ,
(59 Soto - o=y,

t=a+1 t=x

will be a solution of (3 a) provided the operation S is suitably specified.
t=x

With z in R’ let L denote a contour lying interior to R and defined as
follows. When R Q(x)=o0 along the negative axis of reals while the lower
boundary of R is &k (the lower boundary of I') then L is to consist of & and of
a path L* near the right boundary of R. In all other cases L is to consist of
a path near the right boundary of R. With x not nearly congruent to L (that
is, if « represents the point on L for which Jx' = Jx we have R(r — «’) not
an integer) let x + k. (k: = 0) be the last one of the sequence of points z, z+1,
... lying to the left of L. Let /. denote a loop which contains the points. x,
z+ 1, ..., ©+ ky and passes between x — 1 and x and between x + £, and L.
Now, by hypothesis, @(x) is proper along L (and also at least within a limited
distance from L). Hence a least integer 1 can be found so that

(4) 02(#) = 27dv + RQ(x) > + o (Jz =)

as |z| > o upwards from the axis of reals along L. If u > 0, L is near the

' B{x) could be considered to be a function asymptotic in B to a formal s-series whose
1
power series factors begin with low powers of x P.
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imaginary axis of reals.® This integer i will be unchanged if L is shifted a
finite distance in the direction of the axis of reals.
Write, for 2 in R’,

(s) Sﬁ“)(ﬁ _ fe-znv’—iz(x—nwu)ﬁ(t) dt

i (1 — 27V = (r—0) 4

t=x

“x

Here 1 will be supposed to have the value specified above. The path I, is to
consist of L, described upwards (if L = h + L*, then h is described from infinity
to the meighborhood of the origin and L* is described upwards), and of /., de-
scribed in the clockwise direction. When z approaches a position of congruency
to L we shift I through a suitable distance. The integral (5) will converge
since ¢;—1(x) remains bounded along L; moreover, it will represent a sum formula
in the sense of (3 ¢), and the function of » given by the second member of (5)
will be analytic in R’. It remains to show that this function is such that z(z),
as defined by (3 b), has the desired properties.

Let ' be the point on L for which I, == I;. Denote the portion of L up
to that point by L, and from that point up by L,. If L=~h + L* let L}
denote the part of L* up to 2’ and let L} denote the part of L* up from &’
For t on L and for z in R’ we have

(5 a) |1 — el —1e—0] > d > 0.

The inequality

(6) RQ (@) = NQ ()
Sz=8=z; Rr=Rx,;; x, z, in R)

will be also needed. It is seen to hold, in virtue of (1 b), since we have
NQ = —~f§RQ'(x)dx.
T

With these preliminaries in view consider the integral along /.,

! This is due to the fact that along such a path and, in general, along a path extending
upwards with its limiting direction coinciding with that of the positive axis of imaginaries we
have R{(x log a) behaving as a constant multiple of |a] {i. e. o).
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N PR B (@ + k)t

(7) f o Q@B (x) QBN B(x + 1) QD B (x + Fy) .
lﬂ)

In virtue of (6), for  in R,

(7 a) U

= MW 1 1 NI S
"’(lxr'*lxﬂlk'* +|x+kx|k')

Now, substituting 2= — z + 1 in an inequality of Birkhoff',
- 1 7
D] [P It g (Re<o),
2= = 212
we find that

> I 1

Z|x+z'|’°'<2|_at—1|’°'—1 (Ra>1)

i=0

so that, if R extends to the right of the imaginary axis,

1 1 h,
7Y [oF ¥ R S e

(Rz = wu > o; h, independent of %).

Let z(lz| > 0 > 0; u=o0) and x+ k, be above curves
(8) v="h,(—u) (hy>0; 1>¢,>0),
{8.a) v=hy u* (hy>>0; 1>>e,>0).

Substituting z=—2xz+1 in the inequality (13) of (II),

o I 2 1 7T
S| R (TR SRS
=1
it is found that
I I I, - &
o R TerhF S ws =0 e

! See formula 12 in (II).

5-—32611. Acta mathematica. 60. Imprimé le 2 septembre 1932.
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Let @ (@ <o) be the value of u for the point on the curve (8) whose ordinate
is Jx=v. Then, from (8b), it follows that

h, b, (k)

O i |€n(1:’;T) |

Now for a suitable /, independent of x (u = o),
la| = )],
whenever = is above the curves (8), (8 a). Whence

1 N 1 hz (k’)
e ¥ T e e T et

(u=0; x above (8)).

Thus the inequality

(9) B SRR SR
’ El |z + k| )

holds, whenever z(|z|>0>0) lies above curves of form (8), (8a). Here k, can
be made arbitrarily great by taking % sufficiently great and %' is independent
of . Hence for z in %', above curves of type (8), (8 a), we have

'
(10 < BREET
Ed b
l:c

Whenever B contains the negative axis of reals the inequality (10} will continue
to hold in the whole region R’ provided that along the negative axis of reals,
for |z| sufficiently great, RN Q(x)~0. In fact, from (7) it follows that

o 1 R (@t 1)—Q(z)
[z el =
ll‘

AQ+Ey) —Q(a)
(+ k)t ) ’

(10 a)

+

on the other hand, we have
(10b) Q) — Q)

(o'

=S5z} Rex<Rz'; « z in R)
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diminishing very rapidly as z'— z increases. So it is clear that the sum of
terms in (10a), involving factors of the form (10b), is negligible to the extent
that {10) would hold throughout R’

The only case when the inequality (10) is not asserted is when R contains
the negative axis of reals, while x is in R’ below a curve of the form (8) and
¢*?® remains bounded as x moves to the left along a line parallel to the nega-
tive axis. In the sequel it will be seen that it is precisely in this case that it
is not necessary to consider the integral

/

ll'/
[In particular, see Case II below].

There are two cases to be considered.

Case L. Along the negative axis of reals, for | x| sufficiently great, R @ (x)+o.

In this case along any line in R, parallel to the axis of reals, R Q(x) in-
creases not slower than a positive fractional power of ||, as x moves along
such a line to the left. This is an immediate consequence of the nature of the
function @(z) and of the inequality (1 b) (which insures (6)).

Now, taking into consideration (5a) and the integrand in (s),

[ | BlemV T fentlad]
d £
. g

Ly

By (4) the integrand in the above increases exponentially along L, and attains
its maximum at 2, the upper end point of L,. The integral will be of the order
of magnitude of the value of this integrand at 2. Thus

L

(ky=F —dy; dy=0; ky— © as k' — »; Jz=Jz).

x |

’

x

B, Q) g Q@ (
- _

NI ET

efﬂ(Q(ﬂv')—Q(w)))

In the case at hand, the function

~ |k
g(x) = ixi * Q) — Q)

approaches zero very rapidly as x moves to the left from x" along a line through
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«’ parallel to the axis of reals. When x remains in a sufficiently close neigh-
borhood of x' and does not part from 2’ too rapidly as v (= Jx = Jz’) increase,
the fact can be used that R(Q(2) — Q(z)) = o (Nx = Rz'); we shall then have
¢ (x) either bounded or infinite at infinity to an order k, such that &, — k; — oo
as k;— . More precisely, this will be the case for # in any region bounded
on the left by a curve of the form

v="h(~u)¥ (h e>o0)

where e can be taken arbitrarily small. If there is occasion to consider a region

below such a curve, for z in such a region (with e sufficiently small) we shall
have ?@&)—Q@) approaching zero exponentially (i.e., as ¢ 71*I' (I, y > 0)) as
|z] — > along any path to infinity in that region. It is clear then that

B, He
(II) |f| |x|k‘
Ly

(k,— o as k' — «; x in R).

The integral along L, will be written in the form

e2nV 1(i—1) (z—) + Q(#) ‘3( )dt
fl If —21]/—1(3:-—/) . I)t’"’ |
_ BlemV=1mns| i) at)
d | ]
L L,

As ¢ moves along L, from =’ upwards we have ¢,—; (t) bounded. Therefore the maxi-

For z in R’

mum of the integrand, last written, occurs at 2’. The reasoning of the type used
in deriving (11} will show that

g erete
(11 a) |f|< G
Ly

(ky— o as k' — «; z in R’)
so that

Q(x)
(12) lfl 5 emlu

(k" > « as k' — »; z in R).
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Case II. Along the negative axis of reals RQ(x) = o.
If the left boundary of E is not h this boundary will be of the form

v=h(—u)l+ - (h, e>0).

An inequality like (12) will continue to hold in R’. This can be shown by the
reasoning used to derive (12). If the lower boundary of R is h the contour L

will consist of
L=h+L¥=h+ L' + L.

The contour L, in (5), will then be deformed into a loop, described in the
counter clockwise direction and extending to infinity, containing the points 2 — 1,
2 —2, ... and not containing the points z, « + 1, ... The formula (5) will
yield the following

(13)

Y Py A P S T

Sew) B(t) Ei—l)ﬂ(xﬂ_ 1) Q=2 gz — 2)

t=x

inasmuch as convergence may be asserted.

Now
(13 a) RQ (@)= n|x|log|x]|cosa-t (y u—y" v
- s
+ |7llx|P cos (?7 + = a) 4
D
=y +V=1y" g=|yleV=17,  su=|a|d =i p>s=1)

Necessarily 1 =y = o0 and, whenever a coefficient 7 in ¢(x) is not zero,

_ s
13b cos( —1—7t)=o.
(13 b) nt,

8

Hence Q(v)=V —1y"z + n:zclj + - (p>s=1) while

(13¢) swwz—y"vilnllxﬁsin;(n—a)+---

(p>sz=1);
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here we may have || =o0. This relation is derived by noting that, in virtue
of (13 b),

a) = 4 gin f(” — a).

cos (17 + P

S w

It NQx)= — 7" v then

(13d) N[{Qx—1)— Q=0 (=1, 2,..).
If in (13¢) |5| # o, we define a curve Fj in I', by an equation

(14) r:h(-—u)”(h>o;H:1—£).
For = in R below Fj; we have

%—(l:tg_l"q :_£,+,..

“u Ta

and

sin ~ (7w — ¢) = g (—7—) +

p\—u
so that
EPAY¢
(14 a) sin ° (7 — a)l = hs(— + -
p p (—u

Thus, below Fy,

> i ! hs|a | je|" tnjhs
(14 b) zlP sin S(n—a) = Lulhslz ] izl +o= A 4

,7?” l ])( » 11,,
since |z|= —u + .
Similarly, if  is in B below Fy,
(14 ¢) x—igsinfn—a,-ﬁl—ﬁw-k--‘
[nlle = il sin *r—a) = 7]

w—i=|aw—-ile¥ta i=1,2 .. ).
Noting that

RIQ—i)— Q(x)]:[ilnllx—if;sin'—(n—ai) -

we have by (14b) and (14¢)
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(15) sn[mx—z')w(xnéz'”]'o”%w <4

(¢ independent of z, Z; z in R below Fy; i =1, 2,...).

Hence, whether RQ(x) = — y” v or |g| in (13 ¢) is not zero, the inequalities
(13) are seen to hold at least for x in- R below Fy. Thus, from (13) it follows

that
N

Further, by formula (12) of (L),

eQ (t 7T eq emQ(l)
(15 a) |g I 5 .

< Bertet Z |x—z|’"
(z in R, below FH).

oy
(z in R, below Fuy).

If R extends above Fy the expressioﬁ (13) does not appear useful for pur-
poses of demonstration, whenever z is above F;. In this case we use the re-

The first of the last three integrals satisfies inequality (10). As to the second

lation

one, we have the integrand {as displayed in the second member of (5)) bounded
along h (while x has a fixed value in R’ (on or above Fy)). We have

IegnV—1n| Idtl
Itl"'

Here ¢;(t) is bounded along % and increasing exponentially along the remaining

part of L, ie., along L}. Hence

- By e _ By Se (
RGNS
L

ks

ks
Ll et w)—(z(x)))

X

< By BRQﬂl i

N ETE

(ks — o, as k' - o; Jz=Ja'=1).
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With x restricted as stated, we have behaving in the most unfavorable

way when z is on Fy; we have then

(16) = v h(— w)

xl

Thus, for 2 in R’ on and to the right of Fy,

* Q{z)
|j <ﬂ4|ej|"«=_ (kg =kyH - © as k' — ).

A similar inequality is obtained for f ., valid in the same region. In proving

this inequality we again make use of (16). Hence

eJi Q(I
1=

(k, > o0 as ¥ — ©; z in R’ on and above Fy).

But in virtue of (15a) an inequality like (17) is seen to hold throughout R’.
This completes the examination of Case IL

The result just mentioned, together with (10) and (12), enables us to assert
that an inequality like (17) holds, for x in R’, in any case. It follows therefore
that z(z), as given by (3 b), satisfies in R’ an inequality

|z(@)] < 8. = (k=% —k)).

Now k — k=%, and approaches infinity as % approaches infinity (see (3 a)). In
(3) attach subscript to y(x), t(x), z(x). It is clear then that (2) holds for y(x)
to m (k) termes (m(k)— o as k— o).

It remains to show that (yolx) — yu(z)) e ¢ (=g, (2); 0>k)~0 in R. If h
is part of L, gsx(x)=0; otherwise, |go1(@)| =< hore 4 (in R’). Application of (4)

and (6) completes the proof.

§ 5. Construction of Proper Solutions to the Right of a Proper Curve.

The following theorem will be proved.
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Theorem I. Assume that the coefficients of an equation L.(y) =0 (2; § 1)
are known (Cf. § 1) in a subregion of I' (§ 1),

G={1)+(2)+-+ )+ + (1.
Let the corresponding functions Q(x) be
(1) Qi (), . .. @nl2).

Suppose that F, a proper curve (Def. o; § 1) for the set (1), 2s the left boundary
of (m) (2 =m = 1n) or lies to the left of it. Assume that in a strip V, of wnit width
and with ts left boundary coincident with the left boundary of (m), there exists a
proper fundamental set of solutions (Def. 4; § 1) satisfying the equation Ly (y)=o.
It will necessarily follow that L.(y) is completely proper (Def. 6; § 1) in (m)+ --- +(n).
If F, a proper curve for the set (1), exists in the region (1) then the above
assumption concerning existence of solutions wn V may be omitted and it will ne-

cessarily follow that L,{y) is completely proper in (m) + - + () (m = 1),

Proof. As stated previously the regions (1), (2), ... () are separated by B’

curves,
(2) B B? ... B,
In any region (s) of this set of regions the @, (z) (j =1, ... n) maintain a certain

ordering. We shall write
(3) Ny () 2 RsQy (@) = = R’ (2). (o i (s)).

In connection with this ordering the subscript s will be attached, from the left,
to some other symbols; thus, ¢S (x) will denote the formal matrix of a difference
system corresponding to ILn.(y)=o0, with @Q;(x) entering in the j-th column.
The set [@, (%), s@:(z), ... s@nlx)] is merely a permutation of the set [@, (),
Qs (@), ... Qulw)].

It is sufficient to prove the theorem for the system Y (x + 1)= D(z) Y (x),
related to the given equation (2; § 1) and given by (6; § 1). This follows from
the relationship (6a; § 1) between solutions of the system and the single equa-
tion. It is clear that the d;j(x) are known and of the same character as the

aj(x) (j=1,...n), the coefficients of L,(y). The process of construction of solu-
6—32511. Acta mathematica. 60. Imprimé le 2 septembre 1932.
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tions, about to be given, is of course equally applicable to any system Y (z+ 1)=
Z() Y(x)(1a; § 1)

By iteration (3) we construct, in (m), determinant limits of orders 1,2, ... »
corresponding to the »Q(x)'s

@1 (@), nQy (@) + mQe(®), ..., nQ (&) + - + m@ulx),

respectively. When m = 1 this process will be carried on by »iteration from the
infinite left» (Lemmas 4 and 5; § 3} When m > 1 the process will be earried
on by iteration from the strip V, specified in the theorem. In the latter case
use will be made of the existence of solutions in V, as stated in the theorem;
in this connection Lemmas 6 and 7 (§ 3) are to be used. Generally speaking,
application of Lemmas 4, 5, 6 and 7 is possible in virtue of the inequalities (3)
being valid in (m) (for s = m).

In agreement with the notation of § 3 let these determinant limits be
denoted, for k=1, ... 7%, by

(4) m?/il...ik;l...k(-z') (i1<---<z'k;i1,...z'k=1,...n).

These functions are analytic in (m) and satisfy the asymptotic relations

ele (x) + mQ@) + . 4+ pQp ()

(4&) myil...ik;l...k(x)"' msi,...ik;l...k(w)

(i< <@ 4, ...0=1,.. .0 xin (m).

For k=1 the functions (4) are elements of a solution of the system Y{z+1)=
D(x) Y (x); write

(4 b) mzi1 () = wyi: 1 (@) (z=1,...mn).

This solution is proper in (m). Assume that, for & — 1 = 1, there exist £ — 1
solutions,

(4 ¢) m21j () (t=1,...m j=1,...k—1).
which are analytic in (m), satisfy the relations

(4d) mZil...is;l.A.s(x)zm?/i,,..z's;1.,.s(x)

(6, < <ds=1,...m; s=1,.. . k—1; 2 in (m))

and are such that, in (m)
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(4€) w2ij() ~ enY msij (@) (t=1,...m;5=1,... k—1).

Existence of a matrix of solutions, proper in (m), will be demonstrated by
induction if we show that there exists a solution mz:x(x) (=1, ... %) analytic
in (m) and such that (4 d), (4 e) will hold for s=F%, j=%. Analogous to a similar
construction, in II, such a solution can be found in terms of certain determinant
limits and the solutions (4¢). For this purpose use will be made of the following
formulas, found in (II). (The notation used in this paper is different from that
of (IT)).

We have
(5) mzllc(x):imzlj(x)Skaj(t)’
(5 a) WV ()= - ™ () mmy, ,._ (t)

051 (§) 0= (£ + 1)’

me1 1(t + I) L m2’1,j_1(t+ I), le,j-H(t‘;‘ I) .

(5b) oy (B) = (— 1)1 me11(t+2) ...

mé11 (t + k-"Z)

(50) w®(t)= {dul [Zd“l dw()] ---}-myn,...ik_l;l...k(t).

7 ..ik__,l 1 =1

Moreover, for x in (m),

@) s, (@), e s (@), . .. % s (z)
TR |
I @Y e (et E—1),
while
w2y (), mz12(Z), - .. mzk(2)
(5¢) nf (z) =

mZy (@ +Ek—1),
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The symbol S stands for summation and is to be suitably determined. Tt is
f=x
seen that the nmj—(t) (j=1,...%— 1) and 0% (¢f) are known and analytic
in (m).
Using (5b) and the known asymptotic forms (4 e) the asymptotic form of

mmj —1 (x) will be seen to be

L

(6) i, k-1 (%
(mtgj, k—1 (z), an s-series; x in (m)).
On the other hand, making use of (5 d) and taking account of the way several

formal series with logarithms in the s-series factors are related (See (I); in
particular, (6”') on p. 213), we conclude that

(6 a) "10(;,-) (x) - ele H 4+ Qpa) m(P(k) (x) (1‘ in (m))

where @ (z) is an s-series without logarithms.! The series n¢® (x) (k=1, ... n)
cannot be identically zero since the formal series are assumed to be linearly
independent. Consequently, by (5 a), (6) and (6 a),

(6 b) m ij(x) ~ e’"Q“ t m?/'kj(x)
(j=1....k—1; 2 in (m)).
Here the series nui;(x) are all s-series; moreover, by ((3); s = m),
Ru@Qij@) =0 (J=1,...k—1; = in (m)).

It is easily seen that Lemma 8 (§ 4) is applicable for evaluation of any of the
expressions

(6 ¢) Skaj(t) (j:I,...k—-Ir)

t=2

occurring in (5). In that lemma we only need to take R = (m), Q(x)= n@Q:;(2),
h(x) = wvr;(x). Thus, by the methods of & 4 we evaluate (6¢) as a function

analytic in a region (m), slightly interior to (m), and satisfying in (m) an asymp-

totic relation

! We can show this by a reasoning, applied to the second member of (5 d), similar to that
in (I; p. 215).
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(64d) S Vij (t) ~ en%i® g s ()

t=x

where nu;(z) is an s-series. Since the boundaries of (m) can be translated, it
may be considered that (6d) holds in (m). Substituting (4e) and (4 d) in (5) it

is seen that mz;.(z) is analytic in (m) and
(7) w1 (@) ~ % o (@) (@ in (m),

where 011 (x) is a formal s-series.
The remaining elements mz;x(x) (i =12,...7%) of the solution may be de-

termined as follows. We have

meik(x + q)= Z diy(x+qg—1)dy,(x+qg—2)... Qiyy g () w22, x (%)
Ay

A 2=t

(g=1,...m).

By the reasoning of (II; p. 259) these equations have a non-vanishing determinant
so that

(8) mezk(x) = d“(x)mzlk(x + I) +-+ 6“1((,3)1'7/31 L(w + ’ﬂ)
(z=1,...n).
Here the d;;(x) (¢,j=1,...#%) are known in (m) and are of the same nature as

1
the di;(x). Thus, by (7) and (8), the elements nzix(x) (¢ =1, ... n) are analytic
in {m) and satisfy, in {m), the asymptotic relations

(9) wzin (@) ~ %W gy () t=1,...7)

where the series ,.0::(x) are sseries. Necessarily the relations {4 d) will be satis-
fied for s=1,... k. The function mz1x(x) is such that (5e) holds; thus, using
tha asymptotic relationships (5d), (4e) and (9), we conclude that the nox(x)
(¢=1,...m) in (9) can be replaced by the ms;x(x} ( =1, ... n), respectively. Thus
a solution mzix(x) (f=1,...7n), possessing all the desired properties, has been
constructed, This proves existence of a matrix solution proper in (m). The above
indicates also the actual process of construction in any given case which satisfies
the specified hypotheses. It is essential to note that in applying Lemma 8 we
have, according to the hypotheses of the Theorem and as required by the Lemma,
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the function Q (x)= nQx;(x) proper along the portion of the path of integration
near the right boundary of (m). If in the various summations involved in (5)
additive periodic functions are admitted the Ath solution, mzix(x) ({=1, ... k),
will be modified by addition of linear expressions (with periodic coefficients) in
the elements of the preceding k — 1 solutions. Unless stated otherwise such
periodic functions will not be introduced, the summations in (5) being specified

by § 4. The # solutions constituting the » columns of the matrix
(10) mZ (%) = (mzi; () (¢,7=1,...n)

may be spoken of as 'associated with determinant limits’,

The regions (1), (2), ... () may be considered as having strips Vj, ;11 (between
(7)) and (j + 1); j=1, ... — 1), of unit width, in common. In the case at hand,
there exists a proper matrix solution in Vi m+1 (if m + 1 =1). By the process

indicated for the construction of »Z(x) we now obtain a matrix solution,
(10a) m+1Z (&) = (m+121; (%)),

proper in (m + 1), the constituent solutions (columns) being associated with the
determinant limits, known in terms of the »2;;(x) in (m + 1). By a finite
number of steps proper matrix solutions, ,Z(x)= (2:;(x)) (r=m, ... n), are
constructed in (m), (m + 1), ... (5); these solutions will be associated with deter-
minant limits.

It remains to demonstrate that the periodic functions connecting these
solutions are proper (Def. 5; § 1). Let Z7(x)=(s];(z)) denote ,Z(z) with the

columns so rearranged that

(11) Z7(x)~ S{x)=(e%™s;(x)) (zin (); r=m).
Write
(II a) Z’(x) — ZTH(:IJ) Pr,r-H(x)’ Pr,r+1(x) — (p:_'],.r+1(x)).

Let Ja,=3J®, a—z,=integer and restrict z, to lie in the strip V, .11 (when
Jx=9¢>0). We have then for the matrix P~"*!(x) of periodic functions the
relation

(II b) Pr,r+l(x) — pr H—I(ZL'T) — ZT+1M1(7}T)ZT((L‘T).

For (=) in ¥, ,4: the following asymptotic relation will hold in virtue of (11)
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(12) Prria(e) ~ 573(e) Sa) = (i 8y)

((d5) = I).

In other words, for Jx = ¢ > o,

{1za) Py ) = e) (613- + Z)';E‘,fi)) (¢, j=1, ... a);

““r

in the above % can be made arbitrarily great and the |b;(x,)|, for a fixed %,
are bounded. The strips V, .11 (r=m, ... n—1) extend indefinitely upwards (i. e.,
when |z| approaches infinity in ¥V, 41, v=S2 — + ). These strips are to the
right of a proper curve F and they are in a proper region Rr (Def. 9; § 1).
The term ’'proper’ refers, in this connection, to the set

Qi (), ... Qulx).

By (11b) the p:"*'(x) are analytic for v = ¢>0. By (12a) and in virtue of
the fact that the @y(x,} are proper in V. ,41 (Def. 3; § 1) it follows that

log z HTTY
0= () = e
(¢, j=1,...m; r=m, ... n—1; H;ﬁf“, an integer);

here the power series converge within a sufficiently small circle with z=o0 for
center and, unless pj/*!(xr)==o0, it may be supposed that p7"'>#o0. Now

IZ' = I e?nV——lml = c-—?nq); thus, it is clear that
(13 a) p”“(x)~ r,r+1€2ﬂv;7H;jT+lx
% ;0

@ g=1,...m; r=m, ... 9—1)

in every region of the kind indicated in (Def. 5; § 1). Hence, in accordance
with this definition, these periodic functions are proper. In view of the rela-
tionship between solutions of the single equation Ly(y)==0, and those of the
system, Ly(y) is seen to be completely proper in (m)+ - +(z).
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8§ 6. A Lemma on Faetorization.

The following lemma will be indispensible as a preliminary to establishing

the fundamental result.
Lemma 9. Let coeffictents of
(1) Ly =ylx+n)+a)yletn—1)+ - +a(z)yl@)=o0

be known (and be of the kind specified in the beginning of § 1) in (1)+ - -+ (m),
a subregion of T. If the equation is Q-factorable in (1)+ --- +(m) (Def. 8; § 1),
a point of division being between the I'-th and I'-1-st terms (not belonging to the

same logarithmic group® of the sequence

(), . .. Qnl) (1=I<n)
it necessarily follows that the equation s factorable,
(1a) Ln(y) = Ln—r Lr(y) = o,

s0 that the coefficients in the operators L._r(2), Lr(y) are of the same kind as in (1).
With the e¥®si(x) (j=1,...n) denoting a lnearly independent set of formal
solutions of (1), the factorization (1a) can be so effected that the series

(rb) eu@ s (z), ... e sp(x)
are formal solutions of Lr{y)=o.
Proof. In connection with the system Y (x+1)=D(x) Y(z) (6; § 1), asso-
ciated with (1), functions y7;(x) are defined by the product
(2) Y7r(x) = (y7, ()
= D(xz—1)... Dx—r)T(x—r)
where T(x) denotes S{x)[= (e%®s;(x)) = (€%&=+ 1V g(x+7—1))] with the s-series

factors in the involved elements terminated after, say, & terms (£ being suffici-

ently great). In accordance with the notation of § 3 we write

b ef 67 (p. 213; I
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v, @), .y (@)

(23,) y;‘,”.ip;l,wl’(x): . Lo .T .o
Yip1 (x)aylrl‘(x)
where
5 <ty < - <drand 4, 4,...0r=1,...%

Since, by hypothesis,
R @)+ -+ Qrl@)] = R(Q@)+ - +¢pla)]
(hh<-<jr=1,...m; « in (1)+ - +(m))
in virtue of Lemma 5 (§ 3) the limits

(2b) lim ?/z';.‘.z'p;1...1'(x)=?/f,4 j

— et 1l

@)
(t,< - <ir=1,...n)

will exist in (1)+---+(m) and will be analytic in this region; moreover, the
asymptotic relations

(2 ¢) Yir...ip1. . r(x) ~ 0@t HerEg o p(x)

(< - <ip=1,...n)
will hold in (1)+ --- +(m). Form the operator

v . @ W
3 () = (— 1) ylet+n), @ ...y
y@+1), 'yi;ﬂ',l('w)' . -'yiﬁ',p('x)
=vn(@yle+ D)+ +0"7_(@yle+s)+ -+ (2) y);
here

(3a) b’;‘——s(x):(_I)r_sy;“.s,SJ—Z.,.1’+1;1~~I‘(x)'
From the way asymptotic relations (2 ¢) were derived in § 3 it follows that

(3b) Y. eern. rapy. . p@) ~ @@t @ e g riyr ()

(s=o,... I z in (1)+ - +(m); r=1, 2, ...).

Hence an equation L7(y)=o0 will possess in (1)+ - - +(m), formal solutions

7—32611. Acta mathematica. 60. Imprimé le 2 septembre 1932,
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e g (), €% gy(x), ... e sp(x).

In virtue of (2¢) and of the fact just stated, if L'r(y) denotes lim L (y), the

equation
(4) L'rly)=V@)ylz+ D)+ -+ (x)ylx)=o
O r—slx) = (—1)""y1 . wet2 . rera . ()
will possess the same formal solutions. Here
(42) () ~ e@@+ kg )
(s=o0,1,...T; x in (1)+ - +(m)).

In particular, the s-series in the second member of (4 a) cannot be identically
zero for s=o0 and s=1I; this is a consequence of linear independence of the
formal series. Hence

bo(x) =0, brlx)=o.

Thus the equation (4) is actually of order I Dividing out the coefficient b'y(x)
we write (4) in the form

(s) Lily) =yl@+I)+ - +br(z)yle+s)+ - +brx)ylz) =0
(br—s(®) = b 1—s(2) /¥ o(2); s=0, ... —1).

The coefficients in (5) are analytic in (1)+ - - +(m); moreover,

(5 O e S R

(s=o0,...I'—1; = in (1)+ - +(m)).

Now, the formal series 1 . g s+2. r411...r(®) (s=o0,1,...T) will contain no

logarithms since the columns in the formal determinants

81AAAs,s+2..,r+1;1...1'(3?)

can be so combined as to get rid of these logarithms (Cf. I; in particular,
pp. 213, 215). It is clear, moreover, that there will be only rational powers of
@ present in the formal series 8, —{z) since the constants » occurring in (7 a; § 1)

differ by rational fractions in the consecutive formal series (7 a; § 1) in any
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group (I; p. 213) of such series (containing logarithms). Thus the operator
Lr(y) has all the properties required by the lemma. The factorization (1 a) follows
immediately. The coefficients in the operator L,—r(2),

(6) Ly rl2)=zx+n—TI)+ex)zle+n—~T—1)+ - +enr(x) 2{2),

will be analytic in (1)+ --- + (m) and will be of the required character in
(1)+ -+ +(m). The lemma is therefore proved.

The equation L,—r(z)=o0 will be formally satisfied, in (1)+ - +(m), by
the series

(6 a) eQF-I'M(m) 0'p+ﬂ(w) (: LF(€Q1’+M(x) 81*+M(x')> !

(w=1,...n—1T)

On taking account of the established nature of the b, .(r) (s=o, 1,...T~1),
it 'is seen that the series o,4.(x) are s-series.

§ 7. On Products of Completely Proper Operators.
The following theorem will be now proved.

Theorem II. Suppose that the set

(1) @ (), . .. Qulx),
belonging to an eguation
(1a) La(y) = o,

has a point of division in (1)+ - +(m). Here, as before, (1)+ -~ +(m) 2s a sub-
region of I' the constituent vegions (1), ... (m) being separated by B’ curves. Assume
that corresponding to this point of divesion we have

RQ2x) > R Qriule)
(A=1,...I'; u=1,...0—T; z tn (1)+ - +(m)),

where an equality sign is admitted on the boundary of (1)+---+(m). With the
coefficients in (1 a) of the right kind (Cf. § 1) in (1)+ - +(m), let

! Whenever a formal series is formed by writing Lr(eQ®) s(x)) (s(x) an s-series) the coeffi-
cients in Lr, if not representable by convergent series, are replaced by the formal series to which
these coefficients are asymptotic.
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{1b) La(y) = Ln—r Lr(y) (t=I<n)

be the corresponding factorization, as specified in Lemma 9 (§ 6). Suppose, more-
over, that in (m) (or further to the left) there is a curve F which is proper with
respect to the set (1).

It will necessarily follow that, if the operators Ly—r(z), Lr(y) are completely
proper (Def. 6; § 1) in (1)+ - +(m), the product L.{y) will be completely proper in
(1)+ - +(m).

Proof. As an immediate consequence of the hypotheses of the theorem
the following is true.
The equation

(2) Lrly) = ylx+ )+ b (@) yle+ I'—1)+ - +brlx)yl@) = o
possesses, in (I)+ --- +(m), I' linearly independent formal series solutions

(2a) €% () (j=1,...1).

The related system of order I’

(2 b) Yrix+1)= Dr(x) Y['(.Z),
o, I, o
Drx)=]| oo 1,... o

~brl@), b

possesses, in (1)+ -+ +(m), a formal matrix solution

(ze) Sr(x) = (9@ sy(x)) = (%@ +V g(x +7—1))
(Z,j=1,...T)

(the s;(z), s-series). This system is satisfied by a matrix solution

(2d) Ye(x) = (y5(@) = (7 +i—1)) (¢, j=1,...T)

consisting of elements analytic in {6) and of the asymptotic form

(2 e) Y°(x) ~ Sp(x) (z in (0); o=1, ... m).
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Of course, the elements in the first row of Y?(z) form a fundamental set of
solutions of (2), and conversely. By hypothesis, such matrices Y*(x) (s=1,...m)
exist so that the matrices R*(x), of periodic functions, defined by the relations

(3) Y¥(x) = Y*+(z) B*x) (B o) =(ry()),

i

are asymptotically representable as follows
(32) Bi(a) ~ (@7 =T p2)

(the 7%, integers; s=1,...m—1; Jz = ¢ > 0)

for x in any region as in (Def. 5; § 1). Here a constant +%; is not zero unless
the corresponding function r%(x) is.

Letting Vi s+1 have the same meaning as in § 5 and reasoning as at the
end of that section we conclude that, for Jxz = ¢ > o,

s Qi (%) pd 8 agj(x)
(3b) (ryla)) = (%) gy, (o{we)) =\ 05 + — %
s=1,...m—1; Sx=Sxs; Rle—2a), integer; xz; in V; s11).

Here & can be made arbitrarily great and the «f(x) are bounded in Ve st1.

B, the right boundary of (s), while a B’ curve for the set (1), may be not a B’
curve for the set Q@) (j=1,...7). In such a case (rj;(z)) can be taken as

I( = (8y)-
Analogous facts can be stated concerning the equation

() L, e)=ce(x+n—T)+elx)zx+n+T—1)+ - +enrl@) 2(x) = 0.

In (1)+ - +(m) it possesses n—1I formal solutions

(4a) er+u'® op(2) = Lr(e%r+u® sriy ()
(=1, ... n—T; the oryu(x), formal s-series),
the e%® s;i(x) (j=1,...n) constituting a linearly independent set of formal solu-

tions of (1a). The related system of order n—1I

' Relations (3 b) would continue to hold if the operator L {y) were merely proper (Def. 45 § 1).
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(4 b) Zyr{z+1) = Duer(®) Zn—1lx),
0O, 1 R o)
Dn—r(x)——— 0,0, 1 ... o)

—Cn—r(x), ... —¢ (x)

will possess, in (1)+ - +(m), a formal matrix solution

(4 O) Sn_—r(.’l,') = (eQHj("’ Or+s, p+j(l‘)) = (eQr+j(£+i_1j' 0'1'+j(%‘ +2— I))

(G, j=1,...n—T)
(the 6r4s r+j{x), s-series). There exists a matrix solution of (4 b)
4a) 28 = (25 o) = e = 1)
(¢, j=1,...n—1T)
with elements analytic in (o) and of the asymptotic form
(4 Z9(x) ~ Sn—r(x) (z in (0); 0=1,...m).

Matrix solutions, like these, exist with the additional property that the matrices
P¢(x), of periodic functions defined by the relations

(s) Z*(x) = Z**'(x) P*(x) (P*@)=(p}ss, p4; @)

are of the asymptotic form

(5a) Prla) ~ (2" T v, L)

(the pj..; ., integers; s=1,...m—1; Jr=¢>0)
for z in any region as in (Def. 5; § 1). Unless a function pj(x) is identically

zero the corresponding constant pj; is not zero. Moreover, for Jz = ¢ > o,

(5 b) (Prsi, rej (x)) = (e¥r+j, 1+ TCpys, 1'+j(xé‘))’

s ()
(77, r+,'(958)) == (az'j + j;

(s=1,...m—1; Sx=xs; R(lx—xs), integer; z; in V¢ s41).

In the above £ can be made arbitrarily great and the {)’;‘fj(;c) are bounded in ¥V, s+,
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A process of group summation will be now applied for the purpose of solv-
ing the equation

(6) Lily)= 23, () =2=pusn—"T; 1 =s5s=m).

Let Zf,*;w denote the matrix of order T

o ... o
(6 a) ZSI:—;L(x) = 0 R o]
ey, (@) zj,w(x)

In each of the several rows the elements of the matrix

(61) v (ac)g Y (1) 23,0
(Se0-§ot=90)

are the same. An element of the first row will be a solution of (6); denote it
by yﬁ,w(oc). This function will be also a solution of (1a). Writing Y '(z) =

= (g5(x)) (@, j=1,...T) we have
o) o) = S0 A 15,00
4=1 t=ax

Here the summations are to be suitably determined. Consider a summand
grlt+1)eg, (o). By (3)

(7a) Y#(x) = Y°(x) R(x) (s<e=m)
where

. Rx) = (ry(x)) = B (x) R () . . . R*(x)
(7b) role) ~ @V e

(¢, j=1,...T; the 7y, integers; Jz = ¢ > o).

Thus, noting that
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(7 ¢) 7)) = R~1(z) Y (2)
(R(@) = (rylel) ~ (7" =T ra5g); Y7 (a) = (7)),
we have
(7d) 78+ 1) ZI) Faolt) 7€ Lt + 1) =i=n).

=1

On the other hand, by (3),

(8) 74 (x) = Z*(x) P(x) (s<e=m)
where
P(x) = (pres, rjl@) = P4 a) P*@) . .. P*(x)
and
(8a) Pri, r+5(x) ~ 2V —1ppyg poje Prei, r+i

(¢,j=1,...n—T; the pri; r+j, integers)

in any region extending indefinitely upwards, as in (Def. 5; § 1). Hence

n—1I"

(8) 2 )= 3 2 (0 prs e, rrall)

w=1

With the periodic functions in (7 a) and (8) formed for e=m aund using
relations (2 e), (4 e) we conclude that, for z in (m),

(0) Birlet e, ()=

I n—r

Z 2 Zl+w 1/6F 33+ )7‘20(-'17)171'«%11:, 1'+((.(x)

o=1 w=1
r a—r
\ Sy ;= .
~ 2 Z e, gl2)+2a? 1(7‘20—+p1’+w, 1"+”’) P 7'}.«1]77’+'w, rta 01’+w(2’f) Sor(x)

o=1 w=1
(A=1,...0).
In the above the 3.(x) are s-series defined by the relation
57t (@) = (¢4 sy(@) " = (64 5(x))
(¢, j=1,...0T).

This is a consequence of the fact, pointed out before that |(s;(x))| (¢, j=1,...7T)
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has no logarithms present. In a strip Vi, my:1 of, say, unit width and situated

in (m) near the right boundary of (m ) the real part of some exponent,

(9a) Qrsw,ol@) + 270V — 1 (F10+ prew, rru)

corresponding to non zero constants 7, priw, r+n 18 equal or greater than the
real parts of all other exponents (corresponding to non zero constants #*, p*).
Let o=d, w=w" be subscripts for which this occurs. Then, for @ in Vi, m+1,

(10) 7yl + 1) e, (@) ~
e, o B +2n V-_—l(;ld' TP, I"Hl«) x (7—’;0’ p}k‘+w', 'ty Or+aw' (x) So'r ((L‘) + g?.u (x))

Now, by hypothesis, to the left of Vi, m+1 there is a curve F' which is proper
with respect to the set (1). Consequently along every path, extending to infinity
and lying in Vi m+:1 the function |e?r+w, o | has a definite order with respect
to legﬂv:xl; in fact, the exponential factor in the second wmember of (10) will
have the same property. The expression 95.(x) stands for a sum of a finite

number of products of the form
(10a) () s(x)

where |p(z)] =1 and s(z) is a formal s-series. Such terms may be present only
if there are more than one exponent (9a) with the same real part (which is
greater than the real parts of all other exponents).

Suppose again that s <e=m. Consider (7a), but in place of (7 b) use
(3b). We have

(11) (rg () = (74(@) = (eQJz(x) (xq)),

e}
where the af(x) are bounded in Vg q41 and & can be made arbitrarily great.
Thus

(ef(@)) = (%

(11a) @5z + 1) = (o)) (7 (2 + 1))
= (7 () (75 ) - . (757 () (g (o + 1)

8—32511. Acta mathematica. 60. lmprimé le 3 septembre 1932.
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r
- ( 2 eQU (#a)F Qpa, Fsr )+ F i, oy Fe—1)
i

bk g=1

- i) 0% alTern) - . 05, ya, (o) Fi,_,, sl 1))-

Now, by (2 e), for = in (e)

(F5@) ~ S ) = (e~ 5y(a) (6j=1,...T)

where the §;(z) are s-series. If we write
(11b) (Tl + 1)) ~ (7% 5i5(a)) (z in (e)),

it is apparent that the &;(x) are s-series. The relations (11a), (11 b) give the
asymptotic form of the §5(x+1), for « in (¢), in such a way that the exponential

factors are explicitly given in terms of the Q;(z) (j=1,...T).
Similarly, by (8) and (5 b),

(12) (s, r4g @) = 5y paf @ By, sl

= (Zc +1, 1'+j(x)) (p;:}, 1'+j(x)) tee (pi’-{-i, 1’+_7'('/‘c))
n—r
= ( Z e+ oy, P+, (Fe—1)V Ut oy, P aTe—2)t -+ g, (%) -
g

g =1

I r+ul(w) ”;:L,,I%az(xc‘l) T, r+a3(xe‘—9) Mg, T4 (xg))

(£,j=1,...0—T).

For z in (e) the 2¢ (x) satisfy the asymptotic relations (4 e) (with 6=e¢). Thus

I'+i, I+j

we have an expression for the asymptotic form, in (e), of the 2}, ,...(x) in which

the exponential factors are in terms of the Qrij(x) (j=1,...n—T).
Consequently, for x in (¢) (s < e), the following asymptotic relationship
will hold, with 1 =A=T,

(13) o+, @) ~
r n—I" g0 )
H-‘ ~~_e—ssl’ \
Z Zl e e tems /'(xl 'al'-e——s, l’(x) 01'+0‘1(x) .

Aeidp =1 0y...0p_g=1
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Here
(132)  Hp 2700 (@) = Qreoy s, @)+ @5, 4l + QR nlwssn) + -

+ Qi‘fe_s, le o1 (xe—l)] + [Q;+az,r+al(xe—1) + Q4o 1‘+a.z(il)e_2) + o+ Q;ﬂ‘»l'*““e—s(ws)]
where
(13Db) Qi(q) = Qi) +og g ()

(t,j=1,...T'; s=gq)

and
(13¢) QF-+j, r+i®g) = Qraj, r4ilawg) +log . 1., . (2g)

(t,j=1,...n=1T).

The expressions @* involved in (13 b), (13 c) are logarithms of corresponding periodie
functions. We take suitable determinations of the logarithms. Whenever a periodic
function is identically zero the corresponding term in (13), or in any similar
sum, will be zero. The summation signs in (13) will be considered as extended
only over those terms for which the periodic functions are not zero. Only
superscripts and subscripts corresponding to terms actually present will be con-
sidered.

In the sum (13), for any given « in (e), there is a set of subscripts and

superscripts

(13 d) (2‘1 PPN lg—_s) —_ (Z"l PR }4’6—8)1 (0'1 P Ge—s) - (0’1 S O"C—_s)
such that

(13 ) RH V@) z RHL T @)

[(}«1 e Ag-—s; Op... Ge—s) # (l’l e l’e—s; 0’1 . O"g-—s); Z‘L [N )-g—s: ... I‘,
0,...0—s=1...0—T).
Accordingly, for z in (&) (s < é),
(14) Pole+1)e, («) ~

T Ole—gith,
i i 2@ (5%, 2@) 6140, (@) + - )

(=l =r; 1 =6, <n—T)

where ... stands for a sum of finite number of products of the form (10 a),
which may be present only if there are more than one set of subscripts-super-
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seripts (13d) for which (13e) holds. In the sequel the inequalities satisfied by
Ve—s and o', will be found essential.
In (s) the asymptotic form of j;.(x + 1)z, () will be (Cf. (2¢), (4¢))

(15 Bt et @) = 0 5 )0
(uz1;yAT).
Since by hypothesis, for = in (1) + - + (m),
RQi(x) > RQ rinlx) 1l 1susn—~—1T)
(except possibly along the boundary) so that

B Q'p+y,z(x) <0,
it follows that

(I 5 a) ER Q}"-}-y,, l(w) = E)i‘ QI'-H.L, i,((l")
Sz=7332"; Re < Nz')

whenever x and x' are in (1) + - + (m).

Define the function Lrig,i(x) as follows

) . Qriu, 1 (x) (z in (s)),
(16) reu (%) = lel‘f;:”,L () (zin (¢); s<e=m).
By (15 a)
(16 a) R Lriy, (@) > R Ly, i (2)

(Sz=z"; Re<Ra'; =z « in ().
It will be proved now that, more generally,

(17) g}};i"—{»f&,k(x) > S%Lf+g,z(xl) + &
Qa=3J2"; Rz < N

provided that x is in () while 2’ is in (s) + - + (m), say, in (e) (s=e =< m);
while £ is a real magnitude negligible in a sense to be specified below, which
for ' in (s) can be taken as zero. Assume for a moment that (17) holds. In
virtue of (16), (13a), (13b) and (13¢) the inequality (17) can be written in
the form
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(178)  RQriwilx) > M Qriw, v, (&) + [Qvilxs) + Qur, (@ssr) + -
+ Ql’e—s~1"t'e—s-——2(xe—?) + Ql'e-—sl'e_s_l(xe—l)] + [Ql’+o'g,1‘+o",(1'e——1)
+ Qridy, rio@e—s) +- -+ Ql"—i—u’e_s’ r4oy g g (@st1)

+ Qrig, I’+a’e‘.s(xs)]} +&5 +§

(17 o= log | g1, (0 73 (oven) . G, (@)

+log| ey pug (@) ... RS C NS .

Since (16a) holds it is necessary to consider only the case 1 <e. The points
Zs ... e, while correspondingly in the strips Fis+1,... Ve—i,e, depend on

« (&' —xs, ... 2" —xe— are integers). By (11) and (5b) the real function &, may

approach — o as |2’} — ; but, in any case,

(17 ¢) § =

where |b(z')] is bounded and % can be made arbitrarily great. Let £= —§&,.
If (17a) is demonstrated, with §=—EZ, the inequality (17} will have been de-
monstrated (with £= —§,). Regrouping terms in (17a), with the inequality sign
displayed tentatively,
(17d)  RQrewalx) > R{Qrev, 2, &) + [Qrivs v, [ @em1) — Qrio, oy (e—)]

A+ [ Qrtoa 2o (@e—0) — Qraory oy (@e—a)] +

+ [Qrio,_g i (@et1) — Qravy__y, va(@st1)] + [Qrap, alws) — Qraore_y, 2.(@s)]}

or
(17¢)  R[Qrip,1(®) — Qrap, 2(@s)] > R Qreo, v, (&) — Qree,, v, (@er)]

+ [QF+U'2, l’g_s_l(_xe—l) - Ql‘+q’2, }.’e__s-.l(xe—‘z)] + [Ql’+o’3, 2’6_8_2(3’/'«——2)

— Qrid,, 1’6_6_2(9063—3)] 4t {Qr+o'e__s, 7.'1(96's+1) - QI'+U'e—s» ¥y (xs)]}

(I7f) S = Jws = Jxse1 == Sxe—l': 327',

Re < Ry < Ragyy < < Ry < R,
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The functions @(f), with double subscripts, occurring in {17e) have increasing
real parts as { moves to the left parallelly to the axis of reals and within the
region (1) + --- + (m). This follows from the fact that the first subscript, in such
a function, is greater than I' and the second subscript is equal or less than I”
(see 15a). Taking account of (17f) we conclude that the left member in (17 e)
is positive while the real parts of the differences oceurring in the square brackets
in the second member of (17e) are negative. Hence (17e) holds. The steps by
means of which (17e) was derived are reversible. Thus (17) is demonstrated with
§=—§ (E=o0in (s); (17D), (17¢)).

In view of the preceding we are led to consider a summand
(18) H) (= g2l + 1) u(a)) = - h(o)

where L(x) (= Lri,,:(x)) satisfies (16) and (17) while

(18a) h(x) ~ Hx) ( 2n () + -+ (m).

Here the formal expression H(z) is a formal s-series (Hy(x) =5 r(®)orsu(x); (15))
SJor x in (s); in () (s<e=m) H(x) is a sum of a finite number of formal expres-
sions of the form (10a) (H(x)= 5w,  r(@)orse,(x)+ -5 see (14)). Furthermore,
H(x) #s analytic in (s) + - + (m).

In this connection, as well as throughout, when we say that a function is
asymptotic to a formal expression it is meant that the function is representable
by this expression with the power series factors terminated after a sufficiently

great number of terms, while in place of the discarded terms expressions are

introduced of the form ? (|6(z)|, for k& fixed, bounded; % arbitrarily great).

k

In order to obtain an evaluation of

that is, a solution of
(19) yla+ 1) — y(z) = e “h(z)
consider first the formal equation

(19a) Y@+ 1) — yla) = e Hyfa) (= “+ 295, r(@)ors ().
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By a Lemma of Birkhoff, previously quoted, such an equation certainly will
possess a formal solution

(19D) y(x) = e*¥s(x),

where s(z) is an s-series. Let f(x) denote s(x) with the power series factors ter-
minated after m’ terms, m’ being sufficiently great. Substitute

(20) yle) =2 te) + ) _—

v
in (19). The new variable z(x) will satisfy the equation

(209) q(+nw+w 2l)eln) = Fla)  (gla) = e,
Flz) = — A48H(z) = Fy (o) + Fula),
Fy(o) = %u—ﬁ>om,2m=wwnm—dwwm

where H')(x) is H,(z) with the power series factors terminated after a suitable
number of terms. The function H'y(x) is analytic in {(s) + - - + (m) and

(20b) H'o(2)~ Hy(x) (= 5" 1r(x)or+u(x))
{x in (s) + - + (m));

hence

(200) Fa) =5

where g,(x) is analytic and bounded in (s) + --- + (m), and %” can be made
arbitrarily great. On the other hand, for x in (s),

(204) Ffa) = (I8)| = 8)*

where k' is arbitrarily great.

Writing
(21) S F(¥) S S F,y(t
t=x
we evaluate F,(t), precisely as in § 4 by means of a contour integral with
t=x

! The same remark can be made to hold for 8,(x), 8.(x) as previously made regarding A(x)
of (3a; § 4
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path of integration in (m) near the right boundary of (m). Thus SFg(t) may
t=g

be considered to be a known function, analytic in (s} + - + (m) such that

(21a) SFz(t) = eﬁ(i)fi(@

(lﬂ’z(x)l <8,in () +-+ (m); ;> as k-—>o).!

Let z be in (s). Write, in accordance with § 4 (Cf. (5)),

eQﬂl/;Il(r—t) Fl(t)dt
(22) SFx(t) = f T oaV —da—t
t==x L

1—é

where L. is a contour, formed as in § 4, with the constituent part L sitnated
in (m) near the right boundary of (m). The integer A is determined depending
on the order (with respect to |e27Y—1f|) along L, of the exponential factor of
F(t). Existence of such an order may be ascertained as follows. We have
Fy(t) = e"OR(t) — QO H' (). A strip V of limited width can certainly be found,
in (m), near the right boundary of (m) so that throughout ¥ either R L(¢) = R Q(t)
or RQ(t)=RL(t). Confine L to V. Taking account of the statement in italics,
following (10), and noting that by hypothesis Q(f) (= Qr+u,1(?) is proper in V
(since the proper curve F may be supposed to be to the left of V) it is con-
cluded that in ¥V the exponential factor of F,(f) has a definite order with respect
to |e2nV~—~u|‘

By (17)

RL(x) —RQx) < —E=§

Sz=2; Rr<Ra'; 2 in (s); 2" in (s) + -+ (m)
where &, is small (see 17¢). Also, by (15a),

RNEE)—RQa) <o

[Sz=32"; Re < R2'; z in (s); 2" in (&) + - + (m)).

As (@ — ) increases, these differences diminish sufficiently rapidly to secure,
in virtue of (20d), the following relation

! Here 8'5(x) is of the same nature as j3,(z) and Ba(x).
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Q{x)
(22 a) SE () =6

(16:1@)| = g1 in (s); Ky —> o as k— o).

Thus \ F(f) may be considered as known and analytic in (s) and such that

t=w

(23 i =8

(18@)| =8 in (s); k>0 as k— ).

A solution z(z) of (20a) may be given as follows

(24) z{x) = b ¢4 S F()

t=x

where SF () is given by (23). Thus, this solution may be considered to be a

t=u

known function,

(24) o) = o (o) (1)) = 8 in (),
analytic in (s). Using this determination of z(x) and (20) we obtain an evalua-

tion of Se“‘)h(t) as a function analytic in (s) such that, to m(k) terms

t=x
(25) SeL Oh(t)~ €2 s(x) (& in (s))
=
where s(x) is the proper series of (19b) and m(k) — « as k— .
The integer A in (22) we define as follows. Let ¢"® be the exponential

factor of F,(f) (for ¢ in V). If s<m let 1 be the greatest integer such that, as
[t]| > in V,

(25 a) 2x(dA—1)v + RV () > — oo (v="=331).
If s=m let A be the least integer such that

(25 b) 27dv + RV()—» + oo,

9—32511. Adcta mathematica. 60. Imprimé le 3 septembre 1932.
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By (25a), (25b) it follows that, for % fixed, (25) holds to infinity of terms
(CL. § 4).

As a consequence of this method of summation and of the asymptotic
forms of the yi,(x) (A=1, ... I), known in (s), by (7) it follows that, for z in (s),

(26) ¥, (@) ~ et gseries.

The second member of (26) is apparently a formal series solution; it has
the same exponential factor and, on that account, necessarily essentially
the same s-series factor as in the, originally known, formal series solution
et f‘(x)slvw(x). This construction can be effected for u =1, ... — I and for

s=1, ...m. Thus, the operator Ln(y) is proper.

§ 8. Completion of the Proof of the Theorem of § 7.

It remains to prove that L,(y) is completely proper; i.e., that the periodic
functions, connecting the m proper matrix solutions of the system ((6); § 1),
related to (1a; § 7),

(1) Yo(a) = (y2,(e) = (e + i — 1)

are proper. We have

(1a) Y (@) ~ S(a) = (Y si(x) = (¥ Ve + 7 — 1))
(zin (8); s=1, ...m; ¢,5=1, ...n0);
(1b) Yi(x) = Yt (2) G3(x), G¥(x)= (yzfj(x))

(s=1, ...m—1; G+ 1)= Gx)).
Accordingly, for s <m,
Yi(a) = Y™(z) G(z) (G(x)=(9:5()),
Glx)= G Yx) . .. Gz).

(2)
It will be proved first that the g;;(x) are proper periodic functions.
Consider SFl(t), as given by (22; § 7). This is a function analytic in
t=a

(s) -+ + (m); in (s) it is given by (22a; § 7). Let = be in the strip V (§ 7)
to the left of L and, of course, not nearly congruent to L (when a position of
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congruency is approached I is suitably shifted). Taking account of the fact
that @Q(x) and L(x) [see statement in italics following (10; § 7)] are proper
(Def. 3; § 1), in V7, and that F,(f) is given by (20a; § 7), it is concluded that,
for ¢ in V, the exponential factor of

f erV =1 F (f) dt

I— 62nV:f (x—~1)
X

is comparable with [¢27V—1%| Taking account of this fact, of (21a; § 7) and
of (21; § 7) it is observed that the exponential factor of z(x) (see (24; § 7)) has
the same propérty for x in V.

Hence the function y(x), as given by (20; § 7), that is,

y(x)zggjp(t—l-l)z?w(t) (igi=r;1su=n—T)

t=x

has its exponential factor comparable with |e2*V —3#| for # in V. This funec-
tion is analytic in (s) + - + (m) (to the left of L).

Consideration of (7a; § 7; e=m), (7¢; § 7; ¢ =m) and the fact that the
Qij{x) (¢,j=1, ...n) are proper in ¥V make it clear that each of the functions

i) (=95,@) (A=1,...T; see (7; § 7))

has its exponential factor comparable with |e2*V—1%| for @ in V. Consequently,
an element

Y ) (l=u=n—1;(7;87)
will have the same property.
Therefore

(3) Yi(x) ~ §*(x) (x in V)

where the elements of the matrix S*(x) are formal series with exponential factors

comparable with [e2*V—1¢| for 2 in V. On the other haud,
Y™(x) ~ S(x)
for « in (m) and, in particular, in V. Hence, by (2),

G(x) ~ S71(x) §* () = I'(x) (z in V).
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Qi lx)

The exponential factors of the elements of the matrix. S~!(x) are the e and

hence are comparable, in ¥, with |27V 12| (onsequently the same will be
true of the exponential factors in the formal matrix I'(x).

The elements of G(x) are analytic in an upper half plane and, by what
precedes, they are of the asymptotic form

(4) G (%) = (gij (=) ~ (VT 9% g};)

(the g¢:;, integers; gij, constants; Jz = ¢ > 0)

as in (Def. 5; § 1). Thus the g;;(z) are proper periodic functions.
Write for this matrix G(z)

G(x) = G™*(x) = (g7 ().

i

The matrices G™*(x) (s=1,...m—1) all consist of proper periodic functions.

A matrix G*(x) (1 =s=m—1), occurring in (1a) is representable as
(4a) G*x) = (g7 *+ (@) (g () (s=1,...m—2).

The determinant [(g7%***(x)| could not vanish since otherwise at least one of

the set of determinants

lem @) [¢m=@)l, ... |+ (@)]

would vanish.. This, in virtue of (1b), would imply that not all the matrices
Y’(x) (6=1,...m) are fundamental matrix solutions. Thus, the elements of the
matrix (97 ***(x))™ are proper periodic functions. The same will be true for the
elements of the product (4a). The matrix G™ !(z) is really G™™!(z), and its
elements are also proper periodic functions. It is seen, then, that the elements
of each of the matrices G%(x) (s=1, ... m—1) are of this type. Hence L,{y) is
completely proper, and the Theorem is proved. |

An application of Theorem I (§ 5) and of the methods of § 5 will yield
the following Lemma.

Lemma 10. Suppose that the conditions of Theorem II (§ 7) hold. Assume,
moreover, that the coefficients in Ly(y) are known and of the right kind (see § 1)
not only in (1) + -+ (m) but also in a more extensive subregion of T,

() + +m)+-+n) (> m).

It will necessarily follow that Ly(y) is completely proper in (1) + -+ (1).
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§ 9. The Fundamental Existence Theorem.

The results of the preceding sections have prepared the way for the proof
of the main result of this paper. This result is embodied in the Theorem.

Fundamental Theorem. FEvery equation L.ly) = o0 (or system), with
coefficients of the kind specified in § 1 and known in the complete neigh-
borhood of infinity, is completely proper in each of the several quadrants
assoctated with the equation {or system).!

Proof. It is sufficient to give the proof for some quadrant. Let I' be
this quadrant. We may assume the implication of the statement in italics pre-
ceding Lemma 1 (§ 2). The methods so far developed indicate how to meet the
situation when the condition of that statement does not hold. In fact, it is
sufficient, whenever necessary, to replace a 'multiple’ B’ curve by several cor-
responding ’'simple’ B’ curves, 'parallel’ to each other. This is always possible
since, as stated before, B’ curves are to be considered to be determined except
for a translation.

Certain terms, embodied in the following definition, will be found con-
venient.

Definition 10. A sef
Q:(x), ... Qulw),

which has a point of division wn a region G between the I'-th and I' + 1-st elements
of the set, will be said to have a potnt of separation, tn G, if

R lx) > RQriu(z)
=1, ...T'u=1, ...n—T; z in G).
The Q-factorization corresponding to a point of separation will be called Q*-fac-
torization.

We note also the following simple fact. If R @ (x) = RN ;(x), while interior
to G (along some curve) R Q;(x) = R Qj(x), then in some portion of G

R Qile) > R Qj(w),

! A similar result will hold, for more restricted regions, when the coefficients of Ln(y) (or
those involved in a system) are of the right kind (§ 1) in certain portions of the plane only.
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while in another part of G
N Qi(x) < N Qi(x).

If the theorem is not true, there are equations L,(y)=o0 (n = 2) of least
order n for which the theorem fails in I". Let

(I) L,,(g/)z——o

be an equation of this kind. If the set of Q(z)'s

(1a) @), ... Qule),

belonging to this equation, is such that N (x) = RQ,(x) == R Qu(x) the
equation will be seen to be completely proper in I' (see Theorem I; § 5). Hence
not all the R Qi(x) (=1, ...n) are identical.

Suppose now that in I' the set (1a) has a point of division. Necessarily
there will be a point of separation in I By Lemma g (§ 6) there will be a

factorization

(I b) Ln(]/) = L,—r LI(T/) =0

(il=I'<n;zin I)

corresponding to the point of separation. In I', near enough to the positive
axis of imaginaries, there is a curve I which is proper (Def. 9; § 1) for the
set (ra).® Now, the operators L,_r{z), Lr(y) are completely proper in I', since
n—I<mn and I'<n. Theorem II (§ 7) is applicable and, consequently, L,(y)
is completely proper in I'. Hence there can be no point of division in I.
Accordingly, assume that the set (1 a) has a point of division in (1) + -~ + (m)
(a subregion of I') and has no point of division in (1) + --- + (m + 1).* Necessarily
there can be only one point of division in (1) + -+ (m). Since the N Qj(z)
(=1, ...n) are not all identical this point of division is necessarily a point of
separation in (1) +--- + (m). Ly(y) is correspondingly @*factorable. Let

(2) Ln(y) = Ln—rLrly) = 0
(1=r<mn; xzin (1)+ -+ (m)

be the corresponding factorization according to Lemma ¢ (§ 6). By Lemma 3

! This will be true, of course, for any set of Qlx)'s.

? Incidentally, this would mean that Ry, =--=Ry, and g, =p,=--=y,.
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(§ 2) there exists a curve F, in (m), which is proper for the set (ra). Suppose
that Ln—r(z), Lr(y) are both completely proper in (1) + - + (m). By Theorem I1
(§ 7) it would then follow that L,(y) is completely proper in (1) + --- + (m).
Furthermore, by Lemma 10 (§ 9), La(y) would be completely proper in I". Hence
at least one of the above two factors is not completely proper in (1) + - + (m).
Let it be denoted by L.
Consider the equation
L'(y)=o.

Its coefficients are known in (1) +---+ (m). Now, L'(y) is not @-factorable
in (1) 4+ -4 (m). There exists an integer m,, 2=<m,<m, such that L'(y) is
Q-factorable (and, of course, correspondingly factorable) in (1) + --- + (m,;) and
is not @-factorable in (1) + --- -+ (m;+ 1).! This ¢-factorization of L'(y) is
necessarily unique in (1) +--- + (m;). The RQ'(x) belonging to L'(y) cannot, of
course, be all identical. Hence this ¢-factorization is a @* factorization. By
Lemma 3 (§2) the set of Q(x)'s belonging to L'(y) will be proper (Def. 3; § 1)
to the right of a curve F,, lying in (m,). If both factors of L'(y) =0, known
in {1)+ -+ (m;) and corresponding to the ¢*-factorization, were completely
proper in (1) + - 4+ (m,) it would follow by Theorem II (§ 7) that L(y) is
completely proper in (1) + -+ + (m,). By Lemma 10 (§ 8) L'(y) will be completely
proper in (1) + -+ (m). Hence at least one of the two factors of L'(y) is not
completely proper in (1) +--- + (m;). Denote it by L.
The equation
Lfy) = o,

with coefficients known in (1) + -+ (m,) is not @-factorable in (1) + --- + (m,).
There  exists an integer m,, 2 =< m, < m,, such that L*(y) = o is @-factorable in
(1) +---+ (my) and is not @-factorable in (1) +--- + (my + 1). By the reasoning
applied to L'(y)=o0, previously, it is shown that of the two factors of L*(y),
which correspond to the @-factorization (necessarily @*-factorization), at least
one is not completely proper in (1) +--- + (m,). Denote this factor by L*.

Continuing the indicated process, we obtain a sequence of integers i
2= I < < my < m

and a sequence of equations Lf(y) =0 such that the following conditions hold.

! An equation which is not @-factorable might be factorable (in the usual sense).
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1°.  Li(y) is not completely proper in (1) + - + (mi—1) (my = m).

2°. Liy) is @Q*factorable in (1) +---+ (m) and is not ¢@-factorable in
(1) + -+ (ms+ 1).

For a certain 7 (=1¢') we have my = 2. Correspondingly there will exist an
equation L(y) = o with coefficients of the right kind (Cf. § 1) in (1) + - + (ms—1)
(2<my—1), @Q*-factorable in (1)+(2) and not Q-factorable in (1)--(2)+(3). By
Lemma 9 (§ 6) there will be a corresponding factorization

L(y) = Li—r Lrly) =0
(1=r<k; z in (1) +(2).

Necessarily the factors will be of order one and two. The B’ curve, separating
(1) from (2), will correspond to the two Q(z)'s belonging to the factor of order
two; that is, the subscripts associated with this curve will be those of the two
mentioned Q(x)'s. Hence, in view of Lemma 1 (§ 2), Theorem I (§ 5) will
certainly be applicable to the factor of order two. Thus the two factors are
completely proper in (1)+(2). Now L¥(y) is @*factorable in (1)+ (2) and is not
@-factorable in (1)+(2) +(3). Hence, by Lemma 3 (§ 2), the set of Qx)s
belonging to Lf(y) is proper to the right of a curve F, lying in (2). By
Theorem II (§ 7) the operator L‘(y) will be completely proper in (1)+(2).
Moreover, in virtue of Lemma 10 (§ 8), L¥(y) will be seen to be completely
proper in (1) + -+ (my—1). We have thus arrived at a contradiction. Thus,
the Theorem has been proved for I'.

For the several other quadrants (below the axis of reals, to the right of
the axis of imaginaries, and for various ranges of arg z) the demonstration would
be entirely analogous and structurally identical with the one just given. Thus
the Theorem is seen to be true.

It is essential to note that given any particular equation the preceding
sections give actual methods for construction of those solutions and of those
periodic functions whose existence has been established in the Fundamental
Theorem.

If we consider two adjacent quadrants with a common strip V along, say,
the positive axis of imaginaries it is noted that the two proper sets of solutions
corresponding to the two overlapping sub-regions of the guadrants are connected
by proper periodic functions. This is seen to hold because every set of Q(x)’s
is proper in such a strip. In this sense, every equation L.(y)= o (or system),
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with coefficients of the right kind in the complete neighborhood of infinity, is completely
proper tn each of the several upper and lower half-planes associated with the equation.

§ 10. Connection between ’upper’ and ’lower’ Solutions.

Consider two adjacent quadrants I" and £ above and below the negative

axis of reals, respectively. We shall write
r=)+@+--, Q=]+ 2]+

(see § 3). Let K denote the combined region (1) + [1]; this region extends in-
definitely upwards and downwards from the negative axis of reals. It may
happen that the negative axis of reals is a B’ curve. In any case, (1) and [1]
may be considered as overlapping along a strip H:

—0e=Jz=e¢{e>o0), |z|zg>o0.

An ordering
(1) N (@)= = RNQ(w)

will be maintained in K, if the negative axis of reals is not a B curve. In the
contrary case assume this ordering in the region (1) down including the nega-
tive axis. The lower boundary of (1), h, will consist of a portion ot the line
Jax=—9. The upper boundary of [1], h* will consist of a portion of the line
Ix=o.

Let Y“(x) be a matrix solution, consisting of elements analytic in (1), such
that

(1a) Y () = (g () ~ S{ar) = (0™ s5(x))

(2,7j=1, ...m; = in (1))
Let Y'(x) be a matrix solution, with elements analytic in [1], such that
(1b) Y (%) = (y}; (@) ~ S (). (@ in [1])

The matrix P(z) (= (p;;(x))) of periodic functions, defined by the relation
(2) Y (x) = Y'(x) P ),

consists of elements analytic in H. By (1a) and (1 b) it follows that
10—32511. Adcta mathematica. 60. Imprimé le 3 septembre 1932.
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(2 a) (o) = (s (9 -+ ©29)),

where k£ can be made arbitrarily great while the ¢;;(z) are bounded in H.
Along the negative axis of reals the ordering (1) holds, that is

N Qilx)=o. <9

Hence R Q;;(x) (7 < i) is non increasing as |[z] — o along the negative axis. In

virtue of (2a) and the periodicity of the p;j(z) we shall have

pij(@)= lim p;;(z) =0

I’ |—=
Qx=[2 =0; Nx>NRNz"; x —«, integer)
for 2 > j; on the other hand,

pii(x) =}i{1?pu(x')= I C=1, ...n).

Since the p;;(x) are analytic it would follow that
(2 b) pijlz)=o0 (€ >7),
pii(x) =1 =1, ...n).
Definition 11. A matrix (hi;(x) will be termed a half matriz if hij(x)=o

(¢ >j), while his(x) =1 (i =1, ... n).
Use the transformation

z = e2an1 z,
Write
(2 ¢) P(x)= G (2) = (9:5(2))-

The ¢;;(z) are analytic for e27¢ < |z| < ¢?7¢. Letting ¢, denote the circle | 2] =
= ¢727¢ and ¢, denote the circle |2|= ¢®7¢ the following will hold for any func-

tion ¢g(2) analytic for e27¢ < |z| < e?7e.

(3) gle)=ale) + b(2),

.t [el@al _ 1 [e@)ag
“ MV‘—J:-Z blel 2ﬂl/’:f§—z

C
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where ¢, is described in the counter clockwise direction and ¢, is described in
the clockwise direction. The function a(z) will be analytic interior to ¢,, while
b(2) will be analytic exterior to ¢,.

We seek to determine half matrices B (z)(= (b:;(2))) and A () (= ((a:r;(2)),
with the b;;(¢) analytic exterior to ¢} and the a;;(2) analytic interior to c3, so
that
(4) Plx)= G(2) = Ble) 4 (2);

here the radius of the circle ¢* is to be slightly greater than e=?7¢ while the
radius of the ecircle ¢; is to be slightly less than e?7¢,
From (4) we have

(4 a’) g:, Z bu a/g

n

Let 7 >j. In the second member b;;(2) =0 for ¢ > A so that Z Z In the
latter sum the subsecripts of the a;;(z) satisfy the inequalities
A= >3,

thus these a;j(2) are zero. Hence (4a) is satisfied for ¢ >j. For ¢=7; we
should have

(4b) I—Zlb-”‘ a“ (1,':1, n)
The equations (4b) are obviously satisfied since b;;(2)=1o0 (> 1), ai;(&2)=0

(A >¢) while b;;(2) =a;:(¢)=1. It remains to consider (4a) for z <j. These
equations take the form

{4¢) gis(e Zbu_ Daijle) @G<j;4j=1, ...n)
They will be grouped, for 6 =1, 2,..., as follows

itag
(5) gi,iv0 (2 sz; az, i+0(2) g=1,...n—o0).

An equation
9i,iv1 &) = @i 41 (2) + bis41 (2)
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of the set (5; 0= 1) will be solved by letting

ii+1{8)d
(5 0) i1 (£) = - e f g QdE,
2aV 1

Ce

I ¥i,i+1 (:)dg
bf i Z)=— - T T
e ( ) 27 V'*‘ I f 5 Z

1

These are functions of the desired type. The function
(5 b) g iz ()= giiva (2) — biiv1 (2) @inr, i42 ()

is consequently known and analytic in a closed Laurent ring (¢}, ¢2) slightly in-

terior to the ring (c;, ¢,). The set (5; 6= 2) can be written in the form
(5¢) 9% i+ () = @i, 142 (2) + by ita (2)
(=1, ...n—2)

Solutions of this set, of the desired kind, are obtained by writing

rale) = L [ L B)AC
5 o i+2(2) 272V —1 f t—z

2
2

niva (0 d g
bi, i+2 (Z) = : f q—,;z—(ﬁ)ﬁl

o -
2aV —1 s —Z

2
C]

Suppose that desired solutions of (5) have been obtained for =1, 2,...m—1,
with reference to a Laurent ring (¢!, ¢™'), slightly interior to the ring

(¢1, ¢). As a consequence, the function

(6) gZLH.m (Z) = g,', i+m ('Z) + [bz, z'+1(Z) ai+1,i+m (Z)

+ by a0 (8) @ivo,i4m (8) + - F By ivm—1 (2) Gigm—1, i+m (¢)]

will be known and analytic in a closed ring (¢™, ¢?), interior to (¢!, ¢™1).

The set (5; 6 =m) can then be written in the form

(6 a’) g;tli+m (‘Z) = ai, i+m (Z) + bz‘, itm (Z)

(t=1,...n—m)
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and can be solved by writing

(6 b) a; i-{—m(@'):’ 1 f g:}1+m(C)dC’

I 9”+m(§)d§
e

Thus the mafrix equation (4) may be considered solved as required. The
elements of A(z) will be analytic for |2| = ¢?7¢ and those of B(z) will be ana-
lytic for [z|= e 27 (0 >¢>o0). In virtue of (6b) the a;;(x) (= ai;(2)) are of
period wunity, analytic for Jx = — ¢ and of the form

(7) aij (x) — e?ﬂV-—_l Ciijz a;“] + o
(a:;, integer, = 0; Jz = — ¢

where the second member is a convergent series in positive powers of g2V 1w

Similarly,
78) Bij(a) = 22V =1 Biju gt 4.

(8ij, integer, = 1; Sz = ¢)

where the second member is a series in positive powers of e27V =1z Conse-
quently, the o;;(x) are proper in an upper half plane, and the B;;{(x) are proper
in a lower half plane’.'! That is, in suitable regions

(8) ij(x) ~ eV ez gl
(s, integer, = 0; Jx=—¢; @ii=0; a¢f1=1;2,J=1, ...n),
(8 a) Bij(x) ~ _mﬁ{smmﬂw
(8:5, integer, = 1; Sz =¢; fra=o0; fii=1;2,J=1, ... n)

1

Besides, (e;;{(x)), (8:;(x)) are half matrices. It can be easily shown that (e ;(x))~
(= ((esj(x)) also is a half matrix, with elements analytic for Jo =— ¢ and pro-
per in an upper half plane;

! The meaning of the latter term is made obvious by analegy to (Def. 5: § 1), which was
given for an upper half plane,
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(8 b) (@) ~ 2V ez af
(@:j, integer; Jz =— ¢; @ =0; aji = 1).
Examine the situation when

(9) NQo(x) =" =N Q)

(6 < j; x on negative axis of reals).

In this case, by (2a), it would follow that along the negative axis, and hence
identically,
(9a) Pim(r) =0 (t<m; o0=¢,m=j).

It will follow that gj—,; (2) (= g’j—1,j(2)) = 0 so that, by (5 a),
81,5 (8) = bj—1,5(2) = 0.

If 6 <j—2, by (9a), gji-2,j(z2) = 0. The relations
gi—2,7(2) = aj1,5(2) = 0

would imply that gl (¢} {see 5b) is zero. This, in turn, would mean that
j—2,j(2) = b, j{e) =0 (see (5 d)).

By induetion, it could be shown without diffieulty that (9) implies the relations

(10) 5, (@) = tpy1,5(x) = = aj1,; () =0,

B35,i(2) = Bos1,5(@) = = i1, ()

(l

0.

These relations would necessarily follow if in place of (9) it were merely assumed
that
(10a) RQ (@), RQj—2@), .. R @)=k

along the negative axis of reals.
Now, for s=1,2,.. .,

Jte—1
(1 1) Z 671',,1(23) i, i+s (»’C) + @i i4s (x) + @i its (xr)=o0
A=i+1

(t=1,...n—23s).

Suppose (10) holds. By (11; s=1)
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(11a) a1 (X) = — ;141 () G=1,...n—1)

so that, since @, ;(x) =0, we have @1 j(x)=o0. By (11; s=2), for ¢=
=1, ...n— 2,

i iva () + asive (@) + @i i1 (@) @i, 042 (@) = 0.
Thus

2,5 (o) + @j—,5(x) + @j,5—1 (x) @, (®) = 0

so that, if in (10) ¢ =j — 2, necessarily ¢ ;(x)=0. By induction it follows
easily that the first line in (10) implies that

{12) o, i () = tgy1,j{) = - =ajy j{x) = 0.

Thus, (10a) tmplies (10) and (12).
Consider the matrix Z(x) (= 2, (x)) defined by the relations

(13) Y () (e (@) = Y(@) (B () = Z ().

This is apparently a matrix solution. Its elements are analytic in K (= (1)+[1]).
This follows by (2) and in virtue of the relation (4),

P ()= (8:; () (e (@))-

For z in K and Jx =— ¢, on account of (1 a) and (8b),

(13 a) 2:5 () = %' [tij(x) + f’;P(lx) + n;(x)],
J—1 —_ U
(13 b) 7‘”'(:6): 2 eQu(x)HnV—laUz ( t,-;.(x) + T:;’SCE)) (&71 + )

A=1

Here ¢ ;(x) denotes s;;{x) with the power series factors terminated after % terms
(£ sufficiently large); for a fixed % the I'(x) are bounded in K for Jx=—ec,
while %, can be made arbitrarily great by taking % sufficiently great. The RQ;;(x)
(A=1, ...j— 1) are non-increasing, in virtue of (1), as z —  along the nega-
tive axis of reals. In fact, at least for |x] sufficiently large, the inequalities (1)
would imply that, for « in K in a strip

IA
A

(14) o=Jz=d (o < d),

wa have

(14 a) RN =RLE@E==RQ),;
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moreover, (14) will hold, in K, in a wider strip
(14 b) —d=Jzx=d

if (1) is maintained throughout K.

If N Q—1j(x) approaches — % along the negative axis, the same will be
true of the R Qs; (x) (=1, ...j— 2), and, more generally, this would be the
situation in a strip (14) or (14b), as the case may be. Thus, if N Q) ;1 (z) is
not bounded along the negative axis of reals, all the exponential factors in (13 b)
will diminish rapidly enough, as z —o in K in the strip (14), to insure the
asymptotic form

(15) 2ij (@) ~ 9%

si; ()

in this strip. If N Q) ;— (x) is not bounded along the negative axis of reals and
(1) is maintained in K, (15) will hold in the strip (14 b).
Suppose that the functions

N Qi1(@), NQj (), ... NQolx)

are bounded along the negative axis of reals. In view of the statement in ita-
lics, following (12), it is clear that (12) will hold. Thus, if 6=1,

rii{x) = o.

On the other hand, if o> 1

I

(16) rij(x) =

ii

1

The exponential factors in the latter sum may be supposed to approach zero in
the strip (14 a) (or in the strip (14 b)). Consequently the asymptotic relation (15)
will certainly hold in the strip (14), in K. It will be maintained in a strip (14 b)
if (1) holds throughout K.

Consider all those curves which lie in I' and satisfy equations

(17) R(Qjlx) + 27V —1ajz]=o0 e <)

formed for all such ¢ and j that R @,;(x) approaches — « along the negative
axis of reals. Let B" denote the lowest of these curves. In the case of no
curves (17) in I" we let B* denote the right boundary of I If the limiting
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direction of B% is that of the negative axis of reals, this curve will be neces-

sarily of the form
(17 a) v="h(—wr+ - @=wu+V—1v; h>o0; 1 >¢ >o0).

Let B* denote some curve in I', to the left of B%, with a limiting direction
slightly different from that of B if B is not of the form (i7a). In the con-
trary case let B* satisfy an equation

(17 b) v=h(—u) (e, > e > o).
In any case B* is to be in I

We shall have
(18) Z(x) ~ 8 (x)

in the closed region K" consisting of the part of K bounded below by the ne-
gative axis of reals and bounded above by the lower one of the two curves B’
(upper boundary of K), B*.

If the ordering (1) is maintained in K the relation

Z (@) = Y'(x) (8: ()

may be used to show that (18) holds also in a closed region K' consisting of
the part of K bounded above by the negative axis and bounded below by a
curve B', lying in £, or by the lower boundary of K. The curve B! is to be
considered as determined with reference to the set of equations

R(Qj@) —2aV —18;2]=0 (¢ <j)

just as B* has been specified on the basis of the equations (17).

Consequently the following has been made evident. Given malrix solu-
tions Y*(x), Y'(x) proper in (1) and [1], respectively, there exists a matrix solution
Z(x), with elements analytic in K (= (1) + (1)), such that Z(x)= Y*(x) P*(x) =
= Y!(z) Px). Here P*(x), P'(x) are half matrices consisting of periodic functions
proper in an upper and lower half plane, respectively. Moreover, Z(x) may be so
constructed that Z(x) ~ S(x) in a subregion of K, extending from the negative axis
upwards (or downwards) at least to a curve of form v=h{(— wf. In the latter
equation h is positive (or negative) while 1 > e >o. In particular, if the negative
axis is not B’ curve, Z(x) ~ S(x) in a sub-region of K (or in K itself), extending
Jrom the negative axis wpwards and downwards at least to curves of the form

11—32511. Acta mathematica. 60. Tmprimé le 3 septembre 1932.
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v=h(—u)f (h real, £0; 1> e > 0).

It is clear that analogous facts will hold with reference to quadrants, above

and below, the positive axis, to the right of the axis of imaginaries.

§ 11. The Converse Theorem.

In this section the problem, inverse to the one solved in the Fundamental
Theorem, will be considered. The result, in this connection, will be embodied
in the theorem.

Theorem III. ILet
(1) e @ s (z), e sy (x), ... e s, (2)

be a linearly independent set of formal series where the Q;{x) and the formal
s-sertes s;(x) (=1, ...n) are of the same general description as might occur in con-
nection with a difference equation of order mn. Let R, R,, ... Bs, Beg1, ... be
the set of consecutive regions, formed with reference to the set of Q;(x) (j =1, ... n)
as on the preceding pages. Let two such consecutive regions have at least a strip
of, say, wnil width in common.

Let there be associated with each region R.(s=1,2,...) a set of n functions

(2) ¥ (@), i (=), ... ¥ (@)
analytic tn R, and such that
(2 a) yilw)~ e4Ws ()  (j=1, ...n; 2 in R

Assume that, for s=1, 2, ...,
(2b) Y (@) = Z ¥+ (z) Pyt (x) (=1, ... n)
i=1

where the pf’j““(x) are of period one.
It will necessarily follow that there exists a difference equation of order n

(3) Liyy=ylxz+n) +a@y+n—1)+  +a@ylx)=o,

with coefficients of the same kind in the complete neighborhood of infinity as postu-
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lated in § 1, possessing the following properties. The series (1) will constitute a set
of formal solutions of (3). Each set (2) will be a fundamental set of solutions
of (3).

Proof. Form the determinant

ly(x+9z), yi{x + n), Yzt on)
W) D) = yle+n—1), yile+n—1), ...¢fx+n—r1)
y (@), ¥ (x) oy ()

=d(@ylz+n)+ E@ylx+n—1)+ -+ d @)y ).
On account of (2a) and of the linear independence of the series (1),
d3 (x) = o, d?(x)=o0.

The coefficients df (x) (j=o,1,...n) are analytic in R,. They will be asymp-
totic, for = in R,, to the formal series obtained by replacing the elements in
the determinants, expressing these coefficients, by corresponding formal series.
Thus write

(4 2) di () ~ e@ @+l g ()

(J=o0,1,...n; z in Ry

where dj(x) is an s-series. Now the logarithms in the s-series of factors in
(1) and the @;{x) enter in such a Way that it is possible to combine the co-
lumns in the mentioned determinants so that the logarithms will not enter in
the dj(z) (j=o0,1,...7%). On the other hand, if we write

(5) q;f(w):d' ) (s=1, ...n),

we shall have a}(z) analytic in R, (for |z| sufficiently great) and

(5 b) a3 (x) ~ a;(z)

U=1,...n; xzin Ry; a’(x) =0; s=1, ... n)

1
where the formal series ¢;(x) are in negative powers of 2P (p, positive integer)

with, possibly, a few positive powers present.
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Noting that
¥ (x + #) N A G )

Yle+n—j+1)

(—1Ydi(z) = ¥ le+n—j—1)

Y, ()

and combining columns, having (2 b} (with s replaced by s — 1) in view, we con-
clude that
Q &5 (2) = =+ (&) &t (2)

(j=o0,1,...n;, s=2,3,...; pPV*(x) periodic, = 0.)

If B; and E,—; have a strip along the negative axis of reals in common, neces-
sarily p*~'%(x) is analytic near the real axis. Otherwise, R, and R,—; will have
a strip in common extending indefinitely upwards (or downwards) from the axis
of reals. In this case

(),

in virtue of periodicity, is analytic in an upper (or lower) half plane.
By (5) and (6)

(7) as(x) = a;(x) (j=1, ...m;8=2,3,...).

A function a;(z), defined as the analytic extension of, say, aj(x), will be analytic
in virtue of (7) in each of the regions

Rl, .R2, e e
Moreover, the asymptotic relations
(8) aj(x) ~ aj(x) (=1, ...7)

will be maintained in these regions.
The equation

(9) Laly)=y(z+n) + a,(@)yle+n—1) + - + ala)y(x) =0

will be actually of order » and with coefficients of the required type. KEach of
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the sets (2) will be a fundamental set of solutions of (9). This follows from the
form of the determinant expression for the operator L.(y). In view of (2a)and
the definition of the axx) (=1, ... %) in terms of the y:(x) the series (1) will
formally satisfy (9) in R;, R,, ... The proof of the Theorem is thus completed.

§ 12. The Related Riemann Problem.

Let T(x) (= (4™ t;j(x))) denote a matrix whose elements are those of a

formal matrix S(z) (= (¢%"”s;;(x))) with the power series factors terminated after
a number of terms. Suppose that S(xz) has the general character of a matrix
of formal solutions which might occur in connection with a difference system of
order n, of the type indicated in § 1. The set of Q(x)'s,

(1) Qu(x), ... Qulo)
defines a sequence of consecutive regions
(2) R, R,,...Rn (|z| > o> o),

as indicated on the preceding pages. For definiteness suppose that R, is the
lower one of the regions constituting the quadrant

7T
—eZargxr =— + ¢.

N

The regions (2) will cover (outside the circle || = ¢) the extended complex plane
over the range

(2a) —¢e¢=argx=2np + ¢,

where p is a suitable integer depending on the @;(x). When a particular region
R is considered it is essential to keep in view the corresponding range of arg x.
As we proceed in the counter clockwise direction, let BY denote the last one of
the boundaries of R, encountered. In R, a fixed determination of T'(x) will be
supposed as given. As a consequence, T(x) will be known uniquely in each of
the regions (2). For z in R, in the neighborhood of B™ (a portion of a line
Jz=c¢>o0), the Q;(x) (=1, ...n) will correspondingly be the same as in R,.
On the other hand, the #;(x) may be different. The latter situation will take
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place if a factor "/ has r;; not equal to an integral multiple of 1/p or if there
are logarithms present in some of the #;(x).
Assume that associated with B® we have a matrix

(3) Poetifa) = (pge (@) b=1,2,..),

consisting of elements of period ome. Suppose that P%*!(z) has the general
character of a matrix of periodic functions which might occur, as indicated on
the preceding pages, in connection with a different system of order =, formally
satisfied by S(z). More specifically, the following is assumed.

The pp*t(x) (i,j=1. ...n) are proper, unless B* is a portion of a line parallel
to the axis of reals. In the latter case they are analytic in a strip along the axis
of reals. Along B* (and within a limited distance of BF), in the vicinity of x = oo,

(3a) A% ) = (af* 1 (@) = Tla) P+ () T () ~ 1,

while the derivatives of all orders of the matriz A%*T1(x) are asymptotic, along B®,
to zero.

The following theorem will be proved.

Theorem 4. Let T(x), the corresponding regions (2) and the matrices (3) of
periodic functions,
Posti(g) (s==1,2,...),

be given. Concerning these periodic functions assume the statement in italics pre-
ceding thes theorem.

There exist then matrices

(4) Y, (x), Yy(x), ... Yz, ...
such that
(5) Yo(z) = Yepr(a) P ot () (s=1,2,...).

Furthermore, for x in R, the elements of Y (x) will be analytic (save at x = )
and | Ys(x)| = o, while

(5 a) Y.(z) ~ S(z) (x in Ry).

The exponential factors e2® | occurring in the elements of the formal matriz S(x),
are correspondingly the same as in the matriz T'(x).
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Proof. For the purpose at hand the following theorem established by
Birkhoff ! will be used.

‘Let C,,...C, be r simple closed curves in the extended complex plane.
Let A,(x), ... A+(x) be matrices of functions defined and indefinitely differentiable
along Cy, ... C, respectively, analytic save at a finite number of points of these

curves and of determinant not zero. If furthermore at any point of intersection
of C., O the matrices Au(x), Ag(x) are such that the formal derivatives of all
orders of the matrix

(6) Aolx) Aglx) — Aplx) Aulx)

vanish, there exists a matrix @(z) with the following properties:

(1) each element of @(x) is analytic except along C,,... C, and at an
arbitrary point z =« where the elements may become infinite to finite order;
| @(x)| nowhere vanishes save possibly at x = «;

(2) the elements of ®(x) are continuous and indefinitely differentiable along
each curve O, from either side, analytic from either side save at points of inter-
section of - the curves, or at those points where an element of A;(x) fails to be
analytic, or at z=ec; if « lies on a curve (, the matrix (x— o) 4:i(x) [or 2" 4,(x)

if = o] is indefinitely differentiable along C; for a suitable [;

(3) if a + and -- side of each curve C; are chosen, then,
() lim @(x) =[lim @(x)] 4:(x;) (G=1,...7)

where the approach to the arbitrary point x; of C; is along the + and — side
respectively.’

The curves C; may be subjected to weaker restrictions and may extend to
infinity. Thus, for instance C; (s=1,2,...), may be defined as consisting of
B up to a point on the circle |x|= g; inside of this circle a portion of C; will
consist of a curve I®, through z =0, joining the mentioned point on the rim
of the circle with another suitable point on the rim of the circle; from the latter
point on, C; will consist of a curve B* extending to infinity (and analytic in
every finite part of the plane); moreover, the component parts B*, I°, B of
will be supposed so joined that (s is a simple curve with a continuously turning

! Cf. II1. Methods developed with a view of application to the classical Riemann problem,
can be found in papers by Hilbert (Gott. Nachr., 1905, pp. 307—338) and Plemelj (Monatsch. f.
Math. u. Phys., 1908, pp. 205-—246).
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tangent; furthermore, if the limiting direction of B® is «; that of B is to be
considered as ¢, + sr; finally, the several curves (; are to have points in common
only at =0 and at z= 0.

The matrices 4.{z) may be defined as follows. Along B*

(8) Aulz) = A%+ x);
along B
(8 a) Ag(x)=1.

We take ¢ sufficiently great. On the other hand, along I° the elements of A.(x)
are defined so that the conditions of the above theorem of Birkhoff hold with
respect to A(x). Thus, except at infinity, the elements of A.(x) are analytic
along C; for |x| > ¢; for z on C;

| A:(x)| # 0.

The condition stated with respect to (6) will certainly hold at x =o0. In the
neighborhood of =0 the elements of the matrices A (x) may be so determined
that this condition will hold at x =0 as well.? The point x =« will be sup-
posed to lie interior the circle |z|=¢.

There will exist a matrix @(x), with elements analytic for |z| > ¢ except
along B', B* ... and except at z==ce, such that |@(x)| > o (|z|>¢). Along
each curve B® the elements of @(x) will be analytic from either side (for |x| > o,

and excepting x =). Moreover, for z; on B,

(9) 1im+ D(x) = [lim @(x)] A%+ (z,).

ZE-'—'QS x—-xs

Here A%%*'(x) is given by (3a). The + side of B* will be taken corresponding
to an approach from the interior of R;. The asymptotic form, at x =, of
@(z) will be the same along both sides of B’ since A%*+!(x)~ I. Thus, there
exist matrices

(oa) Uylz), Uz, ...

! Determination of As(x) as stated, involves an approximation problem a solution of which
had been given by A. Besikowitsch (Mathematische Zeitschrift, Band 21, Heft 1/2, 1924). Another
solution had been given by Trjitzinsky. (Cf. forthcoming paper ‘Approximation by analytie fanc-
tions with prescribed derivatives’ to apper in the Am. Jour. of Math.).
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such that the elements of Uy(x) (s=1,2,...) are analytic (save at x =) in R,
and such that | Us(x)| # o (|| >9) in Rs. Moreover,

(9b) Us() = Usyr(w) 4551 () (s=1,2,...).

It is evident, in the light of the papers referred to above and treating Riemann
problems, that the elements of Us(x) (s=1,2,...) behave at infinity essentially
as rational functions. For z in R

(9c) Us(x) ~ Ulx) = (us{x)) (s=1,2,...).

Whether the elements of the formal matrix U(x) can be made to be formal
s-series is left, for the present, undecided.
Write

{10) Ys(x) = Uglx) T(x).

Then (5) will hold. Moreover, for = in R,

Us(w) T(x) ~ (mj ()) (le(“)tij ()
= S 2 u,), t)_]

It follows immediately that the theorem is true.

In a futare paper one of the present authors (Trjitzinsky) proposes to
develop the analytic theory of linear difference equations with rational coef-
ficients which is a case of particular interest in which more special results can
be obtained. Here it would be desirable to find those 'principal solutions’ which
stand out because of their peculiar analytic simplicity and to formulate the
corresponding Riemann problem. The same author proposes also to develop in
an analogous manner the analytic theory of g¢-difference equations and of the
ordinary linear differential equations.

12—-32511. Acta mathematica. 60. Imprimé le 19 novembre 1932.



