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1. Introduction and the main results 

Let X be a separable Banach space (real or complex). A sequence (x~) of elements of X 

is called a (Schauder) basis iff every element of X can be uniquely written as a sum of a 

series Ent~X n, where the tn's are scalars. X is said to have the bounded approximation 

property (BAP) iff there exists a sequence (A n) of finite rank operators on X such that 

limn I~n x-x[[=O for x E X, i . e . / x - - the  identity operator on X--is  a limit of a sequence 

of finite rank operators in the strong operator topology. Also recall that X has the 

approximation property (AP) iff I x can be approximated by finite rank operators 

uniformly on compact sets. It is clear that 

X h a s a b a s i s  ~ X h a s B A P  =~ X h a s A P  

The fact that the converse implication to the second one does not hold in general was 

discovered by Figiel and Johnson [8] soon after Enflo's example [7] of a space without 

AP. The main purpose of this paper is to show that also the implication "BAP=~basis" 

does not hold in general; this answers problems asked by a number of authors (e.g. 

[14], [18], [27]). Before stating the result, we recall more notation. For a given basis (x n) 

of X one denotes by bc (x n) (the basis constant of ix~)) the smallest K such that 

[[E~= 1 tnXn][<<.K[l~M=l tnXn[ [ for all N<<_M and all (tn); one further denotes 

be(X) =inf{bc(xn): (xn) a basis of X). 

(I) Supported in part by NSF grant DMS-8401906. A preliminary version of this paper was circulated as 

a preprint [33]. 
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X is said to have the local basis structure (LBS) iff X=LInE~, where E~cE~+ 1 are finite 

dimensional subspaces of X with bc (E~)<.C, C a universal constant (this concept was 

studied under the name "finite dimensional supspace basis property" by L. Pujara [24], 

[25], it appears also in [27]; the author learned about it from A. Pelczynski). It is clear 

that if X has a basis, then it has LBS. Now we can state 

THEOREM 1.1. There exists a separable superreflexive Banach space with the 

bounded approximation property (in fact  with unconditional finite dimensional decom- 

position) which does not have local basis structure and consequently does not have a 

basis. 

Recall that X is said to havefinite dimensional decomposition (FDD) if there exists 

a sequence of finite dimensional subspaces (X n) such that every x E X can be uniquely 

written as a sum of a series Enx n with x~EX~ (or, equivalently, if I x is a limit of a 

sequence of commuting finite rank projections in the strong operator topology). An 

FDD is called unconditional if all series x= E~x~ converge unconditionally. 

Theorem 1.1 shows that the property of having a basis is not inherited by 

complemented subspaces (cf. [14], [20]). Moreover, it follows from Theorem 1.1 and 

[131 that 

COROLLARY 1.2. There exist reflexive Banach spaces X, Y such that both Y and 

X ~  Y have bases but X does not. 

Since, by a result of Grothendieck [12], for reflexive (or separable dual) spaces AP 

and BAP coincide, our argument yields the first example of a reflexive space with AP 

but no basis. The space we construct to prove the theorem is a variant of a space not 

admitting complex structure from [32]. Similarly as in [32]~ the construction uses the 

ideas from [3], [31] and indirectly [10], [30]. The method we present is apparently the 

third (after [7] and [23]) essentially different approach to proving that an infinite 

dimensional space does not have a basis; for finite dimensional analogues see [11] or 

[30]. 

Let us note here that Theorem 1.1 settles also another open problem (asked e.g. by 

Pelczynski in the early seventies): does every Banach space have local basis structure? 

As an illustration of this concept and a motivation for further results we state the 

following observation (to be proved in Section 5), which was known to Pelczynski in 

the late seventies. 
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PROPOSITION 1.3. I f  X contains l~'s uniformly, then X has the local basis 

structure. 

We recall that X is said to contain l~'s uniformly iff, for each nEN, there is a 

subspace F~cX with d(Fn, l~)<~Co, where C o is a universal constant and 

d(E,F)---inf{llTll. IIT-1[I: T: E--->F isomorphism} is the Banach-Mazur distance. 

Let G be a compact metrizable Abelian group, F the dual group and A=F;  denote 

CA={fE C(G): supp f c A } ,  whe re f i s  the Fourier trarisform off .  It is well known that 

every C A has BAP. A recent result of Bourgain and Milman [4] states that either A is a 

Sidon set, in which case C A is isomorphic to ll(A), or C A contains l~'s uniformly. We 

thus get 

COROLLARY 1.5. Every space C A has both BAP and the local basis structure. 

Since it is a well known open problem whether every C A has a basis (and settling it 

in the case A=Z § by Bockarev [1] was a major event), it is tempting to conjecture that 

a separable Banach space with BAP and local basis structure has a basis. This is, 

however, false, as follows from our next results (see [18, Vol. II] or [22] for the 

definition of cotype). 

PROPOSITION 1.5. There exists a superreflexive Banach space X with uncondition- 

al FDD such that whenever B is any Banach space of  coptype 2, then XO)B fails to have 

the local basis structure. 

We postpone the proof until Section 5. Now Propositions 1.3 and 1.5 imply 

COROLLARY 1.6. I f  X is as in Proposition 1.5, and Z=X~(~)~= 1 l~)t2, then 

(a) Z fails to have the local basis structure, hence basis 

(b) Z* has the local basis structure (and, obviously, BAP), but fails to have a 

basis. 

This shows that in general it may happen that Z has LBS while Z* does not, even if 

Z is reflexive and has BAP (cf. Remark 4.2). There is, however, a related concept, 

which is inherited--at least in the reflexive case,--by dual spaces and which we will 

now identify. We will say that a Banach space X has the local H-basis structure 

(LIIBS) iff there exists a sequence ELSE2 c ... of finite dimensional supspaces of X and 
onto 

a sequence of projections (Pn),Pn:X--->En, such that X=LInE~, supbc(E~)<oo, 
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sup~ IIP~I[<~ (this was called "a  By-space" in [25]). It is clear that if a space has a 

basis, then it has LHBS and that if it has LHBS, then it has BAP and LBS. We thus 
have 

COROLLARY 1.7. The reflexive space Z ' f r o m  Corollary 1.6 has FDD and the local 

basis structure but fails to have the local H-basis structure. 

All things considered, the right and natural question to ask in this direction is: 

Problem 1.8. If a separable Banach space has LHBS, does it have a basis? 

In other words, can we redo---for spaces with a basis instead of l~'s---the part of 

the theory of ~p-spaces corresponding to [14, Theorem 5.1], even though we can not 

redo the part corresponding to [17, Theorem III(c)]? Notice that the methods of  [14, 

Theorem 4.1, Lemma 4.2] show that, at least in the reflexive case, i fX has LHBS, then 

it has an FDD, say (Xn), and, moreover, we can assume that E~=X 1 +X2+... +X~ works 

in the definitions of  LHBS. A positive answer to Problem 1.8, however unlikely, would 

add significance to the following. 

Problem 1.9. Does every space C A have LIIBS? 

The papers [2] and [5] are relevant here. Probably a more interestingmand better 

known---question than Problem 1.8 is the following: Does a separable space with BAP 

have an FDD? Again, at least in the reflexive case, this reduces to: can we in the 

definition of BAP additionally require that the Tn's are projections? The reader may 

consult [27] for a list of related problems. 

The organization of the paper is as follows: 

Section 2 lists known facts and preliminary results. 

Section 3 contains the proof of our main technical result, Proposition 3.1. 

In Section 4 we deduce the real version of Theorem 1.1 from Proposition 3.1. 

Section 5 contains the proof of Proposition 1.4, additional results, remarks and 

some open problems. 

Finally, in Section 6 we show how to obtain the complex version of Theorem 1.1 

and present some of its strengthenings. 

We use the standard Banach space notation as can be found e.g. in [18]. The less 

widely used concepts are explained where they appear for the first time; the reader may 

also consult [32, Section 2]. To avoid unnecessary repetitions let us agree that 
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C, c, c', c~ etc. will denote universal constants while e.g. c(6) will denote a constant 

depending only on a parameter 6. 

2. Known and preliminary results 

We start by introducing some notation. We say that a normed space satisfies the 

Grothendieck theorem with constant C iff ~I(T)<-CIITII for all TEL(X, Y) where ~p(.) 

denotes the usual p-absolutely summing norm (see [18, vol. II, p. 63-64]). If H is an 

inner product space and TEL(H) is compact, we denote by (sj(T))~i~ H the sequence of 

s-numbers of T (i.e. the eigenvalues of ITI ~f(T*T) 1/2, counted with multiplicity and 

arranged in the nonincreasing order). We also define the quasi-norm 

IlTllco=~jmin {sj(T), 1); II'llco satisfies the triangle inequality (see [6, Proposition 16]), 

but is not positively homogeneous. In [31] and [32] we used a somewhat different I1 Ilco, 
which, however, differs from the present one by a factor of at most 2. 

Let us recall the following result from [31, Theorem 1.5], which was stated in the 

present form in [32]. 

THEOREM 2. I. Given ~ E (0, 1) and n E N there exists a norm II" II on R ~ such that if  

X--(R", I1"11), then 
(i) X is isometric to a quotient of  l~ with N<~2n, 

(ii) 1t'll2~<llll~<ll -tl1~<nl/211-1tz (equivalently, -1/2 , ~ n B2=B1=B(X)=B2, where B(X) is 

the unit ball o f  X and B~ the unit ball o f  l~), 

(iii) [vol(B(X))/vol(n-lnB~)]l/'<~8, where vol(.) denotes the usual Lebesgue 

measure in R n, 

(iv) X satisfies the Grothendieck theorem with constant C, 

(v) if IITIIL( <-C(6) n tn, then IIT-ZIIIco<.On for some 2 E R. 

Recall that i f  TEL(Y ,Z) ,  then one denotes y2(T)=inf{llAll "IIBII:AEL(Y,12) , 

B E L(l 2, Z), BA = T}. We have the following 

PROPOSITION 2.2. Let X=(R ~, II'll) be the space from Theorem 2.1 (for some 

6E(0, 1), nEN) and let aE(O, 1). Then there exists a subspace XocR n, codimX0~<an, 

such that 

IiTxi]2 ~< co(a) r2(T) n-l/2]ixI]2 for x E X  o. (1) 
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In particular HTllco<.(a+Co(a) y2(T) n -1/2) n. 

Proof. Clearly it is enough to prove (1), as it implies that at most [an] s-numbers of  

T are ~c(a)Y2(T)n -1/2. To this end, choose X I c R  n, codimX~}an, such that 

c,(a) n~/211xll 2 ~< Ilxll ~< nt/211xll2 for x E X 1. (2) 

This can be done since, in the terminology of  [34], (ii) and (iii) of  Theorem 2.1 mean 

that the "volume rat io" of  X with respect  to the ellipsoid n-~/ZB~ does not exceed 8 and 

so we can apply [26, Theoreme 8] or [29, Remark 2]. Now set Xz=X t n T-IX1, then 

codimX2<~an. Choose A:X---~12, B: 12-->X such that BA=T and IIAII'IIBII--~'2(T) �9 By 

Theorem 2.1 (iv), 

' :r2(T) ~< :q(T) ~< :rl(A)-Ilnll <~ Cllmll" Ilnll = c72(T) 

and hence also :r2(TIx2)<.Cy2(T). Now, by (2), 

:r2(Z: (g2,11"112) --, (x2, I1 112)) = hs (Zlx 2) ~< cl(a)-~.Cy2(Z) 

(here hs (S)=(Ej. [sj(S)]2) u2 denotes  the Hilbert-Schmidt  norm; it is well known that for 

operators on a Hilbert  space :r2(.)=hs (.)). It then follows that at most an~3 of the s- 

numbers of  Tlx 2 are ~ c l ( a )  -I .C.~,2(T), which proves (1) for some XocX 2 and 

Co(a)=x/ 3/a c,(a)-!.C. 

COROLLARY 2.3. Given nEN,  bE(0 ,  1) and qE[2,  oo] there exists Yq=(Rn, ll.II (q)) 
such that 

(i) Yq is isometric to a subspace of  INq with N<.2n 

(ii) if IISIIL(r,)~<c'(~)n l/2-uq, then IIS-Xlllco<.~n for some 2 E R 

(iii) if aE(O, 1) and TEL(Yq), then 

IlZllco <~ (a+c'o(a) Y2(T) n ttq-l/2) n. 

Proof. If  q=oo, then Corollary 2.3 follows by duality from Theorem 2.1 and 

Proposition 2.2. Indeed, set Y| then (i) follows from Theorem 2.1(i). Since 

IITIIco=llZ*llco (duality induced by the usual Euclidean structure), 

y2(T*: Y| ---> Y| and IIS*llur~)= IISIluJo, 

(ii) and (iii) follow from Theorem 2.1 (v )and  Proposition 2.2 respectively. 
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If  q E [2, oo), we set Yq to be the same linear submanifold of  R N as Y=, but 

endowed with the /q~-norm rather than /Z-norm. (i) is then automatically satisfied. 

Since Ilxll~<.llxllq<~N'/qllxll~<.21/qn'/qllxll| (ii) and (iii) follow from the corresponding 

statements for Y=. Let  us also remark that for q=2 the assertion of  Corollary 2.3 is 

trivial. 

We will also need 

LEMMA 2.4. Let f iE(0,1),  nEN.  I f  TEL(I~) in such that IlT-~llco<<.fln, then 

[IT2-~lllCo~3fll/2n. 

Proof. Since IIT-~lco<.fln, at most fll/2n s-numbers of  T-~, /are  ~flu2 and so there 

exists a subspace EelS, codimE<~flU2n, such that 

IlZx-�89 <.~'/211xll~ ' for  gEE. 

Let E~=En T-~E, then codimE~ <.2fl~n. Now 

T2-~l = T(T-y)+�89189 

and so if x E E 1 (hence Tx-~x E E), then 

Ilr2x-~xll2 <-IlT(rx-~x)llz+�89 rx-~xll2 ~< [(�89 [Ixll2 -- (fl_l_fll/2)[[X[12" 

Therefore 

IiT2-~Ilico <~ 2flU2n+(1-2fl '/2) n(fl +fl '/2) < 3flV2n, 

as required. Of course this is not meant to be optimal, a more careful argument yields a 

bound (6+In (1/fl))fln. 

3. The "local" result 

Recall that a normed space Z is called D-Euclidean iff the Banach-Mazur  distance 

d(Z, ldirnZ)<~O. I fZ,  Z' are normed spaces, we denote by Zff)2Z' their direct sum in the 

/2-sense, i.e. endowed with the norm [l(z,z')ll=(llzI[2+llz'[I2) u2. We are now ready to 

state our main technical result, which appears to be of independent interest. 

PROPOSITION 3.1. Given n EN and qE[2,  ~] there exists an n-dimensional sub- 
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space Y= Yq o f  Lq such that whenever F is a normed space such that all n-dimensional 

subspaces are D-Euclidean, then 

bc ( Yff)2 F) >~ cn(I/2)(1/2-11q)D -I/2. 

In particular bc ( Y@)212) >~cn~ w2-l/q). 

Proof. Let Y= Yq be given by Corollary 2.3 (6 will be specified later). Let (x i) be 

any basis of Y@)2 F. Denote b=bc(xj) and, to argue by contradiction, suppose that 

b < cn(I/2)(l/2-1/q)D -I/2 (3) 

(c to be specified later). Given m<~M=dim(Y~F) (possibly M=~), denote byP,~ the 

mth partial sum projection: Pm (E~I tjxj)=ET=l tjxy; then of course b=suPm IlPmll. Con- 

sider the matrix representation 

[ Sm ] Y Bm 
Pm= A,, C m F 

i.e. S m is a (linear) operator on Y, Ams etc. Clearly 

IIs,~IIL~ ~< b < cn(l/2)(l/2-1/q)o -1/2 ~ C'(O) n l/2-1/q 

by (3), if c is chosen so that 

c ~< c ' (0)  (4) 

(actually for any c if n~n(c, 6, q)). Hence, by Corollary 2.3 (ii), IIS,~-).mlllco<<-6n for 

some 2mER; we can certainly assume that IlSm--;tmlllco=infxeRIISm--;~IIIco. Clearly 

20=0 and 2 u = l  (or limm__,~o2m=l if M=oo). Notice also that since Pro+l-Pro is a rank 

one operator, we have also rank (Sm+l-Sm)~<l and so IISm+l-Smllco<.l. Consequently 

(]~'m+ I--'~m] A 1) n = II'~m+, I-L.1HCo <~ IlSm+ l-~.,, +,/llc0 + IIs~--~m~qlco+ IlSm+l-Smllco ~26n+ 1 
and so ];tm+l--2m]<36 provided that 

6 ~< 1/3 (5) 

and n>~6 -l. Since it is clearly enough to prove the proposition for sufficiently large n, 

we only need to worry about the condition in (5). It now follows that there exists k<~M 
such that [2k-�89 (choose the smallest m such that 2,,~>�89 then k=m or k=m-1 
works). Hence 112kI-~lco<Z6n and so tlSk-�89 By Lemma 2.4, 
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IIS~-llllco~ 3 V ~  n. 

Since Pk is a projection, _ 2 2 Pk--Pk and so Sk=Sk+BkA k. Consequently 

~I = (S~-~l)+ Bkak-(Sk-�89 

and 

In--IlYllc0 ~ < IIS~--Yllco+llSk--�89 �9 (6) 

Now T=BkA k obviously factors through an n-dimensional subspace of F and so 

Y2(T)~<IIBkll �9 IIa~ll 'O<-bzO. Hence, by Corollary 2.3 (iii), 

IlnkAkllco <~ (a+c~(a). b2On l/q-I/2) n < (a+c2c~(a)) n 

(the second inequality follows from (3)). This combined with (6) gives 

1/4 < (3~/3-~+5)+(a+c2c~(a)) 

and if a, 6 and c are chosen so that, in addition to (4) and (5), 

a = l / 1 2 ,  3V~+5~<1/12,  c2<~C'o(1/12)-~.1/12, 

a contradiction is obtained. This concludes the proof of Proposition 3.1. 

Remark 3.2. A similar statement (with different constant c) can be shown for the 

"decomposition constant" of any finite dimensional decomposition with dimensions of 

factors not exceeding n/2 (cf. Proposition 5.1). 

4. Construction of  the space 

If (Wn) is a sequence of normed spaces, one defines the space 

(e ,  wn)t2 = ((w,): ~ IIw~ll2 < ~ } ,  
n 

endowed with the norm I[(w~)ll=(E, IIw,l[2) 1/2. w e  have the following result, of which 

(the real version of) Theorem 1.1 is an immediate corollary. 

PROPOSiTiON 4.1. For proper choice o f  sequences o f  reals qk $ 2 and integers 

n k ~ ~,  the space  Z=(~Y~q~)12 does not have a basis (with Yq's given by Proposition 

3.1). Moreover, it does not have the local basis structure. 

Proof. Define nk, qk inductively I~y 

(1) n l=ql=4 
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(2) if (n), (q) were defined fo r j<k ,  choose qkE(2, q k - l )  such that 
ll2-1/qk~,, ~ 

(a) nk_ t . .~  

and then nk>nk_ 1 such that 
(I/2)(1/2- l/qk) ~ 

(b) n k ~nk_ I. 

Now fix k~>2 and let Z o c Z  be a subspace such that, identifying ~ with its natural 

embedding into Z, we have ~ c Z  o. Then Zo= ~ ~ F, where F c ( ~ . k  Y~)t2" We claim 

that i fE is an nk-dimensional subspace ofF,  then E is n~/_2:Euclidean. Indeed, denoting 

by Qj the natural projection of Z onto the j th  factor, we have E c ( ~ .  k QjE)t2 and 

d(QjE,~imQje)<~(dimQjE)l/2<~n)/2<~nlk/2 , for j <  k 

(by John's theorem), while 

I/2-I/q~+I < 2 hi/_21 d(Qj E, ~im QjE) ~ (dim Qj E)v2-1% << nk ~ for j > k 

by the result of Lewis [15], (I) and (2) (a). Hence, by Proposition 3.1 and (2) (b), 

(112)(1/2-1/q~) 1/2 cnl/2 b c  (Zo) >>- c n  k n k - I  ~ k-1" 

As n k 1' oo, it follows that Z does not have neither basis nor local basis structure. 

R e m a r k  4.2. Clearly the assertion of Proposition 4.1 remains true if we replace Z 

by Z ~  12, Z* or Z * ~  212 (cf. Proposition 1.5 and Corollary 1.6). 

R e m a r k  4.3. The construction we present can be modified to yield a space which 

has all properties of the example from [32]: does not admit complex structure, is not 

isomorphic to the Cartesian square of any Banach space. Also, the space Z from 

Proposition 4.1 is naturally isomorphic to a subspace of a Banach lattice, which is 2 

convex and q-concave for any q>2, in particular is of type 2 and cotype q for any q>2. 

This should be compared with the result of Szankowski [28] that if every subspace of X 

has the AP, then X is of type p for any p<2 and of cotype q for every q>2 and with 

Proposition 1.3 from this paper. Of course, in view of e.g. Proposition 1.5 this is not 

always the case for spaces without LBS, but one can still ask if every such space has 

the "coptype 2 § property. Equivalently, if X contains lq's uniformly for some q>2, 

does X have LBS? 
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5. Postponed proofs, additional results, remarks 

Proof of Proposition 1.4. Suppose that X contains /~'s uniformly, i.e. for each n EN 

there exists FncX , dimFn=n, such that d(Fn, ln)<~Co (C O is a universal constant). Let 

E be any finite dimensional (say dimE=k) subspace of X. It is enough to show that 

there exists Eo, EcEocX such that bc (Eo)<<.C l (C 1 is a universal constant). To this 

end, choose n~>5k2(5k+l) and ~cB(X*), #~:=5 k, which is 1/2-norming for E (i.e. 

maxsE ~ If(x)l ~> 1/211xll for x E E). Let E 1 = F  n fl l i f e  ~kerf,  then the codimension of E l in 

F~ is ~<5 k and it follows that there exists a subspace E2~-E l, dimE2~>5 ~, with 
imE2 L< d(E 2, ld~ )-~C o (use the fact that if G is an m-codimensional subspace of R ~, then G 

intersects nontrivially every subspace spanned by m + l  elements of the standard unit 

vector basis and hence G contains [n/(m+ 1)] "disjoint" nonzero vectors; or one can 

apply [9, Corollary 6.2] with a slightly different choice of n). Since ~ i s  1/2-norming for 

E, the projection of E+E 2 onto E with kernel E 2 is of norm ~<2. Finally recall that, by 

[20], there exists a k2-dimensional space E 3 with bc (E3)~<2 such that E is isometric to a 

subspace of E3, complemented by a projection of norm ~<2; denote by E 4 the kernel of 
k 2 

that projection. Now E 4 is 2-isomorphic to a subspace of 15~ and hence 2C0-isomorphic 

to a subspace E 5 o r E  2. Set Eo=E+Es, then d(E o, E3)~<50C 0 by a standard argument; in 

particular bc (E0)~< 100C 0. 

Proof of Proposition 1.5. We only need to show a version of Proposition 3.1, i.e. if 

n, q, Y, D and F are as in Proposition 3.1 and, say, q~<4 (this is enough for the proof of 

Proposition 4.1), then, denoting Z =  Y~z F~z B and identifyng Y in a canonical way with 

a subspace of Z we have that whenever Y~ZocZ , then bc(Zo)~c(B)nl/2~ -1/2. 

Again let (Pm) be the sequence of partial sum projections for some basis of Z 0 with 

sup m IlPm]l=b. Since clearly Z0= Y~)2Z1 for some ZI~-Fff)zB, we can consider, for each 

m, the matrix decomposition 

Sm ] Y Bm 
Pro= Am Cm Z I" 

To complete the argument as in the case of Proposition 3.1 (see (6) and the paragraph 

following it), we need to show that ~2(BmAm)<.C'(B)'b2D. To this end, observe first 

that Y, being a subspace of Lq with q~<4 has type 2 constant bounded independently of 

q, n. Next, notice that A m takes values in an at most n-dimensional subspace of Z l, say 
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Z2, and then it is easily seen that the cotype 2 constant of Z 2 does not exceed the 

maximum of D and the cotype 2 constant of B. Now for an operator u between a type 2 

and a cotype 2 space we have the estimate y2(u)~C-Ilull (with C being the product of 

respective type 2 and cotype 2 constants; see [22] for the most general fact in this 

direction); since ~'2(nmmm)<--llnmll .Y2(Am)<~b .y2(Am) and HArelip<b, the required estimate 

follows. 

Remark 5.1. An argument similar to, but simpler than, the proof of Proposition 2.2 

shows that if in Proposition 1.5 we replace B by c o (or any ~| we still get that 

the resulting direct sum does not have a basis (nor LFIBS; use Grothendieck's result 

[15, Theorem 4.3]). This was observed during a conversation between Bill Johnson and 

the author and led to Proposition 1.5. We preferred to emphasize the version given in 

Proposition 1.5 as it yields reflexive examples. 

PROPOSITION 5.2. Given n there exists an n-dimensional normed space X such that 

whenever Y is another normed space and A:X---~Y, B: Y---)X operators such that 

BA=I x, then 

dim Y-Ilall" Ilnll" be (Y) I> c ~ , ~  } 

Proof. Let X=(R n, II" II) be the space given by [31, Corollary 1.6]. Then, for any 

TEL(X), 

inf IIZ-Zlllc, -< C[n(1 +In n)3] '/2 IITIIL(~, (7) 

where II.llc=r, jsj~.) is the usual trace class (nuclear) norm. Now let Y, A and B be as in 

the proposition and denote b=bc  (Y). Assume for simplicity that n=2k and dim Y=mk 

for some k, mEN.  Then Ir=r.T=lP j, where each Pj is a projection, rankPj=k and 

IlPjll-<2b. Consequently, Ix=E~IBPjA; denote Tj=BPjA. Then rankTj~<k, 

IIT~ll--<2bllmll" Ilnll and so, by (7), 

} ~  IITF2Illc, ~ 2bCllAIl" Ilnll [n(1 +In n)31 '/2. (8) 

Since rank Tj.~<k, Tj vanishes on a k-dimensional subspace of Rn=R 2k and hence, for 

any 2 E R, 

IITj-~/IIc, ~ kl&l = �89 
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Combining this with (8) we get 

IITjllc, ~ zi~ (llTj-~Illc, + II~IIIc,) ~ 6bCllmll" Ilnll [n(l +In n)3] 1/2. 

Now 

m 

-< II llc, 
Cl j = l  

m. 6bCI[A[I. {[B[[ In(1 +In n)31 '/2, 

whence the proposition follows (remember b=bc (Y) and m=2n -I dim Y). 

Remark 5.3. The assertion of Proposition 5.2 says roughly that if X is "well- 

isomorphic" to a "well,complemented" subspace of a space Y with a "good" basis, 

then dim Y ~C(n/(l+lnn))3/2>>n=dimX. On the other hand, a modification of the 

argument from [20, Remark 2] shows that one can always have [[All=l, [IBI[<~2, 
bc (Y)~<2 and dim Y<(1 + nl/2)3. 

Remark 5.4. An interesting related open problem (which the author heard from A. 

Pelczynski) is whether every n-dimensional normed space X is isometric to a subspace 

of a 2n-dimensional space Y with bc (Y)<~C', C' a universal constant. We get this for 

free if X=Yq from Corollary 2.3. It would be interesting to verify this for X from 

Theorem 2.1. 

PROPOSITION 5.5. / f d im  Y=n and d(u l~)<<.D, then 

bc ( Y(~212) ~ �89 -}-D1/2). 

Moreover, if e>O and N>~C(e) nD, then 

bc ( Y0)2 l~) ~< �89 + e) (1 + D 1/2). (9) 

Consequently, the estimate bc ( u ~cn(l/2)O/2-1/q) in Proposition 3.1 is sharp. 

Sketch of  the proof(cf.  [20], [21]). Let (xj) be a basis of Y such that 

1/2 

for all scalars (tj). Let m=2 s for some sEN and let w=(wo)i,~.= 1 be the m x m  Walsh 

orthogonal matrix, in particular Wil----Wli=m -1/2 for all i. Set N=n(m-1)  and if 
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l<-k<-N+n=mn, say k=(r-1)n+s with l<~r<~m, l<-s<-n, let 
m 

Yk = WlrXs-]- E l'l)tre(s-l)(m-l)+t-l' 
t=2 

where (ej) is the standard basis of l N and Yk E Yff)2 IN. Then (Yk) is a basis of Yt~) 2 l u. We 

claim that bc (yk)~<�89 +e)(1 +D v2) if m~c(e)D, whence (9) readily follows. To this end, 

observe that if k=dn, d<m, then the projection P: E'~mtiYi---~Ektiyi has the matrix 

representation 

21 [2(1-2)]1/2 I 0 ]  Y 

[4(1-4)]1/21 (1-2)1 0 E 

0 0 Q F 

where 2=d/m, Eff)F is some orthogonal splitting of l N with d imE=n and Q is some 

orthogonal projection in F. A standard argument (remember (10)) shows that 

2 
[]PH~ [[2(1-2>]'/2D 1/2 [2(1-2)]"2D"211-2 J Ltt~) =�89 

In the case of general k=(r-1)n+s, we get a very similar matrix representation, e.g. in 

the left upper comer the nxn submatrix 21 is replaced by 

I mol 0 ] span{x j : l~ j~s}  

r-___l_l M span {xj: s <j ~ n} 
m 

and consequently its norm as an operator on Y does not exceed r/m+D/m (use (10)). 

Similar statements hold for the remaining submatrices and so, if D/m is small when 

compared to e, we get (9). The first statement from the proposition follows then right 
away. 

COROLLARY 5.6. If X is a Banach space, d i m X =~ ,  and Y a finite dimensional 
subspace, then there exists Ym, Yc Yi cX, such that bc (Yt)<.d(Y,/2 dim Y)t/2 

Proof. Use [19, Theorem 5.8] and Proposition 5.5. 

6. The complex case 

The complex case requires special treatment because [30, Theorem 15], stated in this 

paper as Theorem 2.1, was originally proved only in the real form. We have, however, 
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PROPOSITION 6.1. I f  X is the space from Theorem 2.1, Let X be its complexifica- 

tion. More specifically, if X=l~(R)/E as provided by Theorem 2.1(i), we set 

X=i~(C)/(E+iE). Then the conditions (i)-(v) of Theorem 2.1 hold with X, R, R n, real lkp 

replaced by f(, C, C ~, complex l~ respectively; the exponent 1/n in (iii) replaced by 1/2n 

and (v) restricted to C-linear operators on f(. 

Proof. (i) and (ii) follow directly from the definition of X. (iii) is geometrically 

obvious if we notice that B(l~(C))=B(l~(R)t~)2I~(R)), B(I~(C))cB(I~(R)0)zl~(R)) and 

consequently, with canonical identifications, B(X)cB(Xt~2iX). (iv) follows from the 

fact that in the identification X = X ~ i X  the coordinate projections are of norm 1 (we 

may need the constant C to be twice bigger; note, however, that ,~ satisfies the 

Grothendieck theorem also for R-linear operators). Finally, to show (v), we need to 

observe that any C-linear operator T on X can be written as 

iX' 

where A,BEL(X) and Ilall, IIBII~II~I. 

Consequently, by Theorem 2.1 (v), there exist a, f lER such that IlA-a/llCo~<6n, 
IIB-~fllCo<~6n. Set 2=a+fli, then 

-ill] X ;t/x = al 
BI al iX 

and so 11T-AI:ellco<~26n. This shows (i) with c(-) replaced by c(�89 Note that we are 

using here the complex ideal quasinorm II'llc0; for the real one an additional factor 1/2 

would be needed. 

The complex version of Theorem 1.I follows now exactly as the real one; with 

proper care we can also make the complex example to be the complexification of the 

real example. As a bonus, we get a complex version of Corollary 1.2 from [32] (cf. 

Remark 4.3). 

COROLLARY 6.2. The complex space from Theorem 1. I can be constructed to be 

nonisomorphic to the Cartesian square of any complex Banach space. 

In fact, a statement stranger than Proposition 6.1 holds. 
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PROPOSITION 6.3. Gioen 6 E (0, 1) and n E N there exists a complex normed space 

X=(C n, [[. [[) such that the conditions (i)-(v) of  Theorem 2.1 are satisfied in the same 

sense as in Proposition 6.1 With (v) (and (iv)) holding for  R-linear operators. 

Sketch o f  the proof. Of course X can not be a complexification of a real space. 

Instead, we have to use [31, Theorem 1.4] with C n identified with R 2n and 

F={I, i l , - l , - i I } .  The properties (i)-(iv) follow then, as in Theorem 2.1, from the 

construction in [31] (see [31, Section 5 (a)]). To get (v), it is certainly enough to prove 

the following. 

LEMMA 6.4. / f 6  E (0, 1) and T is R-linear on C ~ such that [[T-2Illco>~an for every 

2EC, then there exists a C-linear subspace H c C  ~, k=dimH~lO-San such that i f  
a=  10-36, then 

IIe,,  Txlh allxll2 for  xEH.  (11) 

where Pn~ denotes the orthogonal projection onto H • In the language o f  [31] this 

means that T satisfies the "mixing" condition (Mk, a). 

Proof. Let 

rT11 TI2] R ~ 

be the matrix representation of T. We consider the following dychotomy: 

(a) there exist reals %v, g , v = l , 2 ,  such that liTer- a~,~/Hc0 ~< 6n/50 forp ,  v = l , 2  

(b) for some #, v, [[T~,~-al]lco>6n/50 for all a ER. 

The case (a) is easy to settle: if A = (aj,~ I)~,. ~ E L(R 2n) then 

I[T-Allco ~ 26n/25 (12) 

and hence IIA-2~ic0~0.926n. An elementary argument shows then that a version of 

(11) with T replaced by A, k=dimH=[�89 and a=0.236 holds. Since, by (12), T is very 

close to A on a subspace of small codimension, (11) readily follows. The case (b) is 

somewhat harder. First, replacing Tx by T(ix), iTx or iT(ix) if necessary, we may 

assume that HTH-allico>fn/50 for all aER.  By [31, .Proposition 6.1], there is 

E c R  n, dimE>-6n/1800, such that 
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IIPE~ TI~XII2 >~-~-~IIxlI2 for x E E .  

Now choose by induction (cf. [31, Lem m a  4.1]) an orthonormal  sequence 

(xj), j =  1 . . . . .  m (m~>41 dim E),  in E such that if Ej=Pe,[T H xj, T~2(/xj.)] c R  n, then Ej's are 

mutually orthogonal.  By enumerating xj's appropriately,  we can assume that, for  

j=  1,2 . . . . .  2k ( k>~m-  1), all (PE~ T11 xj, Pe~ Tl2/xj)) are of  the same sign and the same is 

true about IIPei T H Xyll2-1lPe• Tl2(ixj)ll 2. These  conditions finally guarantee that if we set 

hs=2-~rZ(x2s_l+ix2s), then H=[hs:  s=  1,2 . . . . .  k] (complex span) works in (11). 

Arguing exactly as before we deduce the following strengthening of  the complex  

version of  Theorem 1.1 and Corollary 6.2. 

COROLLARY 6.5. These exists a complex superreflexive Banach space with (com- 

plex) unconditional finite dimensional decomposit ion which does not have a basis even 

in the real sense and is not real-isomorphic to a Cartesian square o f  any real Banach 

space. 
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