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1. Introduction

The concept of uniformly distributed sequences plays a fundamental role in many
branches of mathematics (ergodic theory, diophantine approximation, numerical inte-
gration, mathematical statistics, etc.). The object of the theory of Irregularities of
Distribution is to measure the uniformity (or nonuniformity) of sequences and point
distributions. For instance: how uniformly can an arbitrary distribution of »n points in
the unit cube be distributed relative to a given family of ‘‘nice’’ sets (e.g., boxes with
sides parallel to the coordinate axes, balls, convex sets, etc.)?

This theory was initiated by the following conjecture of van der Corput. Let
{={2,,23,25, ...} be an infinite sequence of real numbers in the unit interval U=[0, 1].
Given an x in U and a positive integer n, write Z,[{; x] for the number of integers j with
Isj<n and 0=<z;<x and put

D,[E;x]=Z,[C;x]-n-x.

Let A,[C] be the supremum of |D,[E; x]| over all numbers x in U. In 1935 van der Corput
[6] conjectured that A,[{] cannot remain bounded as » tends to infinity, It was proved
by Mrs T. van Aardenne-Ehrenfest [1] in 1945. Later.her beautiful theorem was
improved and extended in various directions by the work of K. F. Roth and Wolfgang
M. Schmidt. There is now a vast literature on this subject. We refer the reader to
Schmidt’s book [13].

In this paper we continue the research started in Schmidt [11], [12]. We recall one
of his basic results (Corollary of Theorem A3 in [12]): Let there be given n points
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2 J. BECK

Zy,...,2, in the K-dimensional unit cube UX=[0, 1)*. Then there exists a ball A con-
tained in U* with *‘error”’
'D[zl’ ey zn;A]l = > cl(K’ 8).n(K—l)/2K(K+2)—e (11)

D 1-n-u(4)

Z€A

where ¢ denotes the K-dimensional Lebesgue measure and c¢,(K,€) is a positive
absolute constant depending only on the dimension K and £>0.

In short, this theorem expresses the fact that no point distribution can, relative to
balls in U*, be too evenly distributed.

Note that Schmidt’s theorem above guarantees the existence of a ball in U® with
“‘error’’ very large as compared to that of boxes in U* with sides parallel to the axes.
We recall: in 1954 K. F. Roth [9] proved the existence of a box B contained in U* with
sides parallel to the axes and with ‘‘error”

ID[z,, ..., 2,; B]| =

> 1-n-u(B)| > c,(K)- (log )12,

z,€B

In the opposite direction, there is a distribution wy, ..., w, of n points in U® such that
|D[w,, ..., w,;B]| < ¢,(K)-(log n)* ™!

for any box B in U* with sides parallel to the axes (van der Corput-Hammersley—Hal-
ton sequence, see e.g. Schmidt [13] Theorem 1 E in Chapter I).

In the last section of his book Schmidt [13] raised the question of understanding
the fascinating phenomenon that balls have much greater ‘‘error’’ than boxes with sides
parallel to the axes. Our aim is to give a partial answer to this question.

We start with an essential improvement of Schmidt’s bound (1.1) (observe that in
(1.1) the exponent of n tends to zero as K tends to infinity).

THEOREM 1A. Let ¢ be a positive real number and P be an arbitrary distribution
of n points in UK=[0, l)K. Then there exists a ball A contained in U with error

DIZ;All=| D 1-n-uA)| > c K, &) n'? VK, (1.2)

xEPNA

Here the exponent (1/2—1/2K—¢) of n is essentially the best possible. Indeed, using
probabilistic ideas it is not hard to show that (1.2) is certainly false if we replace the
exponent by (1/2—1/2K+¢) with >0 (for a quite analogous situation, see the proof of
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Theorem 2 in Beck [3]). Observe that in (1.2) the exponent of »n tends to 1/2 as K tends
to infinity. ,
To avoid the technical difficulties caused by the requirement ‘‘contained in U*’, in
what follows we shall study a new model.
Let S={z,,2,,2;,...} be a completely arbitrary infinite discrete set of points in
Euclidean K-space R¥. Given a compact set AcR, write

DS; Al = D, 1-u(A) (1.3)

Z,€A

where u4 denotes the K-dimensional Lebesgue measure. Observe that here the normal-
ization is different from that in the previous results (compare the definitions of the error
in (1.1) and (1.3)). A

For arbitrary proper orthogonal transformation 7 of K-space R¥, real «€(0,1] and
vector vER” set

A(z,a,v) = {a(mx)+v:xEA}.

Clearly A(r, a,v) and A are similar to each other. Let

Q[S; Al = sup |2[S; A(z, a, V)]|

T,a,v

and
Q[A] =infQ[S; A]
S

where the supremum is taken over all rotations z, contractions a and translations v, and
the infimum is extended over all infinite discrete sets ScR*.

We say that Q[A] is the discrepancy of the family A(z, a,v). We also say, in short,
that Q[A] is the rotation discrepancy of A.

Now assume that A is convex. Let dA be the boundary surface of A and #(A) be the
length of the radius of the largest inscribed ball in A. Let ¢ denote the (K-—1)-
dimensional surface area.

The next result (and the remark below) shows that for convex bodies the rotation
discrepancy is always large and behaves like the square root of the surface area.

THEOREM 2A. Let SR be an arbitrary infinite discrete set and AcR" be a K-
dimensional compact convex body with r(A)=1. Then
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QLS; A]> c5(K) - (0(8A))"?,
i.e., there exist 1y, a,€(0,1] and v, such that
|D[S; ATy, ag, V]| >c5(K) - (0(3A) 2.

Note that in the particular case K=2 and A="‘‘rectangle of size nX2">’ Theorem 2 A
yields the existence of a tilted rectangle with error of ‘‘random size’’, that is, there is a
tilted rectangle A with area(A)<2n and with error |2[S ;A]|>constant-n”2.

(Throughout this paper constant stands for positive absolute constants depending
only on the dimension K.)

Note that in the proof of Theorem 2 A we shall actually estimate from below the
quadratic average of the “‘error’’ 9[S ;A(z, a,v)]. More precisely, we shall prove that

M-ow

1
liminf QM) % f f f (9[S; Az, a, V)] drda dv > ¢s(K)-0(3A),
-M,m¥X Jo Jr

where T is the group of proper orthogonal transformations in R¥ and dv is the volume
element of the invariant measure on T, normalized such that [;dr=1.

We now explain that this stronger L?-norm version of Theorem 2 A is already sharp
apart from the constant factor. Let £(1) denote an arbitrary point in the cube

K
oW =[], i+ where 1=, b, ..., L) EZXN[-M, M)¥
i=1

(the parameter M will tend to infinity). Let
Sy = {EM:1€Z"n[-M, M)¥},

and for any A(z, a, v)c[-M, M)X, let

Ar,a,v)= U Q0.
1: Q) cA(z, a, v)

By definition,
D[S Az, a,v)] =0.
Consequently, we obtain the trivial upper bound
D[S Alr, a, V)] < card {1EZ¥N[~-M, M)*: QW) N (A(z, @, Y\ A(r, o, V) + B}
< cg(K) 0(3A)
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provided A(r,a,v)c[-M, M)E. Now assume (), 1€Z¥n[—M, M)* are independent
random variables uniformly distributed in their cubes Q(l). Since the L’-norm of the
“random error’’ is roughly the square root of the trivial error (Bessel inequality for
orthogonal systems), there exists a (2M)K-element set S'(M)c[—M, M)K such that the
L-norm of the “‘error’’ of all sets A(r, @, v)<[—M, M)~ is less than constant - (0(34))"”.
Using a simple compactness argument we conclude that there exists an infinite discrete
set §'<RX such that

1
lim sup M)~ ¥ f f J (21S'; AT, a, V)] drda dv < c,(K)-0(34),
-M,mX Jo Jr

Mow

as required.

Essentially the same random construction shows that for a suitable infinite discrete
set S"cR” the L*-norm Q[$", A] of the errors is less than a sufficiently large constant
multiple of

(0(3A))"* - (log 6(3A)) ™.

To prove it, choose M=[diam(A)]+1 (integral part) and apply the standard large
deviation theorem of probability theory. The concrete calculation gives

sup  |B[S,; Az, a, V)N [—M, MY¥]| < cy(K) - (0(3A))"? - (log 5(9A))'"”

7,0<a<l,v

with probability =1/2 (for the details of this argument, see the proof of Theorem 2 in
Beck [3]). Therefore, there must exist a 2M)*-element set S"(M)c[-M, M)K such that

sup |DIS"(M); Az, @, v) N [—M, MY¥]| < c(K) - (0(8A))"- (log 5(0A)) ™.

7,0<a<l,v

Finally, extend $"(M) periodically modulo [-M, M)¥ over the whole K-space RE. we
obtain an infinite discrete set S"cR¥ such that

Q[S", Al= sup |[S";A(z, a, v)]| < 2K c4(K)- (0(3A))"*- (log 6(3A)) .

1,0<a<1,v

Here we used the simple fact that every set A(z,a,v) (€T, a€(0,1], vERK) is the
disjoint union of not more than 2% sets of type

Az, o, V)N([—M, MY*+2M 1), 1€ZX.
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This result indicates that Theorem 2 A is nearly best possible.

From Theorem 2 A one can immediately obtain results concerning the unit torus.
Let 2 be a distribution of » points in the unit cube U®. Extend 2 periodically over the
whole K-space R modulo U*. That s, let

P* = {x+]: x€ P, 1€ ZF}.
Given a compact set AcR¥, write Z[#*; A] for the number of points of #* in A, and put
D*[P; Al = Z[P*; Al—n-u(A).

Finally, let

Q*[P;Al= sup |D*[P;A(z,a, V)|

7,0<a<l,v

and
Q*[A] = inf Q*[P; A]

where the infimum is taken over all n-element sets P<U*.

If we rescale the periodic set %* in ratio n"®: 1 and apply Theorem 2 A then we

conclude that

COROLLARY 2B. Let P be an arbitrary distribution of n points in the torus U%, and
let A be a compact convex body in RX. Suppose that r(A)?n_l/K. Then

Q*[P; A]> co(K)-n'? K. (0(3A))">.

In the particular cases A=*‘cube’’ and A="*‘ball’’, we get respectively Corollay 2C
and Corollary 2D.

CoroLLARY 2C. Let 6 be a positive real number and P be an arbitrary distribu-
tion of n points in the torus UX. Then one can find a cube A in arbitrary position with
diameter <6 and with *‘error”’

'D*[Q;AH > oK) (n- aK)l/2—1/2K.

We should mention here the pioneering result of Schmidt. For boxes in arbitrary
position and K=2,3 he proved the slightly weaker lower bound (n- 6512 (see
Schmidt [12]); for arbitrary K it was hopeless ‘to handle the very difficult integral
equations that arise.
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For balls Schmidt [12] was able to prove the lower bound (n-6%)"*""**™* for
arbitrary K. Here we obtain the following slight improvement.

CoROLLARY 2D. Let § be a positive real number and P be an arbitrary distribu-

tion of n points in the torus UX. Then one can find a ball A with diameter <6 and with
“error”’

ID¥[P; Al| > ¢,1(K) - (n- 6%) 22K,

We note without proof that using the ‘‘truncation’’ technique in the proof of
Theorem 1A it is not hard to show the following ‘‘contained in U"’ version of
Corollary 2B: Let 2 be an arbitrary distribution of n points in U*. Let AcR® be a
compact convex body of diameter less than one. Further suppose that r(A)?n_l/K.
Then there exist an orthogonal transformation ,, a real a,€(0, 1] and a vector v, € R¥
such that A(zy, ag, vo)=Ag is contained in UK and has ‘‘error”’

> 1-n-udg)| > K, )-n K (o (@A),

x€EPnA,

In"the forthcoming paper II we shall study the (traditional) case when rotation is
forbidden (i.e., we may only contract and translate). We mention in advance that in this
case the magnitude of the ‘‘error’’ depends mainly on the smoothness of the boundary
surface A of the given compact convex body AcRX,

The proofs are based on the so-called ‘‘Fourier transform method”. As far as 1
know, the first appearance of this method is in Roth [10]. The same basic idea was later
utilized in Baker [2] and Beck [4], [5].

We have learned that in the case K=2 results similar to our Corollary 2B, 2C and
2D have been proved, independently and about the same time by Montgomery [14].

We explain the machinery of the ‘‘Fourier transform method’’ with the following
simple example.

THEOREM 3. Let P be a distribution of n points in UX. Then one can find a cube A
in arbitrary position with diameter less than one such that

2 l—n'u(An UK) >C13(K)'n”2_1/2K-

x€EPNA

Clearly Theorem 3 is an easy consequency of Corollary 2 C, but in the next section
we give a simple direct proof.
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2. Illustration of the method

Proof of Theorem 3. The proof is based on an argument to ““blow up’’ the ‘‘trivial
error’’ (see (2.10) below). Let

P={z,,....2,}.
We introduce two measures.
For any HcR” let
Z(H= D1,
zj€H

i.e., Z, denotes the counting measure generated by the given point distribution
P={z,,...,2,}.
For any Lebesgue measurable HcR" let

Ho(H) = W(HN U),

i.e., uy denotes the restriction of the usual K-dimensional Lebesgue measure (volume)
to the unit cube.

Given any proper orthogonal transformation 7z and real r>0, let x, , denote the
characteristic function of the rotated cube
t-r,r1“ = {x:x€[-r,1"}.
Consider now the function

F,,=x,,%(dZ;—n-duy) 2.1)

where % denotes the convolution operation.
More explicitly,

F, (x)= f Xz, \X=Y) (dZ(y)—n-duy(y)))
RK

.2
= card (PN (z[—r, rI5+x))—n- u((z{~r, ri*+x)n UX).

In other words, F, (x) equals the *‘error’’ of the intersection (z{-r, 1%+x)n UX. Since
the “‘error function” F, , has the form of a convolution (see (2.1), it is natural to utilize
the theory of Fourier transformation. We recall some well known facts (see any
textbook on harmonic analysis).
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If f€ LXR¥) then

fo=0x "mf e ™' Ax) dx

RK

denotes the Fourier transform of f (here i is the square root of minus one and x-t is the
standard Euclidean inner product). It is well known that

(f*xg)"=fg 2.3)

and

f | f(x)|2dx=f |ADPdt (Parseval-Plancherel identity). 2.4
RK RX

Let T be the group of proper orthogonal transformations in R and dr be the
volume element of the invariant measure on T, normalized such that [,;dr=1.
Let g be a positive real parameter. Let

2
Qy(q) =L f f f (F, (x))*dxdrdr. (2.5
q9 q T JRX
By (2.1), (2.3) and (2.4) we have
29
Quq) = f (-1— f f |;2,,,(t)]2dtdr>-|(dZo—n-d/40)" (O at. (2.6)
RK q q T
For the sake of brevity, let
2
o =1 f f 2. O drdr @.7)
9); Jr

and

@) = (dZy—n-dug)”™ ()= Qu)™*? f e Y dZy—n- duy) (X).

RrRX

Thus we can rewrite (2.6) as follows:

Qyq) = f o (t)-|p®)f dt. 2.8
RK
We claim
t K-1
if 0<g<p then ,(®) >> (£—) uniformly for all tERX, (2.9)
: @, q
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(Throughout this paper the implicit constant in Vinogradov’s notation >> is positive
and depends only on the dimension K.)

Before verifying (2.9) we explain how it will be used to prove the theorem. As in
Schmidt [12] we shall apply the following trivial observation:

if B < UX satisfies 0< 2 < (B)<1—na, then B has ‘‘error”’ 2 1—n-u(B)| > 6.
z.€B
I (2.10)
Let g=}n~"%. Combining (2.10), (2.2) and (2.5) we see
Qo) > 1. 2.11)

Next let p=§K“’2. From (2.9), (2.8) and (2.11) it follows that

Qo) = L 0,0 e de>> (! f 0, (0 |p®f dt = n® % Q (q) > n'" VK.

RK

(2.12)

Therefore, by (2.12), (2.5) and (2.2) we obtain the existence of a cube A in arbitrary
position such that the diameter of A is less than one and

> 1—n-uANUX)| 5> 212K,

szA

which completes the proof of Theorem 3, provided that (2.9) is true.
It remains to check the assumption (2.9). It needs only elementary estimations. By
definition,

2., 0=2""0) (2.13)

where g, denotes the characteristic function of the cube [—7, 1%, So it is sufficient to
study the function #,(u), u €RX. From the definition it follows via elementary calcula-
tion that

where u=(u,,..., uy).
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Since
sin(r-u) LA |u|<i,
u 2 r
we get
—1—qu|)8 ()P dr>> <qK_1- min{q —1—}>2 if |u |<L e |<—1— |ue |<-—1—
q i r H |“| H q ) %2 q ’ s [¥K-1 q
2.149)
Here [u| denotes the usual Euclidean length, i.e., |u|=(2{§1uf)1/2. Let
V(i,K—l) = {u= (uyy .., u) ERE: <L, lsjsK-—l}, 2.15)
q q
and for any tERX,
W(t,i, K—l) - {re T:rlte V(i, K—l)}. (2.16)
q q

Simple calculation shows

. 1 \k-1
fw(t%’l(_l>dt>>mln{l, (q—ltl) } 2.17)

Combining, (2.13), (2.14), (2.15), (2.16) and (2.17) we conclude that

1 2q
o t)=— j f £, (OF drdr
), Jr

- min{a, o} min 1. (1)
>>(q mm{q, Itl}) mm{l, P (2.18)
K-1
= min {qZK, Ilei-l}.

A similar calculation shows the validity of the opposite inequality

K-1
,(t) << min {q"‘, I‘tII"“ } (2.19)

Indeed, let [;>1, ..., [,_,=1 be arbitrary two-powers, that is, let lj=2”', 520, 1sjsK-1.

It is easily seen that

1 [ K 11)?
— 7 2 — . 1 —
QL |2, (w) dr>><<{(jl;1 l,) mm{q, ] }}
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12 L
L’i—]—sluj|<—’, I<sjsK-1.
q q

Note that here u=(u,, ..., ux), [x] denotes the lower integral part, i.e., the largest integer
<x, and the notation f>><<g means that both f<<g and f>>g.
Let ‘=(ll! vory tK—l)’

L
V(%;l) = {u:(ul, e, g) ERK: pj|<7;-, lsjéK-l}

W(t,i;l) = {rE T; T 't€ V(—!—;l)}.
q q

It is not hard to see that

and for any teRX.

K-1 .
f dr>><<Hmin{1,—J——}.
) q-it

j=1

Summarizing, we obtain (2.19) as follows

1 [
w(t)=— f f g, O drdr
q q T

-1
<> .. 2(s'+"‘+s"")'min{qzx, q }

520 Sp_20 Uik

K-1 1 K-1
= -5 Y 2K qx : 2k 49
= (gz ) mm{q . |t|K+'}<<mn’1{q R MKH}.
=

From (2.18) and (2.19) the desired (2.9) follows immediately. Hence the proof is
complete.

3. Proof of Theorem 1A

First we renormalize Theorem 1 A as follows.

THEOREM 1B. Let ¢ be a positive real number. Let there be given n points z,, ..., 1,
in the cube [~M, M1* where M={n"_ If n is sufficiently large depending only on K and
€, then there exists a ball B contained in [-M, MI* such that
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2 l—ﬂ(B) >nl/2—1/2K—£

szB

Proof of Theorem 1B. We recommend the reader to read first the proof of
Theorem 3 in Section 2.

Throughout we assume that n is sufficiently large depending on K and £>0 only.

For notational convenience let S={z,,...,z,} and

Q@) =[-a,al*, a<0 real.
Let m, 0<m<M=}n"¥ be a real parameter. Let
W,(x) = card {(U*+x)nQ(m)n S}.
We need

LeMMA 3.1. For arbitrary sufficiently large n there exists a real m, with
M-exp {—(log n)”’}smosM/Z such that either

() card {Q(my) S} <~ @mo)*,
or
(i) card {Q(my)n S} ?Tla'(Zmo)K and with m, = mylogn we have

f (w,, (x))? dx > exp {—(log 1)} f (w,, (%) dx.
RK RX

Proof. Let py=M/2 and p;,,=p/logn, j=1. Let
Wj=f (w,®)dx, j=1.
R’

We may assume that for every p=M-exp {—(log n*? }

card {Q(p)NS) = 1—1()(2pj)". G.1)

Indeed, if the opposite case (i) holds, we are done. From (3.1) we obtain via elementary
estimations that for every p;=M-exp {—(log n)m}
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n
(2exp {(log n)**)¥

s@E)'<wsn (3.2)

{we recall: << is the Vinogradov’s notation with positive implicit constants).
Now suppose, contrary to (ii), that
W, <exp {—(logn)*’}-W, for allj with 1<j<!=(logn)".
Then clearly
Wi < (exp {—(ogn)™’})- W,
and so by (3.2)

W, <exp {—(ogn)s}- W, << =W, <1. (3.3)
n

Let n be sufficiently large. Then (3.3) contradicts the second inequality in (3.2), since
Pu1=p, (logn)~'= %M~ (logn)™' = M-exp {—(log n)**}.

Lemma 3.1 follows.

If alternative (i) of Lemma 3.1 is true, then we are immediately done. Indeed, the
cube Q(my) contains less than 10% of the expected of the points z;, and by a standard
averaging argument we get the existence of a ball B contained in Q(m,) with radius
my/K such that Ezje p1<3u(B). Thus B is certainly contained in Q(M)=[-M, M) and has

a huge “‘error’”’

>, 1-u(B)

= —(B) > (m) = (M-exp {~(log )"
2,€B

=n- <% exp {~(log n)2’3}>K =nl"¢

Therefore, from now on we may assume the validity of alternative (ii) of Lemma
3.1. ‘

We introduce two measures. For any HcR" let
Zy(H) = card (S n Hn Q(my))

where my is defined to satisfy property (ii) in Lemma 3.1 (We recall: S={z,, ...,z,}.)
For any Lebesgue measurable HcR" let

o (H) = u(H N Q(my)).
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Let x, denote the characteristic function of the ball

K
B, r)= {x:(xl, .0y X ERK: Ex}srz}

J=1

centered at the origin and having radius r. The parameter r will be specified later.
Consider the function

F, =y, % (dZy—duy) 3.4)

where % denotes the convolution operation. More explicitly,

F(x)= f XAX=y) (dZy—duy) (y)
RK

3.5
= card (S N B(x, r) N Q(my))—u(B(x, 1) N Q(my)),
where B(x,r) denotes the translate B(0, r)+x of B(0,r).
Let
E(x) = exp {—|x[*- (m) ™%} (3.6)
where [x|=(Z% 1x7)'? denotes the usual Euclidean distance and =m/logn.
Consider now the following ‘‘truncated’’ version of F,:
G.=E-F,. 3.7)

Clearly G(x) is a good approximation of the ‘‘error function”

> 1-uBx,n)  if B&,r)< QM)

szB(x, r

0 otherwise,

since the “‘weight’’ E(x) is extremely small whenever (B(x, r) is not contained in Q(m,)
(we mention in advance that r<m/2). In order to estimate the quadratic average of G,(x)
we shall employ the theory of Fourier transformation. Besides identities (2.3) and (2.4)
we need (see any textbook on harmonic analysis)

(f-e)”=Ffxg (f,g€EL’RY). (3.8)

By Parseval-Plancherel identity (2.4)

f (G,(x))’dx = J |G, (D)t
RK RX
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On combining (2.3), (3.4), (3.7) and (3.8), we conclude that
G, =ExF,=Ex§,(dZo—duo)™). (3.9)

Unfortunately, G, has a rather difficult form, so we introduce the following auxiliary
function

H, =y, % (E-(dZy—du)), (3.10)
that is,
H/(x)= f 2 Ax—y) (E(y) - dZ\(y)— E(y) - duy(y))
RK

(3.11)
= >  E@- E(y) dy.
2,€ B(x, ) Q(my) B(x, AN Q(my)
From (3.10), (2.3) and (3.8) we obtain
H,=3,-(E % (dZy—dug)™). (3.12)
For the sake of brevity, let
@ =(dZy—duy)~ and y=Ex(dZy—duy)” =E * . (3.13)
Then, by (3.9), (3.10), (3.12) and (3.13)
G,=Ex@,9) and H,=3%,y, (3.14)
and we see that
AWM-G(t)= L ) #,(O—%,(t—u)) p(t—u)- E@) du. (3.15)

An outline of the proof of Theorem 1B is as follows. Since H, has the form of a
simple product (i.e. H,=)2,- ¥), it is not hard to prove that the L’-norm of H, is “‘large”’.
Moreover, we shall show that the difference H,—G, is *‘predominantly small’’. Combin-
ing these arguments, we shall obtain a good lower bound to the L>-norm of G,, or by
Parseval-Plancherel identity, to the L>-norm of the *‘truncated error function” G,(x).

We start with the investigation of the difference ﬁ,(t)—G,(t). Using the following
well-known result:

if fO) = e~ then f(i) = Lot (3.16)
a
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by (3.6) we have

"o\ (m)* ) )
E@) = SKA -exp {—[uf*-(m,)*/4}. (3.17)
Clearly
lp(®)| = (dZy~dugy) " (t)| S—IEE{ 2 et +j dx} <n,
(2m) = o
and since the parameter r will be less than M,
. 1 —ix-t u(B, )
t)=———ror dx| s—=—2-==<n.
O1= Gy L(o, 0T e

Let d,=(log n)/m,. Then by (3.17)

J Ew)da<<n2
RENQ(6y)

Using these upper estimates to (3.15) we see that

IH®O-Gt)| < @, O—% (t—w)- p(t—u)- E@) du

6y

+c14(K)

, (3.18)
< ma(;(o) [2, (-7 (t—w)|- +c4(K).

J' @(t—u)- E(u) du
ueo 26y

We are going to study the Fourier transform of the characteristic function of the
ball 7,(s), sER®. For the sake of brevity, let s=|s|. By definition

£.(8) = Qm)~*"? f

RrRK

e—ix's 'Xr(x) dx = (Zn)—K/Zf e—ix-s dx
B(O,r)

= cls(K)f e-iys.(,l_.yZ)(K—l)lz dy 5.19
1
=C15(K)-rK- °°S(S'r'h)-(l—h2)"‘"”2dh,

-1

The classical Bessel-function J(x) (see e.g. in [8] p. 241) has the following integral
representation (Poisson’s integral)

=___1___ ;x_ V. 1 CBY. (1212 < _L) 3.20
J,(x) 71:1’2-1"(1,4.%) (2) f_lcos(x h-(1-h9""dh {v> > (3.20)

2—-878282 Acta Mathematica 159. Imprimé le 25 aott 1987
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Hence, by (3.19) and (3.20)

72.(8) = c,(K)- (i)mlm(r-s). (3.21)

By Hankel’s asymptotic expansion (see [8] p. 133)

J,(x) - (i) . cos (x— v+l n) +0(x~¥2) (3.22)
X 4

where the implicit constant in the O-notation depends only on ».
Therefore, by (3.21) and (3.22)

FK=D2 AK-302
1.s)= c”(K)-s(KTm-cos (r-s—(K+ 1)”/4)+0(2(1(T)/2)' (3.23)
Here and in what follows the implicit constants in the O-notation depend only on the
dimension K.
Combining (3.18) and (3.23) we obtain via elementm estimates
n . P\EED2  JK=3)2
|Ht)—G,(t)| << (60- (;) +—) .

I +0(1) (3.29)

f @(t—u)- E(u) du
Q(3y)

whenever r-1=1 (here t=|t|). Since d,=(logn)/m,, by (3.17) we have

Em) << 8y %-(ogn)® for u€Q(dy).

Consequently,
f @(t—u)-Em)du| << (log n)¥-(26,)7X- j @p(t—u)du|. (3.25)
6y (39
By Cauchy-Schwarz inequality
12
(267X f @(t—u) du s{(zao)"‘ f |<p(t—u)|2du} . (3.26)
Q(Sy) Sy

Using the elementary inequality (a+b)’<24a’+2b% a and b reals, (3.24), (3.25) and
(3.26) we see

rK—3
tK+3

A, GOF << ((6&({)”# )-<logn)"<-(zao>-"- Ip(t—u)[du
26y (3.27)

+0(1) whenever r-t=1.
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Let g, 0<g<im,-(logn)™ be a real parameter to be fixed later. Let T<R* be a

Lebesgue measurable set such that the usual Euclidean distance of the origin 0 € R¥ and
T is greater than 1/g (note that in this section we do not use the group of proper
orthogonal transformations, so this notation cannot cause any confusion).

Using the general inequality a’=4b*—(a—b)*, a and b reals, (3.14) and (3.27) we

2q . 1 2q 2q . )
f ( f |G,(t)|2dt> dr?—z- f ( f |1§r,(t)|2dt) dr= f ( f |F1,(t)—G,(t)|2dt) dr
q T q T q T
1 2g
=5 f ( f b?,(t)l’dr) [w(e)Pat
T \Jgq " (3.28)
. o r\E+ K _3>, K -K
const fq ( fr {((60) (t) + yres (log n)**(26,)
2q
X f |‘P(t—u)|2du}dtdr—const- f ( j dt) dr.
Q@6 q T

Note that by definition r-r=q-infic|f|>1, and const stands for positive absolute
constants depending only on the dimension K.
Next we need two lemmas concerning @(t) and (t). We recall:

have

W, (x) = card {(UX+x)nQ(m)n S}, S={z,,...,2,}
and m;=myflogn.
LEMMA 3.2A. [ o00 [ OPd>> [k (w,, ()} dx.

For any real b, 0<b<200, let
D,(x)=card { (Q(—bl—> +x> NQ(myN S} —ﬂ< (Q(—;—) +x) n Q(m0)> . (3.29)
Moreover, let

AX)= > E(x-z)— E(x—y) duy(y)- (3.30)
sz(Q(llb)+x)ﬂQ(mb) Qlb)+x

LemwMA 3.3. For any 0<b<200

@) f lp®)Pdt << f {Db(x)}2~(—g—)2xdx
(b} R¥
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and

(i) f [w(t)Pdt << f {A,x))* (i)mdx.
Q) RK 2

We postpone the proof of these lemmas to the end of this section. '
Combining Lemma 3.1 (ii) and Lemma 3.2 A we get

f [w(®©dt > f {w,, (0} dx > exp {—(logn)**}- f {w,, (X))} dx.
0(100) RK RX

By Lemma 3.1 (ii) we see
f (w, (%)) ?dx = f w,, (x) dx = card {Q(my) N S} > —— 2my)~.
RK o RE 10
Clearly

w,no(i)+/40(Q<—i—(l—)—6) +x) =D g (®)|

(3.31)

(3.32)

where X=(x;—},x,—1,...,x4,~1), x=(x,, ..., x5), therefore, using the general inequality

(a+b)’<24’+2b%, we see

2 L K(wmo(x))zdx+2 L i (;uo(Q($>+x))zdx> J; i {D,p(x)}dx.

[ ilelg)) = o)

from (3.32), (3.33) and (3.34) it follows that

Since

f (wm°(x))2dx > f (Dzoo(x))zdx.
RK RK
Combining (3.31), (3.35) and Lemma 3.3 (i) we obtain

f ly(®)]’dt >> exp {—(log n)**} - lp®)dt.
0(100) 000

Moreover, from (3.31) and (3.32) we have

(Y (OPdt>> exp (~(logn) - (m¥.
Q(100)

(3.33)

(3.349)

(3.35)

(3.36)

(3.37)
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Now let #>0 be arbitrarily small but fixed. We distinguish two cases (I) and (II).

M f W’(t)lzdt<—l- f ly(®)fdt where a,=n"-(m)™".
0(ay 2 Joaon

Then by (3.36)

f lw(®)2dt > exp {—(log n)??)} - lp(©)dt. (3.38)
Q100N Q(ap) 0(200)

From (3.38) it follows that there exists a real b, with ay<b,<50 such that

f p(O)Pdt>> -1 [p®)Pdt where T,=Q@2b)\Q(by). (3.39)
T, logn Q(100)\ Q(ay)

Let q=m0‘n_"/2=n"/2-—l-. Then clearly
a,

inf [t] = by = ay> L,
te€T, q

i.e., the Euclidean distance of the origin 0ERX and T, is greater than 1/q. By (3.28)

2q 1 2q
I ([ oora)ar=L [ ([*wiora) mora
q Ty Ty q

K~3

q K+1 q .
—const-q-{(éo)2-<b—o) +b{,‘+3} (log n)*% (3.40)

d

[

{ (267X f |<p(t—u)|2du} dt—const-q-u(T,).
0(3p)

Since
0y = (log n)/m, = (log n)*/m, < (log n)*- 4n"X exp {—(log n)**})~" < 100,

we have

f {(260)"‘ f |(p(t—u)|2du} dt< f lp®)dt. (3.41)
T, [, (V] Q(200)

Furthermore, by (3.23)

2q K-1

inf | [, OPdr>q-L . (3.42)
tET, b

K+1
0Jg 0
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We recall: g=mqy-n""%, 50=bo=ag=n"-(mg) 'and dy=(log n),- (me)~'. Combining (3.40),
(3.41) and (3.42), via elementary calculations we have (n is sufficiently large)

a A o2 g I 2
f 160 dt) dr=const-—L_. f wOPdt—n"4_. [ |p@®Fdt—0).
¢ \Jr, b T, by Joon

0

(3.43)

From (3.43), (3.39) and (3.38) it follows that

2q
f < f |G‘,(t)|2dt> dr>>(1-0(n™"%)- gm f lp(®)Pdt—0(g). (3.44)
q Ty

By hypothesis (I), (3.37) and (3.39) we get

f [p(t)|*dt >> 1 -exp {—(log n)**} - (my)X. (3.45)
T, logn

By (3.44) and (3.45) we see

2q
f ( f |G, (t)|2dt) dr>> b"“ (mo)K"’z >> g5 (m)¥ 2 >> g-(m)*™ 175, - (3.46)
q Ty 0

Now we are in the position to complete case (I). By Parseval-Plancherel identity
(2.4) and (3.46)

2 2 .
f < f (G,(x))zdx> dr= f ( f |G,(t)|2dt) dr
q R¥ q RK

” (3.47)
= f (f |G,(t)!2dt) dr>>q-(mp)™1-¢,
q Ty
We recall: G,=E-F, where
E(x)=exp {—[x?(m) 7%}, my=mologn
and
F/(x) = card {S N B(x, r) N Q(mg)} —u(B(x, r) N Q(my)).

Clearly

E(x) < p~®"tlogn  whenever q<r<2q (3.48)

and B(x,r) = {y ERX: |x—y| <r} ¢ O(m,)



IRREGULARITIES OF DISTRIBUTION. I 23

Now from (3.47) and (3.48) we obtain the existence of a ball B(x,, r;) such that B(x,, ry) is
contained in Q(my)cQ(M), q<ry<2q and

D 1By, 1)) | > (m<1.

2, € B(x, 1)

1K

Since my=in"X-exp {—(logn)**}, we conclude that

12~12K~¢

> 1-u(Bxg, 1y)

2;€ B(x, rg)

>n

if n is sufficiently large depending only on K and £>0. This completes case ().

(D f |zp(t)|2dt>—1— lp®)Pdt where ay,=n"-(my'.
0(ay) 2 Jouon

This is the simpler case. From (3.37) and Lemma 3.3 (ii) we obtain

(al) - f {A,0) dx>> f [w(®)dt z% lp(t)fat
RE Qlag)

0 0(100)
(3.49
>> exp {—(log 1)} - 2m,)~.

From (3.49) standard averaging arguments yield that either
(II,) there is a vector x,GRK such that the translate Q(l1/ag)+x; of the cube
QO(1/a,) is contained in Q(my) and |A, (x)|>> exp {—}(log n)**} - (2/ay)",

or
(11,) there is another vector x, € R* such that Q(1/ag)+x, is not contained in Q(my)

but |Ao(xx)>4 (2/ag)®.

Since by (3.6)

2
1= E(y) = 1—const (ngz:,l)‘ whenever y€ Q((%) ,
h 0

elementary calculations give (see (3.29) and (3.30))

K
>> exp {—% (log n)2’3} . (al) for j=1, case (II,)
0

D, (x)] 2%IA,,(,(X,)I (3.50)

2 K
= <-——> for j=2, case (IL,).
ay
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If alternative (II;) holds then let Ag=Q(1/ag)+x,; if alternative (II,) holds then let A, be
a translate of Q(1/ay) such that (Q(1/ag)+x3) N Q(mg)=Ae=Q(my). In the latter case by
(3.50) and (3.29)

card ((Q(al) +x2) N Q(myN s) =D, (x)] =2 (al)" =2u(Ay),
0 0

and so

> 122-uA).

zjer
Consequently, we have

>> exp {—% (log n)m} ‘u(Ay) in case (II,)
=u(Ay in case (II,).

> 1-u(4y) (3.51)

€A

Now using (3.51) one can complete case (I) as follows. Let r=m-n"?"=(1/ag)-n"".
Again we distinguish two cases (o) and ().
(o) sze Aol—-u(Ao)>0 in (3.51). Then by a standard averaging argument we con-

clude that either

(o) there is a ball B(xs, r) contained in AqcA(mg) with
> 1—,u(B(x3,r))>const-n'K"’-< > 1—,¢(A0)),
szB(xJ,r) zJ-GAo
or
(0,) there is another ball B(x,, r) such that

B(x,,ANQ(m)+@ and > 1>2-uBx,, 1)

z;€ B(x,, )N Q(my)

In the case (0,), since 2r<mgy<}M we have that B(x,, )= Q(M) and

> 1~ulBx,, 1) > u(B(x,, r).

zj€B(x4,r)
Summarizing, there exists a ball BcOM)=[-M, MI® of radius r=m0-n'2">
1n"%-exp {—(logn)®®}-n~?" such that the ‘‘error’ Z,epl—p(B) is greater than

n'~¢ if #>0 is sufficiently small depending only on £>0 and K.
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®) ,u(Ao)—E,je 4,1>0in (3.51). Then there is only one alternative: one can find a
ball B(x;, r) contained in A, with

WBx, )~ 1>const-n‘K"7-<u(A0)—z 1).

zIGB(xs, r Z,EA,

This completes case (II).
It remains to prove Lemma 3.2A and Lemma 3.3. For later application we prove
the following slight generalization of Lemma 3.2A.

LeEmMA 3.2B. Let yy=¢ and ,=vy. Then
f [pt) P dt>> f {w, (¥} dx, i=0,1.
0(100) RE

Proof of Lemma 3.2B. Let
2sin (bx)
f( ) H( (27[)1/2 )

where the real parameter b>0 will be fixed later. From the general identity (3.8) we see
that the Fourier transform, f of f equals the convolution of the characteristic function of
the cube Q(b)=[—b, b]* with itself, i.e.,

K
RO =G * 2o ®© =T [ @b-1th*
=1

where (y)*=y if y>0 and 0 otherwise.
Let Ey(x)=1 and E (x)=E(x). Then from (2.3) we obtain that the Fourier transform
of the convolution

8x) = f Sx=Y)(ELy)-dZ\(y)—E(y) - duy(y))
RK

equals f- Y;, i=0,1 (see also (3.8) and (3.13)). By Parseval-Plancherel identity (2.4), for
i=0,1

f gix) dx= f | AOP [y O at
RK :

(3.52)
f (H(Zb |t|)+>2 At dt < 2by*- f lp O dt.
RK 0

J=1 (2b)
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On the other hand, an elementary calculation shows that if b is sufficiently large, b=50
say, then

fix-z) 'E,(Zj)—f flx—y)dy > c(K) >0
o (3.53)

whenever z,€ (Q(—})—)H() nQ(my, i=0,1.

Therefore, using the fact that f{x) is a positive function (i.e., a Fejér kernel), with (3.53)
we get (i=0,1)

lgx)| =

f Sx=y)(ELy) dZy(y)—E(Y) duy(y)) ‘
RX

> c,5(K)* S{%)

Zj) ) E,'(zj) - f fix—y) E,()’) d,uo(Y)
RK

(3.54)

where S{x) denotes the number of points z; which lie in (Q(1/50)+x) N Q(m;) (note that
b=50).
It is easy to see that (i=0, 1)

f (S(x))>dx>> f (w,, (%) dx. (3.55)
RK RK

Combining (3.52), (3.54) and (3.55) Lemma 3.2B follows.

Proof of Lemma 3.3. We prove only (i). The proof of (ii) goes along exactly the
same lines as that of (i).

Let h(x) denote the characteristic function of the cube Q(1/b). Then

2sin (x/b)
ﬁ(t) 1_.[ (2 )1/2/ :

It is easily seen that
f lp®)? dt << b**- f |A@®) |t)| dt. (3.56)
o) RK
By (2.3) and (2.4)

f RO |t dt = f (f h(x—y)(dZy—duy) (y))zdx. 3.57)
RK RE \JRX
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Observe that (see (3.29))

D,(x)= L Kh(x—y) (dZy~duy) (y). (3.58)
Combining (3.56), (3.57) and (3.58) we conclude that

f |@(t))? dt << b*K- f (D,(x))* dx,
Qo) RX

as required. Thus the proof of Theorem 1B is complete. Theorem 1A, being equivalent
to Theorem 1B, follows immediately.

4. Proof of Theorem 2A

For notational convenience let Q(a) denote the cube [{—a, a]K, a>0 real.
Let M>0 be a parameter to be fixed later.
We recall: §={z,,2,,2,,...} is the given infinite discrete subset of R,
We introduce two measures. For any EcR" let

Z|(E) = card (SNEN Q(M)),

i.e., Z, denotes the counting measure generated by the discrete set SN Q(M).
For any Lebesgue measurable set EcR” let

Ho(E) = w(EN Q(M)),

i.e., 4y denotes the restriction of the usual K-dimensional volume to the cube Q(M).
Let x, , denote the characteristic function of the set

A(z, a, 0) = {a(rx): x‘GA},

where A is the given compact convex body, 7 is a proper orthogonal transformation and
a€(0,1] is a real number.
Consider now the function

Fr,a=Xr,a*(dZO_d:u0) (41)
where % denotes the convolution operation. More explicitly,

F, (@)= f Xz o« X—YNAZy—duy) (y)
RK

=card (SNA(z, a, x) N Q(M))—u(A(z, a, x) N Q(M)), “4.2)
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where A(z, a, x)=A(z, a, 0)+x is the translate of A(z, a, 0). Therefore,

if A(r,a,x)c QM) then F_ (x)= Z 1-u(A(z, a, x)). 4.3)

7€ A(r,a,%)

By the Parseval-Plancherel identity (2.4)

j (F, () dx = f F, J(Of dt 4.4)
RK RF

where F, | denotes the Fourier transform of F_,. By (2.3)and (4.1)
F, .=, o % (dZy~du)™ =3, ,-(dZy—duy) "™, 4.5)

and so by (4.4)

1 1
f f f (F, () dxdadr = f ( f f |)2,,a(t)|2dadr)-|(dZo—d;40)"(t)|2dt (4.6)
TJo JRX RK\Jr Jo

where T is the group of proper orthogonal transformations in R¥ and dr is the volume
element of the invariant measure on T, normalized such that [ dr=1.

We mention in advance that M=100-diam (A) where diam stands for diameter.
Thus we may assume that

%-(2M)"< card (SN Q(M) <2- M)~ 4.7)

Indeed, in the opposite case we are immediately done via standard averaging argu-
ments.

In what follows we shall employ both the >> notation and the O-notation, with
constants which may depend on the dimension K only.

Let ¢ =(dZy—du,)"~. We need

LEMMA 4.1. [ 500 @O dt >> M.

Proof. Comparing the definitions of the measures Z, and g, in Sections 3 and 4, we
see that parameter M in Section 4 plays the same role as that of parameter m, in Section
3. Thus by Lemma 3.2B with i=0 we have

J’ lp®)|* dt >> J (w,(x))* dx
0(100) RX
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where w,,(x)=card (U +x)n Q(M)n S). Moreover, by (4.7)
L K(wM(x))i dx= L (0,0) dx = card (QM)N ) > % .M~
Summarizing,
f PO dt>> @MY,
Q(100)

which proves Lemma 4.1.
Clearly (see also (4.7))

lp(®)] = 2m) =% f e ™t (dZy—duy) (x)
RK

(4.8)
< (2m) %" {card (Q(M) N $)+u(Q(M))} << MX.

Therefore, if c,o(K) is a sufficiently small positive constant, with Lemma 4.1 and (4.8)
we obtain

f lpOPdt< | |poPd. 4.9)
QOlco(K)/M) Q(100)

From Lemma 4.1 and (4.9) it follows that there is an integer m satisfying lsm<
O(log M) such that

|<p(t)|2dt>>£x where Q, = Q(200-27")\.Q(100-2™™). (4.10)
v} m’

m

Here is the outline of the proof of Theorem 2A. By (4.6) and (4.10) it suffices to
give a suitable lower bound to

i
inf f f . (BF drda. @.11)
€0, Jo Jr |

Obviously
ea® = a2, (at)

where y, denotes the characteristic function of AcR* and v is the inverse rotation.
Let G(x), x ER* be a function satisfying
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=0, fort€Q@6-2™™
IG®)|3 <2, for tE0=0(100-2"" K"\ Q(6-2™™)
=0, for t§Q(100-2"" K12

where 6>0 is a sufficiently small constant depending only on K. Then for every t*€Q,,
(we recall: O=0(100-2""- K="\ 0(6-2™"™))

1 1
f f "?r,a(t*ﬂzd“”“:f “M(f |)2A(r"(at*))|2dt> da
0 T 0 T

1
= f @ (a(B(O, alt*)) - f [, O do(®) da
0

ti=alt*
1

It*] 2K
=5 (%) (0B, )" [ A® do(t) dy
lt | 0 lt I ftl=y

B Itl*l f (|tui|)m""(3(“’ )12, OF dt
BO, t*]

thl*l <|tut*|>2K'(°(B(°’|ti>>>"-bz,,(t>|2dt
(4]

45> )" f 7 O dt
0

>> QN J 12 4®F |G dt,
RK

where o denotes the (K—1)-dimensional surface area and B(0,r) is the ball {XGRK:
[x|<r}.
Choosing f=y,%G, by (2.3) and (2.4) we have

2
f b A®F |G dt = f ( f xA(x—y)-G(y)dy) dx.
RX RX \JRX

Therefore, in order to give a lower bound to (4.11), it suffices to investigate the right-
hand term of the last equality.

We shall construct the desired function G in the form of a difference G=h—H. The
functions & and H will satisfy the following properties:

(i)f h(y)d)'=f H(y)dy=1,
RK RK
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(ii) both functions 4 and H are ‘‘predominantly”’ positive.
Let r(h) be the smallest radius such that

99
f h(y) dy = 200"
B@®, r(h))

and similarly, let r(H) be the smallest radius such that

99
f H(y) dy = W
B0, r(H)) 0

We also need the following property:

(iii) r(H) is *‘much smaller’’ than r(h). In other words, the integral of H(y), y € R%is
“‘essentially concentrated’’ on a much smaller ball centered at the origin than that of
h(y), yER",

The geometric heuristics of the proof is as follows. Assume x,€ A, and further that
the Euclidean distance of x, and the boundary 3A of A is in the interval [r(H), 2r(H)].
Since the ball B(xy, (H))={xy—y: |y|<r(H)} is contained in A, it is expected that

f 1A%o—y) H(Y) dya—fa
RK

(note that H(z) is not necessarily positive everywhere on the set {x,—z:z€A}, but
‘‘predominantly’’ positive). On_the other hand, the intersection B(x,, /(h))NA forms,
roughly speaking, a half-ball, so it is rightly expected that the integral

f X4(%g—y) h(y) dy
RK
is also about the half of the integral
99
J h(y)dy = 100°
B(O, r(h))
i.e. about . Summarizing, for these values of x, we expect that the integral

f 14Zo—y) G(y)dy| = J 1 aXo—y) (H—~h)(y) dy
RK RK

is greater than a positive absolute constant, which implies the desired lower bound to
4.11).
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After the heuristics we give the explicit form of # and H. Let

K 2sin(e, x) | | 2sin(eyx) K
- ATTEE2 L yer 4.12
h(x) = Qe l)1( {J.:.l[ (Zn)'n'xj jl:! (2ﬂ)l/2’xj X ( )
and
_ 1 [{52sin(ex) | [ 2sin(Ex) eRrF 4.13)
0= e {H (M)'”-xj} {H ey [ "

where 0<cl<g2<e<ed and e,—&,=¢4—e3. These four parameters ¢, 1<i<4 will be
specified later. ’

For later application we list the basic properties of & and H (see (4.18), (4.19),
(4.22)-(4.29), (4.31) and (4.32) below).

Since
(%;:‘%)A = oD (4.14)
where x_, , denotes the characteristic function of the interval [—b, b], by (3.8) we
have
R(t) = o 1)"H(x[ e ¥ Xpmepe) ) 4.15)
and
Ab = = 3)K]_[(x[_es o) * X -epe) () (4.16)

where % denotes the convolution operation (note that 4 and H are de la Vallee Poussin
type kernels).
If 0<a<b then obviously
2a for|t|j<b—-a
Wca,a) ¥ X5 (D=1 <2a for b—a<|f|sb+a. 4.17)
0 for |t|=b+a.

Combining (4.15), (4.’16) and (4.17) we see

0 for t€ Q(e,—&;) = Q(ey,—¢y)
|A—A) () = <2 for tEQ(e;+2)\Qle,—¢y). 4.18)
0 for t& Q(e,+e,).
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Let &; and ¢, be defined by the equations
£3+€,=100-27"- K2 (see (4.10)), ¢, = (1— i) &4

c4

1 1 1 4.19)

Moreover, let ¢,= —C E=&——g= (1__5) &
c c c

Here the parameter c=4 will be specified later as a sufficiently large absolute constant
depending only on K. Observe that ¢,—&,=¢,—¢;.
Choosing f=y,*(h~H), by Parseval-Plancherel identity (2.4) we have

2
f < f xA(x-y)'(h—H)(y)dy> dx= f EA®F - |(F—H) (D dt (4.20)
RX\JRK RK

where y, denotes the characteristic function of the given convex body A. By (4.18) we
obtain

f ¢ JOF - |(A—H) ® dt <2 f % J®) dt. (4.21)
RK Q

(e3+¢,)\ Q(e4—¢3)

In order to give a lower bound to the right-hand term of (4.21) (and via this to (4.11)), it
suffices to investigate the left-hand term of (4.20).
Using the well known general identity (see any textbook on harmonic analysis)

j fx)-gx)dx = f AD-2®dt (f, g€ LXRK)),
RK RK

from (4.12), (4.13) and (4.’14) we get

f h(y) dy = f (ze%-xm,)(t)~xg(sz,(t)dt=1, (4.22)
R¥ RK£E
and
f H(y) dy=f Eﬁ-xw;)(t)-xw SOdt=1. (4.23)
R¥ RK (285

Besides (4.18), (4.22) and (4.23) we shall also use the following properties of A(y) and
H(y): if the parameter c is sufficiently large, then, roughly speaking, both functions 4
and H are positive ‘‘nearly everywhere”’, and the integral [g«H(y)dy of H is ‘‘essen-
tially supported’’ by a much smaller ball centered at the origin than that of h. More
explicitly, using (4.12), (4.13) and (4.19), via elementary estimates we obtain

3878282 Acta Mathematica 159. Imprimé le 25 aoht 1987
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if yEQ(zl—) then A(y) is positive and h(y) >> (g,)%, 4.29)
2
if yEQ(;l-) then H(y) is positive and H(y)>> (£)¥, (4.25)
4
K1-4 I+
if yEH[’ L %] where 1=(l,,..., 1) €Z¥
=1L & &
(4.26)
1’5[ 1
then |h(Y)|<<(e)* || —=
I I 2 i1 (1+|ljl)2
£ li—3 fi+3 K
it ye[] , where 1=(l,,...,[)EZ
=1L & &
4.27)
51
then |H(y)|<<(e)X- .
[H)| <<z H Ty
For notational convenience let
K -1 1
1 L= +} K ;
—sll= L 2L 2 1=d,...,.I10QEZ, i=1,...,4.
Q<28i ) El: & & (l o
Using (4.26) we have for any =1, .
K
1
f h@ldy<s D, kldy<< > |1 TS
RE\Q(ley) 1€zk.  JQ gi—:l 1€z Jj=1 ( +|j|)
max|ij=8-4 ? max|}|=8-1
1gj<K Isj<K
K q K
=(2 1 2) (S — (4.28)
tez (1+|I) ez, (1+)

<-4

1 1
< << —.
1621; a+mp* B8
W=p-1

Repeating the same argument we get

J' [H(y)|dy << 1 for every real f=1. 4.29)
RN\ Qe B
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We need the following elementary observation:
if 0<a<b and sin@x)-sin(bx) <0 then |sin(ax)-sin(bx)|< %(b—a)2 x?
4.30)

Indeed, then for some d, a<d<b, sin(dx)=0, and so we have that

|sin (ax) - sin (bx)| = |sin ((d—a) x) - sin (b—d) x)| < (d—a) (b—d) - x* < %(b—a)2 -x*

Let y € Q(1/2¢,;1) where 1=(/,, ...,IK)EZK with |l]<c+}, 1sj<K. If h(y)<O0, then

for some index v, 1<v<K, sin(g,-y,) sin(g,'y,)<0 (see (4.12)). Therefore, by (4.12),
(4.19) and (4.30) we obtain that

_ |sin (g,-y,)-sin(g,"y,)| K 1
h << L PRALE
\(h(y)) | Y H T
JFv
_ 1&gy el) K I
ST e ,1:[(1+|1|)2 <c> @ 43
J*Ev JFv

1 S
<<=-(g)%
2 ® I-[(1+|1j|)2

Jj=1

where (h(y)) =h(y) for h(y)<0 and 0 otherwise. Similarly, if y € Q(1/2¢,;1) where
1=(,, ...,IK)EZK with |[|<c+{, 1j<K and H(y)<O0, then for some index v, 1sv=K,

sin(e3-y,)-sin(e4-y,)<0. Therefore, by (4.13), (4.19) and (4.30) we obtain that

i v )-si . K
L R G R CR @]

€'Y, €'Yy i=1 (l+|ljl)2
JEv
1 (e,—8&)* K K 1 (1)2 e u 1
< — (e )X << (=] -(e)*: 4.32
4 &gy 11'3(1+|lj|)2 ¢t/ Y A+ @
jEv Jrv

1 E o
<<—-(¢ )K-| | .
Y L aH)?

For any compact convex body PcRX and real o, 0<o<r(P) (we recall: r(P)
denotes the length of the radius of the largest inscribed ball in P), let P~[p] be the set of
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all centres of balls of radius ¢ contained in P. It is obvious that P~[g] is also compact
and convex.

We shall apply the following result from discrete geometry (Hadwiger [7]): for any
compact and convex body AcRX there exist boxes in arbitrary position B and D with
parallel edges such that

BcAcD and Alg—)—s,u(A)sKK-u(B). (4.33)

Let b; and d;, j=1,2,...,K denote the length of the parallel edges of B and D,
respectively. Without loss of generality we may assume that

bysb,<..<bg. (4.34)
From (4.33) it immediately follows that
b)<d;<KXK!'b, 1<j<K. (4.35)

Furthermore, we shall apply without proof the following well-known geometric
fact:

if P, and P, are compact convex bodies in R¥

(4.36)
and P,cP, then o(3P,) < o(oP,).

Here 3P denotes the boundary surface of P, and o is the (K—1)-dimensional surface
area.

Let e=c-&,=(1/c)- &4. Now we are ready to estimate from below the left-hand term
of (4.20). We distinguish two cases (I) and (II).
(I) 1/e<b'/8. Let A,=A7[1/e] and A,=A,\A[[l/e]. in order to estimate the vol-

ume of A,, it suffices to use the following very crude lower bound.
LEeMMA 4.2. If P<RX is a compact convex body and 0<op<r(P), then
HP\P~[0]) = c20(K)- e o(3P [e]),
where the positive absolute constant coo(K) depends only on the dimension K.
Proof. Let
E=3P7[o], F=B(0,0)={y€R":|yj<o} and G=P\P[ol

Simple double integration argument gives
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f HF+x)N G) do(x) = f(f 2oy=%) dy) dx= f (f 1 5—%) dx) dy
E ENJG G\JE
= f ( f xg(y-x)dx) dy = f o((F+y)nE) dy
G\JE G

where y, denotes the characteristic function of the ball F. Since P~[g] is convex, for
any x€E the intersection (F+x)NG certainly contains a half-ball of radius ¢. Hence

4.37)

UW(F+x)NG) = %u(F) for any x€E. (4.38)

On the other hand, by (4.36)
o((F+y)nE)<o0(3F) for arbitrary y ERK, (4.39)

Combining (4.37), (4.38) and (4.39) we obtain

a(E)'%u(F')SJ.ﬂ((F+X)nG)d0(X)=f o((F+y) N E) dy < u(G) - o(3F),
E G

and so

A ulE) _ oy .
u(G) = o(E) 2 ooF) a(E)-cxn(K)-0.

Lemma 4.2 follows.
By definition (see (4.33))

sen ({122

Jj=1

‘with some appropriate orthogonal transformation 7, and translation x;. By hypothesis
2/e<b,/4<by/4<...<bg/4, and so we have

X
AT [%] o7, <H [-%,%]) +x,. (4.40)

By (4.36) and (4.40)

a<aA,- [%]) >> 0(9B), 4.41)
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and by (4.35) and (4.36)
0(8B) >> a(8D) = o(9A).

That is, by (4.41) and (4.42)

o(GAI‘ [%]) >> 0(0A).

By Lemma 4.2 and (4.43)
1

WAy = ﬂ(Al\Al_ [-8-]) >> —i— - a(3A).

4.42)

(4.43)

(4.44)

After these preparations we are ready to realize the heuristics mentioned above.

Let xo € A,, and estimate the integral

f X 4(%o—Y) (h—H) (y) dy
RK

from below. Since xo€EA; = A™{1/e], we have

() )=~

Therefore
f 24Xo—y) H(y) dy = f H(y) dy— f |H(y)| dy.
RK o(z) R\0(z)
By (4.23)
f H(y)dy=1- f H(y)dy=1- f |H(y)| dy.
o(z) R*\0(z7) R\Q(z)
By (4.45) and (4.46)

f 1a(X—y) H(y)dy =1-2 f |H(y)| dy.
RK R

*\olxk)

Since £=(1/c) &4, from (4.29) it follows that

f \Hy)|dy <<,
RE\Q(%5) ¢

(4.45)

(4.46)

4.47)
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thus by (4.47)

f 2a(%o—y) H(y) dy = l—o(i—) for any x,€A,. (4.48)
RK

On the other hand, since x,€ A,=A,\A[[l/e] where A,=A"[1/¢], we sce that the usual
Euclidean distance of x, and the complement RX\ A of A is <2/e. Using this observa-

tion and the convexity of A it is easily seen that

<Q<'$_) +x0> \\4 contains a ball of radius % (4.49)
2 2

Here we also used that e=c-&; and c=4. Clearly

j XaXo—Y) h(y) dy < J xA(xo—y)h(y)dy+f h(y)dy+
RK Q

f (h()~ dy
Ref3)

@) RINQ(z)
fi 0 4.50
e -1 310 o

By (4.22), (4.24) and (4.49)

J’ 2a(Xo—Y) h(y) dy+ f h(y)dy= f h(y)dy+ I (A (Xp—y)— 1) h(y) dy
o) RENO(Z) R o)

= l—cz.(K)-(sz)"w({yGR": Iyl S%})

2

= 1—c,(K) (4.51)

where ¢ 22(K)>0.
Moreover,

J h(y))~dy 4.52)
0

j (h(y))~ dy
0 1

2¢ey

sj |h(y)|dy+ 2 2
*\efs)

LEZ: IKEZ:
[hlsc+ |ixlse+1

where
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By (4.28)

f [h(y)|dy <<~ 4.53)
(g ‘

By (4.31)

- f (h(y)~dy
LEZ: I,EZ: Q(g;; )
[hlsc+)  lglse+)

K

1 1 1

<< - ——'(S)K',M(Q<—;I)) (4.54)
,%; l§e:z ¢’ E(Hujpz ? 2%, )
lsc+l  lglse+d

K K

1 1 1 ( 1 ) 1

s— =— << —,

’ Cz I‘EZZ: l,;z: E (1+|IJ|)2 C2 % (1+Ill)2 Cz
o hse+)  ligdsc+]

Combining (4.50), (4.51), (4.52), (4.53) and (4.54) we obtain

1

f 2aXe—Y) h(y)dy < l—sz(K)‘*’O(';)‘*'O(é) for any x,€A,. (4.55)
Rl(

From (4.48) and (4.55) it follows that

f 2 o—y) (H—=B) (¥) dyaczz(K)—oG-) > % cp(K)>0 if ¢ = cy(K) and X EA,.
RK

(4.56)
Using (4.44) and (4.56) we see that if c=c»3(K) then

2 2
j < f xA(x—y)(h—H)(y)dy) dx= I ( f xA(x—y)(h—H)(y)dy> dx
RX \JR¥ A, \JRK
4.57)

>> u(A,) >> % -0(8A).

(II) 1/e>b,/8. Since the boxes B and D have parallel edges, we have

sen ({12 2])on ws oo ([ 24])on

j=1 j=1

where 7, is an orthogonal transformation and x;, x, € RX.
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Let

K b, 1 b 1
= ~—i- =+ +x,.
By "(H[ 2 2Ke, 2 2K |)

J=1
Let xo € B;. We are going to estimate

( L KxA(xo—y) (h—H)(y) dy)2
from below. Clearly

f X4(%g—y) H(y) dy = f Xa(Xo—y) H(y) dy—
RK

f XaGo—y) (H(Y))™ dy
Alley) REN Q12

(4.58)

Since xo € B,, we see that the usual Euclidean distance of xo and B is <1/2¢4. Hence

K
,4<<Q(i> +x0> nB) >> [ [ min {—1-, bj}. (4.59)
€4 j=1 &

(
Co

By (4.25) and (4.59)

f xA(xo—y)H(y)dyzcz4(1<>-(e4)‘-u< Q(i)+xo) nA)
Ol/ey) €&
((2(z) %))
1

= c(K) - (e)" 1

< (4.60)
= (K- ()] [ min {? b,.}

j=1 4

B J
= (K- [ [ min {1,,b}.
i=1
Moreover
J Xa(o—Y) (H(y)) " dy| < f x4(%—y) - |H(y)| dy
REN Qe R\ Q(cle)
(4.61)

DI
Lez: Ik€EZ:
e+t ligl<c+]

f 2a(Xg—Y) (H(y))™ dy
Q112431
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where

By (4.27)

f L&D HD dy< D) f 2a=Y) |H)| dy
R\ O(c/e) 1ezk:  JOUR2e,Y
max |l|=c—}

1sj<K 4.62)

< Z (“)Kﬁmlll)z #{(ofz)x)04)

1€2%; j=1
max|ljzc-4
1sj<K

Since

Aol (ol )oo)<fiom]. wo

by (4.62) we have

K
j X 4(Xo—y) |H(y)| dy << (l I mm }) &)~ E 1 _
R\ Q(c/ey) a+ lljl)

=1 1€zk:
max{ljzc—1

Isj<K

<< ﬁmm{l £ d})

Jj=1

1\ 1 \¥
) (Kezz (1+III)’> _(,GZ;‘ (1+|1|)2) (4.64)

f<c-}
(11 S o
< min{],e d})
i t (lez; (1+|1|)2)
Me-1
K

1 .
<<?-Hm1n{1,s4-dj}.

J=t
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By (4.32) and (4.63)

>

l| €Z: IKG Y A
lhisc+}  llgisc+)

K
1 1 K 1
<< — — ) (&y) -,u((Q(———;l>+x0> nA)
I,EZZ: I,;Z: c6 (E (1+|lj|)2> ) 284
Ih<c+1 [ilse+

ok (T winfL 1) 1
) (€4) (Enun{£4,clj}> 2 2 (1+|l,~|)2 (4.65)

LE€Z g€z

1 K 2 1 K
— min {1, ¢ -d-})-( )
8 (,H. I NE -+

1 K
<<=
¢t (

min {1, 84'dj}>.
1
Combining (4.61), (4.64) and (4.65) we see

J’ X4(Xo—Y) - (H(y))™ dy
Q(1/2e431)

N

Jj=

K
1 .
<<? ] l min {1, ¢,-d;}. (4.66)

j=1

f XAXo—Y) (H(Y)™ dy
REN Q(1/e)

Therefore, by the inequality d,sKK -K!-b; (see (4.35)), (4.58)\, (4.60) and (4.66) we
obtain ‘

K . c26(K) K .
fxA(xo-y)H(y)dy?czs(K)-Hmm{l,e,,-bj}- - Hmln{l,e4-¢1j}
RrK j=1 j=1
KK K1) KX
= {czs(K)- %Kl;—(—K} [ [ min (1,5} (4.67)
j=1

K
B%CZS(K)-Hrrlin{l,Q-bj} if ¢ = ¢, (K).
i=1

On the other hand, by (4.26)

s Z 24%o—Y) [h(¥)| dy

162X JO(112e5;1)

K
(Tt N ((of L.
<2 (H <1+|1,-|>2) u((01) )04 ).

j 2 4(Xo—Y) h(y) dy
RK

(4.68)
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Since

Aol (o) =24

by (4.68) we have

XA(XO y) h(y) dy

<2 (IKI (1+|1|)’) (ﬁm db })
<Hmm{1 & d}) > H (1+| T (4.69)

1€ZX j=1
K 1 K
= min {1,¢&,-d;} }- << | | min{l,¢,-d;}.
(mnt.cv00) (3 i) <<[Tmintreva

By hypothesis 1/e>b,/8, and so 1>¢-by/8. Furthermore, d4;<K*-K!'b; and
e=¢e4/c=c &, thus by (4.67) and (4.69) )

K
f xA(xo—y)(H——h)(y)dy?%C”(K)-Hmin{1,84 )} —cp(K)- nmm{l &-d;}
RX i=1

Jj=1

2—;-c25(K)~min{1,c~£-b1}-Hmin{1,84-bj}

j=2

K
(K- K- [ [ min {1, 6,5}

=2

. KX-K!-¢-b,
—c(K)- min 1,f

K,
={iczs(K)-min{l,c-e-bl}—c29(K)~min{l,K CK!-e-bl}}

mem{l &by}

j=2

c;s(K) min {l,c-&-b,}" Hmln{l b}

j=2

= czs(K)-Hnlin{l,e4-bj}

j=1

1
4
4.70)

whenever c2c;3o(K)=c,7(K) (we recall: xq is an arbitrary point in B,). Obviously
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£ 1

u(B) > max {b.,—}. “.71)
l g Te,

Therefore, using (4.70) and (4.71) we have

2 2
f ( f x,,(x—y)(h—H)(y)dy) dx = f < f x,,(x—y)(h—H)(y)dY> dx
RX \JRK B RK

1

K 2 K 1
>> {H min {1, 84‘bj}} . {n max {bj, 8—}}

j=1
for ¢ = c3(K).
(4.72)

Let jo be the largest index j, 1<5j<K such that &,-b;<1. Then by (4.72)

2
J (f Xa(x—y) (h—H)(y) dy) dx >> ( H 64-b,?>- H bj> if ¢ = ;(K).
RK \JRK 1<isg, jo<i<K

4.73)

Let c=max {4, ¢;3(K), c27(K), c30(K)}. Then from (4.20), (4.21), (4.57) and (4.73)
it follows that

2. f ’bzA(t)lzdtaf 12 ) |(R—B) (D] dt
(o, RK

(e3+2)\Q(e4—¢3)
2
= f ( f xA(x—y)(h—H)(y)dy) dx
RK RK

—l—-a(aA) in case (I)

>>
(H e,,-b?)- I bj> in case (I)

1sisg, jo<i<K

4.74)

where jj is the largest index j such that g,-b;<1.
Now we return to (4.11). By definition

Zrat) = aX 7,7 (at)

where . , denotes the characteristic function of A(z, a,0). Consequently, for every
t*€ 0,,=0RK"(e3+£4))\Q(K*(e5+¢4)) (see (4.10) and (4.19)),
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1 1
f f 8. 9] dadr = f azx(f D?A(f“(at*))|2dt> da
TJO 0 T

>> (u(Qe;+e )\ Qle,~e)) ™ f 24O dt 4.75)

Qley+e)\Ae,—¢3)

>>(e) 7 f 24O at.
Qles+e I\ Oleg—ey)

By (4.74) and (4.75): for every t*€Q,,
(e)%1-a(3A) in case (1)

J’ f . (t*)|? da dr >> I—[ b 1—[ (%) in case (II). (4.76)

1<isg, Jo<isK 4

Combining (4.6), (4.10), (4.19) and (4.76) we obtain

1 1
ff f Fia(x)dxdadt=f (f w,’a(t)lzdadr)-ltp(t)lzdt
TJo JRK RENJT Jo
1
> f ( f 12, a(t)|2dadr) (O dt
(mlnjf lxra(t)lzdadt)J' ()| dt 4.77)
€. Jr Jo

2(K+l)m

(e)7¥! a(aA) - MK >> -0(8A)- M¥ in case (I)

>>

H b H Q" b) — m case (II)

[ESESN Jo<isK

where p=(dZo~dus)", j, is the largest index j with &4-b;<1 and m is an integer with
1=m=0(log M).
Clearly

X X
[16,=u® >>uA) and []b>>0(6B)>>0(3D) = o(3A)

Jj=1 j=2

by (4.33), (4.35) and (4.36); moreover,
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by (4.34), and finally
b>>dizrA)=1

by (4.35) and the hypothesis of Theorem 2A.
Therefore, in view of (4.77) we have

1 0(8A)-M® in case (I) and in case (II), j,< K
fr J(; Lx F o) dxdodr>> _@%;)%)Afj in case (D), j, = K.
(4.78)
We recall (4.2):
F, (x) = card (SN A(T, a, x) N QM) —u(A(z, @, x) N Q(M)). 4.79)
Hence |

F,,(x)=0 whenever x¢Q(M+diam(A)).

(Here diam stands for diameter.) Thus from (4.78) we obtain

1
f f f F? (x) dxda dv>> min {a(aA),ﬂA—»z—z}-MK. (4.80)
1 Jo Joo+diam(a) (log M)

Inequality (4.80) gives that either

1
j J J F? (x)dadr dx>> min {a(aA)’ _(“(A))zz} M*
o (log M)

(4.81a)
with Q* = Q(M+diam (4))\ Q(M —diam (4)),
or
1
f J f Fi,a(x)dadrdx»min{a(aA),ﬁ‘iA—”—z;}MK
o= Jr Jo (log M) (4.81b)

with O** = Q(M—diam (A)).

Now we specify the value of the parameter M: let
M = (diam (4))***2.

If alternative (4.81a) holds, then it follows that there exist
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0€T, ap€(0,1] and x,ERX such that

2 pgE-1 i i @A)’ } ME
(F,, o, (%))"-M""" diam (A) >> min {a@A), (log M)’ ;
that is
2o @A | M
(F,, o, (Xp))* >> min {a(aA), (log M)z} Tam @A)’ 4.82)
Since by hypothesis 1(4)=1, we see that
u(A) >> 0(8A) >> diam (A) = MVEE+D, (4.83)
Thus by (4.82) and (4.83)
(F o, (%) >> #(m = (diam (A)**! >> diam (4)- (u(A))?,
and so
IF,O, oX|>2u(4) if diam(A)= ¢, (K). (4.84)

From (4.79) and (4.84) we obtain that the cardinality of

S NA(ty, ay, X) N QM)

is greater than 2u(A). Consequently (we recall: S={z,,2,,...})

D 1-(A(y, a4, %0) > 2u(A) —u(A) = u(A4) >> 0(8A) = (0(3A))'?,
szA(To, ag, Xo)

which was to be proved.
If alternative (4.81b) holds, then there exist 7, €T, a; € (0, 1] and x, € RX such that

At 0,x)c QM) and (F,,a(x ))2>>min{a(aA),M}. (4.85)
1O X 7 01Xy (log MY?

By (4.3), (4.83) and (4.85) we conclude that if diam(A4)=c;(K) (i.e., diam(A) is
sufficiently large) then

2

> 1-wA@,ax)| =(F, , &)

7,€A(ry, ay, X))
>> min {0(3A), u(A)- M"?**?)-(log M)~?}
> min {0(3A), u(A)} >> 0(34),
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which was to be proved.
Finally, if diam (A)<c3,(K) then we are done by the following trivial argument.
Choosing B=(2u(A))""* € (0, 1] we have u(BA)=1, and so certainly

1
Q[S;Al=—.
[S;A] >
The proof of Theorem 2A is complete,

Remark. The proof actually gives that there exists a set Ag=A(7, gy, vo) such that

E 1-u(Ay)

Z€A,

>> (0(3A)?

and 1=ay>c3(K) (i.e. the contraction factor is larger than a positive absolute con-
stant).

Acknowledgement. The author is indebted to the referee for his very careful work.
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